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Preface

“ There’s still one good thesis left in Quicksort. ”
— D. E. Knuth quoted in the Acknowledgement of [Sed75]

This book is based on my master thesis of the same title1 [Wil12] which was
supervised by Markus E. Nebel

2 and Ulrich (“Uli”) Laube. The thesis
originated in a discussion between Uli Laube and me about an article [Lau11]
in the well-known German computer magazine c’t describing features of the just
released Java 7. He pointed me to small paragraph entitled „Und außerdem . . . “
(“And besides . . . ”), which states that, by the way, Oracle has changed the
Quicksort implementation and that the new one seems to run twice (!) as fast
on many inputs.3

After that, I did some research about this new, incredibly fast Quicksort vari-
ant. It had been suggested by the young researcher Vladimir Yaroslavskiy on
the Java core library mailing list [Jav09]. Apart from running time results reported
in the vivid mailing list discussion between him, employees at Oracle and a
few other interested programmers from around the world, little seemed to be
known about Yaroslavskiy’s algorithm. There is a document [Yar09] reporting
expected numbers of comparisons and swaps, but parts of the argumentation
are flawed and the results are not precise.

So a new sorting algorithm was to be deployed on hundreds of millions of
devices around the world whose performance characteristics were only known
empirically. Therefore, I set out for a thorough mathematical investigation of
dual-pivot Quicksort, the result of which you now hold in your hands.

1Actually the thesis was called “Java 7’s Dual Pivot Quicksort” without the hyphen between
“dual” and “pivot”, but I came to prefer the hyphenated version as it is parsed unambiguously
to a Quicksort with two pivots, instead of something that is dual to a “pivot Quicksort”
(whatever that would be).

2Prof. Dr. Markus E. Nebel, Algorithms & Complexity Group, Technische Universität Kaisers-
lautern

3This claim is backed by running time results published by Oracle (https://spreadsheets.
google.com/pub?key=tZD0Uq6ox1-BHhCoXDWIyUQ). For random permutations (RANDOM_INT),
they report a speedup of 56 % for arrays with one million integers; my own experiments
showed “only” a 30 % speedup between the library implementations of Java 7 over Java 6.
(Of course, the results cannot be compared directly as they were run on different machines.)
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Preface

Apart from my master thesis, the analysis of Yaroslavskiy’s algorithm lead to
further research publications, which I wrote together with my advisor Markus

Nebel and other fellow researchers. In fact, many — but not all! — of the open
problems listed in Chapter 10 of this book could be resolved in the meantime.
I decided, though, to keep the main text of my thesis unchanged and only add
remarks wherever statements are outdated or where noteworthy progress has
been made, by myself or others.

As these pieces of information are thus scatted throughout the book, a
chronology of the relevant news is collected here:

We first presented the core analysis of the new algorithm (basically Chapter 4

of this book) to the algorithms community at the 20th European Symposium on
Algorithms (ESA 2012). Our article there [WN12] was selected for the best paper
award by the ESA program committee.

Inspired by the (incomplete) analysis of Yaroslavskiy’s algorithm with pivot
sampling (see Chapter 9 of this book), an empirical investigation [WNRL13]
of the effect of skewed pivots was presented at the SIAM Meeting on Algorithm
Engineering & Experiments 2013 (ALENEX13). This was joint work with Raphael

Reitzig and Ulrich Laube from our group in Kaiserslautern. We found that
the just-in-time compiler of Oracle’s JVM extremely influences running time
in practice (and it in fact behaves quite strangely, see [WNRL13] for a detailed
discussion).

Shortly after the presentations of these papers, we were approached by
two researchers from the analysis-of-algorithms community with ideas for
joint projects. Together with Ralph Neininger, we extended the analysis
of Yaroslavskiy’s algorithm to include the use of Insertionsort on small
subproblems and we computed limiting distributions and asymptotic vari-
ances [WNN13].

The second joint project was suggested by Hosam M. Mahmoud. Therein,
the performance of Quickselect with Yaroslavskiy’s partitioning method is
examined [WNM14].

Other researchers from around the world have also taken interest in
Yaroslavskiy’s algorithm and the general idea of Quicksort with more than
one pivot. Martin Dietzfelbinger and his Ph. D. student Martin Aumüller

presented a lower bound for the (expected) number of comparisons achievable
with any possible dual-pivot partitioning method [AD13a, AD13b]. For that,
they devise a nice unified analysis scheme for dual-pivot algorithms (including
Yaroslavskiy’s).
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The initial question, why Yaroslavskiy’s algorithm is faster than classic
Quicksort in practice, is still not fully answered. Substantial progress was made
by Alejandro López-Ortiz, J. Ian Munro and their two students Shrinu

Kushagra and Aurick Qiao. They determine what I call the number of scanned
elements for several Quicksort variants and they indeed observe that dual-pivot
Quicksort uses much less such element scans than classic Quicksort. The number
of scanned elements is an approximation for the effects of the memory hierarchy
on Quicksort and better caching properties are the most likely explanation for
the success of Yaroslavskiy’s algorithm in practice up to now.

Quite recently, we have managed to complete the partial analysis of pivot
sampling from Chapter 9 and obtain precise partitioning costs symbolically
in the sampling parameters [NW14]. This also allows to compute the optimal
continuous pivot ranks for Yaroslavskiy’s algorithm.

Finally, we have an ongoing project with Conrado Martínez-Parra, where
we plan to take further features of modern processor architectures into account.
For the number of branch mispredictions resulting from simple adaptive branch
prediction schemes, we already have analytic results which indicate that classic
and dual-pivot Quicksort perform very similarly w. r. t. branch mispredictions.
This further strengthens the memory hierarchy hypothesis described above.

I am indebted to many people would helped — directly and indirectly — in
writing my thesis and this book. First of all, I thank my advisor Markus

Nebel and my whole working group, in particular Raphael Reitzig, Ulrich

Laube and Frank Weinberg, for the pleasant atmosphere we had and still have
working together with many fruitful discussions and many fruitless, but not less
inspiring discussion about life, the universe and everything. I would also like to
thank Ralph Neininger and Hosam Mahmoud for teaching me the contraction
method, a most elegant mathematical tool for the analysis of algorithms.

Laura Anina from AV Akademikerverlag patiently answered all my ques-
tions regarding publication and helped me preparing the manuscript for this
book, for which I am grateful. Many thanks also go to Carmen Dixon as my
typographical consultant for this manuscript.

Finally, I thank my family — to which I may now count my little son
Theodor — and especially my wife Lydia, for their patience and help dur-
ing periods of long nights and busy days. This book would not exist without
your support!
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1 Introduction

“ I have made this longer, because I have not had the time to make it shorter. ”
— Blaise Pascal (“Lettres provinciales”, letter 16, 1657)

“ This report, by its very length, defends itself against the risk of being read. ”
— Winston Churchill

“ The tale grew in telling. ”
— J. R. R. Tolkien (on the length of “Lord of the Rings”)

Sorting is an elementary, yet non-trivial problem of considerable practical
impact, and it is certainly among the most well-studied problems of computer
science. As of this writing, Wikipedia lists 41 (!) different sorting methods, and
at least a handful of those are known to every computer science student. Given
this vast number, it is somewhat surprising to see that so many sorting methods
used in practice are variants of one basic algorithm: Quicksort.

Due to its efficiency in the average, Quicksort has been used for decades
as general purpose sorting method in many domains, e. g. in the C and Java
standard libraries or as UNIX’s system sort. Since its publication in the early
1960s by Hoare [Hoa62], classic Quicksort (Algorithm 1) has been intensively
studied and many modifications were suggested to improve it even further,
one of them being the following: Instead of partitioning the input file into two
subfiles separated by a single pivot, we can create s partitions out of s− 1 pivots.

Sedgewick considered the case s = 3 in his PhD thesis [Sed75]. He proposed
and analyzed the implementation given in Algorithm 7. However, this dual-
pivot Quicksort variant turns out to be clearly inferior to the much simpler
classic algorithm. Later, Hennequin studied the comparison costs for any
constant s in his PhD thesis [Hen91] for his “reference Quicksort” given in
Algorithm 5, but even for arbitrary s > 3, he found no improvements that would
compensate for the much more complicated partitioning step. These negative
results may have discouraged further research along these lines.
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1 Introduction

Recently however, in 2009, Yaroslavskiy proposed the new dual-pivot
Quicksort implementation as given in Algorithm 8 at the Java core library mail-
ing list4. He initiated a discussion claiming his new algorithm to be superior
to the runtime library’s sorting method at that time: the widely used and care-
fully tuned variant of classic Quicksort from [BM93]. Indeed, Yaroslavskiy’s
Quicksort has been chosen as the new default sorting algorithm in Oracle’s Java
7 runtime library after extensive empirical performance tests.

In light of the results on multi-pivot Quicksort mentioned above, this is quite
surprising and asks for explanation. Accordingly, the average case performance
of Algorithm 8 is studied in this thesis at different levels of abstraction. A
preliminary version of this work mainly covering Chapter 4 appeared in [WN12].

This thesis is organized as follows: In Chapter 2, some common definitions are
made. Chapter 3 summarizes related work on Quicksort and its variants. It
is remarkable to see that previous studies of dual-pivot Quicksort came to the
conclusion that two pivots are an unfavorable choice.

In Chapters 4 and 5 the main analytic work is done. There, I compute
exact expected numbers of swaps and comparisons needed by the considered
dual-pivot Quicksort variants, including Yaroslavskiy’s new algorithm. It turns
out that Yaroslavskiy’s partitioning method can take advantage of asymmetries
in the outcome of comparisons to reduce their overall expected number. To
the author’s knowledge, this is the first explanation why this new dual-pivot
Quicksort might be superior to older variants. The same idea can also be used to
significantly improve the dual-pivot Quicksort variant proposed by Sedgewick

in his Ph. D. thesis [Sed75].
The expected values computed in Chapters 4 and 5 are evaluated against

empirically determined numbers in Chapter 6. The variance of the numbers
are empirically found to behave similar as for previously studied Quicksort
variants.

In Chapter 7, I consider implementations of the algorithms on two partic-
ular machines. The first one is Knuth’s mythical computer MMIX, which is
used in “The Art of Computer Programming” for implementation and analy-
sis of algorithms. The second machine is the Java Virtual Machine, where I
count the expected number of executed Bytecode instructions. On both ma-
chines, Yaroslavskiy’s dual-pivot Quicksort is more efficient than the one by
Sedgewick, even when incorporating the above mentioned improvement.

4The discussion is archived at http://permalink.gmane.org/gmane.comp.java.openjdk.
core-libs.devel/2628.
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1 Introduction

Complementing the theoretical analysis, Chapter 8 presents a runtime study
of the algorithms on different runtime platforms.

Up to now, I only studied the very basic Quicksort algorithm, without the
modifications surveyed in Chapter 3. In Chapter 9, I consider the arguably most
successful of these variations in more detail: Selecting pivots as order statistics
of a fixed size sample of the current list. Here, it turns out that asymmetric order
statistics are superior for dual-pivot Quicksort to choosing equidistant pivots.
Finally, Chapter 10 summarizes the contributions of this thesis and outlines
directions of future research.
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2 Foundations

2.1 Common Notation & Identities
Here, I summarize some common mathematical notations used throughout this
thesis. All of those should be fairly standard and probably the reader will find
them familiar. Yet, I collect the definitions here to make the thesis self-contained.

In the course of the thesis, the reader will additionally encounter a few less
common and self-made notions. Those will be defined on the spot with more
explanatory comments than the brief general purpose conventions here. I try
to repeat or link to definitions of those uncommon notations, whenever we
encounter them.

I [n..m] := {n, . . . ,m} ⊂ Z for n,m ∈ Z, [n] := [1..n].

I Hn :=
∑n
i=1

1
i is the nth harmonic number. Note that the harmonic num-

bers have the following asymptotic approximation:

Hn = lnn+ γ+O(n−1) eq. (6.66) of [GKP94]. (H∞)

I [condition] :=

{
1 if condition is true

0 otherwise
.

This notation is called the Iverson-bracket and heavily used in [GKP94].

I For a random variable X, I denote by EX its expectation.
Moreover, if Y is a second random variable such that Y = f(X) for some
(measurable) function f, then I write EX Y for E Y if the dependency on X
is to be stressed.

I One combinatorial identity keeps popping up in so many places that I
found it more economically to cite it here once and for all. It appears as
equation (6.70) in [GKP94, page 280] and says∑

06k<n

(
k
m

)
Hk =

(
n
m+1

) (
Hn −

1
m+1

)
for integer m > 0 . (ΣiHi)

Most of the time, I use it for m = 1, hence the nick name “(ΣiHi)”.
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2.2 Sorting: A Problem Definition

One reason why Quicksort is often used in practice is that it can be implemented
in-place, i. e. if the input list is given as a random access array of memory, we can
directly sort this list without having to copy the input. All Quicksort implemen-
tations studied in this thesis are of this kind. In fact, [Knu98, exercise 5.2.2–20]
shows that Quicksort is guaranteed to get along with O(logn) additional mem-
ory, if we apply tail-recursion elimination and avoid sorting the largest sublist
first.

As a consequence, an in-place implementation of Quicksort can only work
with a constant number of array elements at a time directly, i. e. without reading
them from the array. Otherwise, more memory is required. Indeed, the imple-
mentations considered here will only read two array elements — and potentially
write them at a different location — before loading the next elements. We will
refer to this process of loading two elements and storing them again as one
swap.

For the mathematically inclined reader, let us define the above terms properly.
We are given n elements A[1], . . . ,A[n] in a data structure A, where the elements
are taken from a totally ordered universe A[i] ∈ U for i = 1, . . . ,n. A offers the
operations of a random-access array:

I For index i ∈ [n], we can read the value of the ith cell: tmp := A[i].

I We can write the cell likewise: A[i] := tmp.

It is convenient to abbreviate by “Swap A[i] and A[j]” the two (successive) reads
and writes that exchange A[i] and A[j]:

tmp := A[i] A[i] := A[j] A[j] := tmp .

Asking whether A[i] < A[j] is called a key comparison (or just comparison for
short).

The in-place sorting problem consists of rearranging A using the above
operations such that

A[1] 6 A[2] 6 · · · 6 A[n]

and the multiset of elements is the same as at the beginning, i. e. if x ∈ U occurs
exactly k ∈N times in the initial A, it occurs exactly k times in the sorted A.
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Example 2.1: Let U contain pairs of strings (name, tel), where name is a
person’s name and the tel is her telephone number. We order the pairs lex-
icographically. Then, the sorting problem amounts to preparing a (printed)
telephone book from a list of raw (unordered) telephone number entries.

Assume, we have the entries:
A[1] = (Mary, 01143/7663), A[2] = (Adam, 06543/2211),
A[3] = (Zacharias, 07654/3211) and A[4] = (Alice, 0485/99887).

Now, apply the following sequence of swaps: Swap A[1] and A[2],
Swap A[2] and A[4] and Swap A[3] and A[4]. Then, we obtain the sorted
telephone book:
A[1] = (Adam, 06543/2211), A[2] = (Alice, 0485/99887),
A[3] = (Mary, 01143/7663) and A[4] = (Zacharias, 07654/3211).

2.3 Complexity of Comparison Sorting
For sorting as defined in Section 2.2 in terms of swaps and comparisons, we
can give general bounds on the number of these operations needed by any
thinkable — or unthinkable — sorting method based on these abstract operations.
The only restriction needed is that the method works correctly on any possible
input list. But if this is not the case, the method does not deserve the term
algorithm.

Comparisons The simplest of these bounds has become folklore under the
term information theoretic lower bound on comparison sorting. It states that for any
comparison based sorting algorithm and any input size n, there exists an input
list such that the algorithm needs at least⌈

log2(n!)
⌉
= n log2 n− 1

ln 2n+ 1
2 log2 n+O(1)

comparisons to sort this list. Accordingly, comparison based sorting has lin-
earithmic worst-case complexity.

The proof is described so nicely in [Knu98, Section 3.5.1] that I only recite
the basic idea. From an information theoretic standpoint, sorting a list means
identifying the permutation that is needed to transform it into sorted order.
Any (deterministic and sequential) comparison based sorting algorithm then
induces a comparison tree: At some point, the algorithm does its first comparison,
which becomes the root of the comparison tree. Depending on the outcome of
this comparison, we continue in the left respectively right subtree of the root.
So, when the next comparison is encountered it is attached as left respectively
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1:2

2:3

1 2 3 1:3

1 3 2 3 1 2

2:3

1:3

2 1 3 2 3 1

3 2 1

Figure 1: Example of a comparison tree for three elements. A label “1:2” in an
inner node means compare the first and second element of the input.
This example is taken from [Knu98, Fig. 34].

right child. This process continues, until we know the input permutation, which
then gets added as leaf node. Each single input gives one path; all inputs
combined form the comparison tree. Determinism of the algorithm ensures
that the collection of these paths actually forms a tree. There will be a leaf for
every possible permutation, of which there are n! in total. An example for a
comparison tree is shown in Figure 1.

A worst case input w. r. t. the number of comparisons now corresponds to a
longest path from the root to a leaf. As the comparison tree is a binary tree with
n! leaves, we can fit at most 2k nodes on level k. Therefore, we have at least one
path with length at least

⌈
log2(n!)

⌉
in every comparison tree.

Comparison trees can also be used to derive a lower bound on the average
number of comparisons needed for sorting. It is a trivial observation that the
external path length in the comparison tree equals the cost of sorting every of the
n! possible input permutations once. So dividing it by n! yields the average
number of comparisons. It can be shown that the external path length of a
binary tree is minimal iff all its leaves are located on at most two consecutive
levels [Knu98, exercise 5.3.1-20]. Together with the knowledge from above that
at least one path has length

⌈
log2(n!)

⌉
, we find that any comparison based

sorting algorithm needs at least

log2(n!) +O(1) = n log2 n− 1
ln 2n+O(logn)

comparisons on average to sort a random list of length n. Note that this matches
the lower bound for the worst case costs up to minor terms. In fact, in a sorting
algorithm with the above described optimal comparison tree, best case and
worst case differ by exactly one comparison, independent of n!

20



2.3 Complexity of Comparison Sorting

One might ask whether more involved arguments might improve upon
these bounds. Hardly. Algorithms are known which show that the bounds are
asymptotically tight: Samplesort needs n log2 n+O(n) comparisons in expecta-
tion and binary insertion sort even achieves this bound in the worst case. For
the worst case bound, Knuth further describes merge insertion sorting, which
has been proven to achieve the information theoretic lower bound exactly for
n ∈ {1, . . . , 12, 20, 21}. So, we might assume this bound rather tight.

Swaps For any list, n− 1 exchanges suffice to sort the list, if we are allowed
to do an arbitrary number of comparisons in between. This is easily seen as
selection sort works that way: In each step, we use comparisons to select the
minimum of the not yet sorted range. Then one exchange brings this element to
its final position. In the very last step, there is only one other element left, so
the last exchange always puts two elements into their final positions.

One can give a simple lower bound on the number of write operations in
the array. Each element that is not already at its final position has at least to be
written once, namely at the place it belongs. There are plenty of permutations
without any fix point, e. g. 2 3 . . . n 1, so n write operations are needed in the
worst case.

Towards a lower bound for the average case, we determine the expected
number of fix points in a random permutation. To this end, let Xi be the
indicator variable for the event “i is a fix point”. As there are exactly (n− 1)!
permutations of [n] that leave index i as fix point, we have EXi =

(n−1)!
n! = 1

n .
Now, the expected number of fix points of the total permutation is E

∑n
i=1 Xi =∑n

i=1EXi = 1. Therefore, any sorting algorithm needs at least n − 1 write
operations in the average.

Whereas we could give rather useful lower bounds on the number of compa-
risons required by any sorting algorithm, the lower bounds for swaps appear
rather weak — even though they are tight: Simple methods achieve the bounds5 —
at the price of an excessive number of comparisons. The high art of sorting is to
find algorithms with a balance between the number of needed comparisons and
swaps. As we will see, Quicksort can be counted among those.

5For n write operations in the worst case, we have to tweak selection sort further: We always
take one element x “in our hand” and find its rank r by counting the number of smaller
elements in the whole list. Then, we put x into A[r] and continue with the element found
there. With some caution we can make sure that the whole list is sorted in the end, and each
misplaced element is written exactly once in the array.
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2.4 Why Analyze Algorithms?
Analysis of algorithms can be seen to serve two independent goals. First of all,
it tries to let us compare different algorithms for the same problem. This is
an application-driven point of view: Given a problem, which is the best-suited
algorithm to solve the problem.

The second goal of algorithm analysis is more academic in motivation — yet
not less relevant to applications, as algorithmic improvements often arise from
it: Why is a given algorithm well-suited for a problem and another is not.

Assuming time is the scarcest resource, the ultimate goal for comparing al-
gorithms is to predict the actual time (in seconds) needed for a program to
terminate when run on a particular machine and on a particular input. After all,
it is this runtime that we would like to minimize in an application. This goal is
hardly achievable even for the simplest of programs.

As the effort a program undertakes can vary very much from input to input,
a typical attempt to simplify the problem is by considering average behavior:
Given some distribution of inputs, we try to determine the expected runtime of
the program for random inputs drawn according to the given distribution. In
this global form, i. e. computing a single expected value over all possible inputs,
the analysis will not be fruitful. Algorithms have to deal with infinitely many
different input instances, so these instances will in some sense grow beyond any
bound. It is rather natural to assume that the runtime of non-trivial algorithms
will then grow beyond any bound, as well, when they process larger and larger
instances.

Let us fix a notion of size of inputs, i. e. each input is assigned a non-negative
integer such that for any size n, there are only finitely many inputs of this size.
Note that there are many ways to define size, even though natural definitions are
at hand most of the time. For sorting algorithms, we define the size of an instance
to be the length of the list to sort, i. e. the number of elements in the list. Now
that we have agreed upon a size for every input, we can determine conditional
expected runtimes of a program, given that the input has size n. For a sensible
size measure, we expect this conditional expected runtime to somehow increase
as n gets large, even though examples show that non-monotonic behavior can
occur at a fine-grained level.

One might question whether these average values provide enough detail
to still yield suitable runtime predictions. Whereas inputs can indeed differ
considerably from the average, for many problems the variance of runtimes
among different inputs of the same size is reasonably small. And of course, by

22



2.4 Why Analyze Algorithms?

the law of large numbers, the mean runtime of many executions of the algorithm
on random inputs converges to the expected runtime.

So, we relaxed our ultimate goal a little by only asking for expected runtimes
for a given input size n, on a particular machine. Still, these expected runtimes
will vary from machine to machine; even more: As different machines have
different machine languages, strictly speaking, we cannot run the same program
on different machines. The best we can do is use ‘similar’ programs.

It is time to make our subject of study a little more precise: In this thesis,
a program is a description of behavior that can be executed on a particular
machine. Typically, programs are built with some more abstract idea in mind.
We will refer to such an idea as algorithm. Several different programs — e. g. for
different machines — can implement the same algorithm. Sometimes, one might
also say that a more abstract algorithm is implemented by some less abstract
algorithm, which fixes some aspects of realization, but is not yet a full program.6

Admittedly, this abstraction concept is very vague. Its only purpose here
is to make clear: By considering runtime, we can only compare programs, not
algorithms, as the latter are not directly executable and hence, runtime is not
defined for those. This is an unsatisfactory situation, as a slightly different
implementation of the same algorithm might have a quite different runtime.

I would like to close this line of thought with the statement that it is in
general quite hard to compare algorithms if actual runtime is our concern — or
stated differently: The study of runtime is limited in the insight it provides
into algorithms. All properties of the algorithm are reduced to one number
which is influenced by so many aspects — e. g. the runtime of different processor
instructions, memory hierarchies, interrupts by the operating system etc. — that
the resulting system appears chaotic.

If we consider analysis of algorithms as a means to understand why certain
algorithms behave differently, our point of view changes. For that, we would
like to model algorithms as abstractly as possible, but as concretely as needed as to
still observe the behavior that separates the algorithms.

A popular model that allows to study abstract algorithms is the elementary
operation model. For many problems, we can identify a set of operations with
two properties:

(1) All algorithms for the problem use these operations, i. e. by a certain
sequence of these elementary operations, we can solve the problem. This

6This idea of abstraction/refinement relations between algorithms or programs can be made
formal, if we fix a semantic for abstract algorithms. One such approach are abstract state
machines, see e. g. [BS03]. We will confine ourselves to the intuitive understanding.
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ensures that algorithms essentially differ in the operation sequences they
imply.

(2) The runtime of programs is highly (and positively) correlated with the
number of executed elementary operations. As long as every innermost
loop contains at least one elementary operation, this will hold.

For comparison-based sorting, we have the elementary operations key comparison
and swap, see Section 2.2.

If we now determine the expected number of elementary operations that
an algorithm executes for random inputs of size n, we can get insight into the
performance of the algorithm. Especially, we can determine the order of growth
of the number of operations used as n increases.

Sometimes, the elementary operation model is too coarse to capture a de-
sired effect. We can make our cost model more concrete by counting primitive
instructions. In this model, we incorporate the cost contribution of every instruc-
tion needed to realize an algorithm, whereas the elementary operations model
typically ignores many instructions such as jumps and branches for program
logic. Of course, this model requires a much more detailed description of the
algorithm than the elementary operation model.

By understanding the underlying mechanisms which and how many instruc-
tions different algorithms need, we can develop expert knowledge about algo-
rithms. This knowledge can give us an “informed feeling”, which algorithm
might be best suited for a given problem at hand. Thereby, even if we are
originally only interested in the question, which algorithm to use, one should
try to approach the question why algorithms behave differently. Chances are
good that this helps comparing algorithms, as well.

2.5 Knuthian Analysis of Algorithms
In his famous book series “The Art of Computer Programming”, Knuth pop-
ularizes a certain methodology for the average case analysis of algorithms,
which I refer to as Knuthian analysis. It allows to determine the expected costs
of an algorithm under a given additive cost model and input distribution. Let
us first properly define the occurring terms. Assume, we label the program’s
instructions with “line numbers” `1, . . . , `k. Then, each executed instruction in a
terminating run of the program bears such a label `i, namely its line number in
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the code. I call the sequence of visited line numbers the trace of this execution.
Formally, a trace t is a word over Σ := {`1, . . . , `k}, so I write t ∈ Σ?.7

These traces are now used to define additive cost measures. A cost measure
c is characterized by a cost contribution c(`i) ∈ {0, 1, 2, . . .} for each line number
`i ∈ Σ. So, the cost contribution of one instruction depends only on the line
number in the program listing, but not on any context information from the
trace. Then, the cost c(t) of a trace t = t1 . . . tm is defined by summation over
its elements’ costs, i. e. c(t) := c(t1) + · · ·+ c(tm). (Hence the name additive cost
model.)

Now, we can properly define expected costs: Let I be a random input drawn
according to the given input distribution and t(I) be the trace of the program
when processing I. Then the expected cost E c of a program w. r. t. a given input
distribution is defined as

E c := EI c
(
t(I)

)
.

A simple example of an additive cost model is the number of executed instruc-
tions. This model simply assigns cost 1 to every line number `i in a program.
Another example is the number of memory references, which assigns 1 to
instructions that access the main memory and 0 to all others.

The essential idea of Knuthian analysis is to compute the expected frequency
fi of every instruction `i in the program, i. e. how often the corresponding line
is reached in expectation when the program is executed on a random input,
drawn according to the given input distribution. Then, we multiply the cost
contribution of each line by the corresponding frequency and sum over all lines.

In general, both the frequencies and the cost contributions of line numbers
can be random variables. Then, Knuthian analysis still yields the correct
expected value if the cost contributions are stochastically independent of the
input. The correctness is easily checked by computing:

EI c
(
t(I)

)
=
∑

input I

Pr(I) ·E c
(
t(I)

)
=
∑

input I

Pr(I) ·
k∑
i=1

∣∣t(I)∣∣
`i

E c(`i)

7According to my definition, a non-terminating execution does not have a well-defined trace.
Of course, the definition of traces can be generalized to include infinite words, which then
naturally imply infinite cost. As it complicates notation, but does not help us for the analysis
of algorithms, I simply assume that non-terminating runs do not occur for the considered
inputs.
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=

k∑
i=1

E c(`i) ·
∑

input I

Pr(I) ·
∣∣t(I)∣∣

`i︸                     ︷︷                     ︸
=

k∑
i=1

E c(`i) · EI fi .

The most important special case where the cost contributions c(`i) are trivially
independent of the input are constant additive cost models. Here, the cost
contributions are simply given by a function c : {`1, . . . , `k}→N0. Both examples
from above — the number of executed instructions and the number of memory
references — are in fact constant models, so Knuthian analysis can be applied
to them.

As indicated in Section 2.4, we have to compute the expected costs of an
algorithm w. r. t. some input size measure n = n(I). Therefore, we actually take
a family P = {Pn}n∈N of input distributions, such that each Pn only contains
inputs of size n. Then, we determine the frequencies fi as functions in n, i. e.
E fi = E fi(n) = EPn fi and

E c(n) =

k∑
i=1

c(`i) ·EI fi(n) .

2.5.1 Language Theoretic Interpretation of Knuthian Analysis
The restriction to additive cost measures is a serious limitation, as discussed
in the following section. The trace of an execution can give us much more
information. However the trace language of a program can be a rather nasty
fellow. It is related to the language of valid computations of a Turing machine,
which is known to be not context-free in general. For the trace language, it
might be suspected that even context-sensitive descriptions are too weak, as the
valuations of variables are not directly encoded in the trace.

Therefore, one tries to transform the trace language into an entity that
is easier to handle. The restriction to additive cost models corresponds to
taking the commutative image (a. k. a. Parikh-image) of the trace language. These
commutative languages are much easier, for example Parikh’s famous theorem
[Par66, Corollary 1] says that the commutative image of a context-free language
is always regular.
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For the average case analysis, we have to incorporate the probability distribution
of inputs. It naturally induces a distribution over traces via

Pr[t] =
∑

input I:
t(I)=t

Pr[I] .

This gives us a language L ∈ Σ? with a probability distribution on the words
w ∈ L, which can be fully encoded as formal power series G(`1, . . . , `k) over the
non-commutative monoid (Σ, ·) with real coefficients [CS63]:

G(`1, . . . , `k) =
∑
w∈L

Pr[w] ·w .

The transition to the commutative image L̃ of L now translates to making (Σ, ·),
i. e. the variables `1, . . . , `k commutative:

G̃(`1, . . . , `k) =
∑
w∈L

Pr[w] · `
|w|`1
1 · · · `

|w|`k
k ,

where |w|`i denotes the number of `is in w. Finally, we are not interested in
the commutative images of traces themselves, but on their costs in the additive
constant cost model c. Therefore, we apply the homomorphism hc from (Σ, ·) to
the commutative monoid of monomials Z =

(
{zi : i ∈N0}, ·

)
defined by

hc(`i) := z
c(`i) .

As Z is commutative, h(L̃) = h(L) holds. The formal power series of h(L) is then

Gc(z) =
∑
w∈L

Pr[w] · zc(w) =
∑
w∈L

Pr[w] ·
(
zc(`1)

)|w|`1 · · · (zc(`k))|w|`k ,

which is the probability generating function for the cost of a random w ∈ L. The
expectation can then be computed as E c = G ′c(1) =

∑
w∈L Pr[w] · c(w).

2.5.2 Limitations of Knuthian Analysis

There are two main limitations of Knuthian analysis:

(1) Additive cost models.
Not all interesting cost models are additive. For example the maximal
amount of memory required is not additive as we can allocate and free
memory alternatingly. (The total amount of memory allocated during

27



2 Foundations

the execution is additive, which bounds the space complexity from above.
However, this bound can be arbitrarily bad.)
When it comes to actual running time, additive cost models are an idealized
view of modern computers. The time taken for a single instruction can
depend on the state of the instruction pipeline, the contents of the caches,
the size of the operands, and so on. Thus, actual running time is not an
additive cost model, either.

(2) Distribution of costs.
The correctness argument above relies on the linearity of the expected
value. In general, it is not possible to determine more information on the
distribution of costs by Knuthian analysis even for simple cost models —
unless all frequencies happen to be stochastically independent. Note in
particular that it is not sufficient to determine the variance of individual
frequencies and add them up to get the variance of the costs.

Despite these limitations, Knuthian analysis provides valuable insights into the
inner workings of an algorithm.

“ As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

— Albert Einstein in “Geometry and Experience”, Jan 27, 1921

”
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3 Classic Quicksort and its Variants:
Previous Work

“ If I have seen further, it is by standing on the shoulders of giants. ”
— Isaac Newton

3.1 Abstract Description of Quicksort
Abstractly stated, Quicksort is a straight-forward application of the divide-and-
conquer paradigm to comparison based sorting:

Given a list A of n elements, choose one element p as the pivot. Rearrange
the list such that all elements left of p are smaller than p, and all elements right
of p are larger than p. Obviously then, p has found its final position in the
sorted list. Applying this procedure recursively to the parts left and right of p
completes sorting of the whole list.

An immediate and natural generalization of this algorithm is given by the
following idea: We divide the list into s > 2 sublists instead of just two. To this
end, we choose s− 1 pivot elements p1 6 · · · 6 ps−1 and partition the list such
that in the ith sublist, all values lie between pi−1 and pi for i = 1, . . . , s, where
we set p0 = −∞ and ps = +∞.

3.2 Classic Quicksort
A priori, there is not the prototypical implementation of the abstract Quicksort
idea. However, there is a pattern in the implementation of in-place Quicksort
that deserves the predicate ‘classic’: Hoare’s crossing pointers technique. It is
present in the very first publication of Quicksort [Hoa61a] and is very nicely
described in [Hoa62]. Two pointers i and j scan the array from left and right
until they hit an element that does not belong in their corresponding subfile.
More specifically, first i moves right until an element greater than the pivot
is found. This element obviously belongs in the upper part. Then, j moves
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Algorithm 1. Classic Quicksort implementation by Sedgewick as given and discussed
in detail in [Sed75, Sed78]. We take the rightmost element as pivot instead of the
leftmost, as it is done in Program 1.2 of [SF96].
Partitioning is done as follows: Two pointers i and j scan the array from left and
right until they hit an element that does not belong in this subfile. Then the elements
A[i] and A[j] are exchanged. This crossing pointers technique dates back to Hoare’s
original formulation of Quicksort [Hoa61a].

Quicksort(A, left, right)

// Sort the array A in index range left, . . . , right.
// We assume a sentinel value A[left − 1] = −∞, i. e.
// ∀i ∈ {left, . . . , right} : A[left − 1] 6 A[i]

1 if right − left > 1
2 p := A[right] // Choose rightmost element as pivot
3 i := left − 1; j := right
4 do
5 do i := i+ 1 while A[i] < p end while
6 do j := j− 1 while A[j] > p end while
7 if j > i then Swap A[i] and A[j] end if
8 while j > i
9 Swap A[i] and A[right] // Move pivot to final position
10 Quicksort(A, left , i− 1)
11 Quicksort(A, i+ 1, right)
12 end if

left until an element smaller than the pivot is found — this element likewise
belongs in the lower part. Then the elements A[i] and A[j] are exchanged, such
that afterwards both elements are in the correct part of the list. Then, scanning
continues. Once the two pointers have crossed, we have found the boundary
between small and large elements. Accordingly, we can put the pivot element at
its final position, finishing the partitioning step.

The remarkable feature of this method is that by one swap operation, we
move two elements to their final positions in the current partitioning step. This
implies a trivial upper bound of 12n swaps in the first partitioning step. Most
studied variants and most practically used implementations of Quicksort use
Hoare’s crossing pointers technique.
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Algorithm 1: 6 p > p?i
→

j
←

Algorithm 7: < p i1
→
p 6 ◦ 6 q i

→
? j

←
p 6 ◦ 6 q j1

←
> q

Algorithm 8: < p `
→

> qg

←
p 6 ◦ 6 q k

→
?

Figure 2: Comparison of the three different partitioning schemes used by the
analyzed Quicksort variants. The pictures show the invariant maintained
during partitioning.
Black arrows indicate the movement of pointers in the main loop of
partitioning. Gray arrows show pointers that are moved only on demand,
i. e. when an element is swapped to the range whose boundary the
pointer defines.

Algorithm 1 shows a pseudocode implementation of abstract Quicksort that
uses Hoare’s crossing pointers technique. I will therefore call this algorithm
classic Quicksort. As a real classic, Algorithm 1 is reduced to the essential and
shines with elegant brevity. Despite its innocent appearance, classic Quicksort
ranks among the most efficient sorting methods — precisely because its inner
loops are so simple and short.

In the light of this, we may forgive it the idiosyncrasy of requiring a sentinel
value in A[0] that is less or equal to all occurring elements. Relying on such
a sentinel value allows to omit range checks in the inner loops, and it thereby
contributes significantly to efficiency and beauty of the algorithm. Both should
be qualities of a classic and hence I adopted this sentinel trick.

Apart from that I tried to keep Algorithm 1 as ‘basic’ as possible. The history
of Quicksort has been full of eager suggestions for clever improvements over
the basic algorithm — but it has also seen many seemingly helpful variations
being unmasked as mere drags for a classic Quicksort. Section 3.4 will tell part
of this story.
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3.3 Analysis of Classic Quicksort

3.3.1 Worst Case
As Quicksort is comparison based, the lower bounds of 2.3 apply. However, a
closer look at the algorithm shows that they are far from being tight here.

Consider the already sorted list 1 2 . . . n and the behavior of Algorithm 1 on
it. In the first partitioning step, we select the pivot p = n and the first inner
loop only terminates when i = n, as all other elements in the list are < p. So
the inner loop is left with i = n. The swap after the loop exchanges p with
itself and the recursive calls happen on ranges [1..n− 1] and [n+ 1,n] = ∅. The
second call immediately terminates, but the first call finds itself in the same
situation as an initial call for the sorted list 1 2 . . . (n− 1) of n− 1 elements. So
the same steps apply again. For n = 1, the algorithm terminates. Summing up
the number of comparisons from all partitioning steps yields

(n+ 1) + (n) + (n− 1) + · · ·+ 4+ 3 = 1
2n
2 + 3

2n− 2 .

With respect to the number of comparisons, this is actually the worst case for
Algorithm 1: Every partitioning step of a sublist of length k needs exactly k+ 1
comparisons, irrespective of the pivot. Therefore, the number of comparisons
only depends on the shape of the recursion tree. The tree corresponding to
above input is a linear list disguised as degenerate tree:

n

n− 1

n− 2

2

1

. .
.

With a little more scrutiny, one can prove that no recursion tree implies more
comparisons than such a linear list.

It is interesting to note, though, that for sorting the above list, Algorithm 1

does not do any real swap — the swap in line 7 is never executed! We do have
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the swaps from line 9, but those are executed for any input list. So, this worst
case for comparisons is actually rather good w. r. t. swaps.8

This poses the question, how the real worst case of overall costs looks like.
For the abstract formulation of Algorithm 1, this overall costs are not well-
defined. However, Sedgewick studies the worst case of a MIX implementation
of his classic Quicksort9 in [Sed75, Chapter 4]. There, he could show that in
fact linear list type recursion trees are worst case instances for classic Quicksort
w. r. t. overall runtime, even though they induce very few swaps.

3.3.2 Average Case — Elementary Operations
As we have seen in the last section, the worst case complexity of Quicksort is
quadratic, which does not at all justify the name Quicksort. However, this worst
case turns out to be very rare, such that on average, Quicksort is indeed quick. To
quantify this, we assume a input distribution, namely the random permutation
model, see Section 4.1.2. Under this model, we determine the expected number
of swaps and comparisons Algorithm 1 needs to sort a random permutation
of length n. The analysis is quite easy and well-known. It appears in more
or less the same way in numerous sources, e. g. [SF96, Theorem 1.3], [Sed75,
Chapter 3], [Sed77b], [Knu98, Section 5.2.2] and to some extend also in [CLRS09,
Section 7.4]. Nevertheless will I briefly go through it once more, as the Quicksort
variants the cited analyses are based upon differ in some details.

The first crucial observation is that when Algorithm 1 is invoked on a
random permutation of the set [n], the ranges for the recursive calls contain a
random permutations of the respective elements [1..p− 1] and [p+ 1..n]. This
allows to set up a direct recurrence relation for the expected costs. The argument
is detailed in Section 4.2. The recurrence for the expected cost Cn of sorting a
random permutation of length n sums over all possible values of the pivot p:

C0 = C1 = 0

Cn = pcn +
1
n

n∑
p=1

(
Cp−1 +Cn−p

)
= pcn +

2
n

n∑
p=1

Cp−1 (n > 2)

8Note that the exact number of swaps from line 9 equals the number of partitioning steps. The
sorted list is actually a worst case instance w. r. t. the number of partitioning steps, therefore
it is not best case w. r. t. swaps. It still is a ‘good’ case, though, as the number of swaps is
within a factor of two of the best case.

9Sedgewick considers Program 2.4 from [Sed75], which is essentially Algorithm 1 but where
the pivot is chosen as the first element of the list. Program 2.4 also includes special treatment
of short sublists by Insertionsort, see Section 3.4.3.
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where pcn are the expected costs for the first partitioning step. For n 6 1,
Algorithm 1 immediately returns. The second equation for Cn follows by the
symmetry of the sum. If we now consider the difference

nCn − (n− 1)Cn−1 = npcn − (n− 1)pcn−1 + 2Cn−1 (n > 3)

⇐⇒ nCn − (n+ 1)Cn−1 = npcn − (n− 1)pcn−1 ,

dividing by n(n+ 1) yields a telescoping recurrence for Cn/(n+ 1), which is
trivially written as “closed” sum:

Cn

n+ 1
=
Cn−1
n

+
npcn − (n− 1)pcn−1

n(n+ 1)

=
C2
3

+

n∑
i=3

ipci−(i−1)pci−1
i(i+1) . (3.1)

The next step is to determine the expected number of swaps and comparisons
in the first partitioning step. For the number of comparisons, we observe that
whenever we compare two elements, we also move i or j one step up respectively
down. For distinct elements, we always end with i = j+ 1 after the loop. Thus
in total, n+ 1 pointer movements happen which imply n+ 1 comparisons per
partitioning step. Inserting pcn = n+ 1 in eq. (3.1) yields

Cn = (n+ 1)
(
3
3 +

n∑
i=3

i(i+1)−(i−1)i
i(i+1)

)
= 2(n+ 1)(Hn+1 −H3 +

1
2) (n > 3) .

The number of comparisons per partitioning step is independent of the chosen
pivot. For swaps, the situation is slightly more complicated. The swap in line 7

of Algorithm 1 is executed for every pair of a large element in A[1..p− 1] and a
small element in A[p..n− 1]. For a given pivot p, the number of large elements
in A[1..p− 1] is hypergeometrically distributed: We draw without replacement
the positions of the n− p large elements among the n− 1 available positions
and any of the p− 1 first cells is a ‘success’.10 Therefore, the expected number
of such elements is the mean of this distribution, namely (n− p)p−1n−1 . The total
expected number of swaps is then

1
n

n∑
p=1

(n−p)(p−1)
n−1 = n−2

6 .

10Note that this already determines the p− 1 positions for the small elements.
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exact expectation asymptotics (error O(logn))

Comparisons 2(n+ 1)(Hn+1 −
4
3) 2n lnn− 1.5122n

Swapsa 1
3(n+ 1)(Hn+1 −

1
3) −

1
2 0.3n lnn+ 0.0813n

aThis includes the swaps incurred at line 9 of Algorithm 1. For Knuthian analysis, these have
to be treated separately.

Table 1: Expected number of comparisons and swaps used by Algorithm 1 for
sorting a random permutation of length n. The asymptotic approximation
for n→∞ uses the expansion of harmonic numbers eq. (H∞) on page 17.

Adding 1 for the swap in line 9 yields pcn = n+4
6 for the number of swaps.11

Using eq. (3.1) and the partial fraction decomposition of the summand gives

Cn = (n+ 1)
(
1
3 +

n∑
i=3

(
1
2i −

1
6(i+1)

))
= (n+ 1)

(
1
2(Hn −H2) −

1
6(Hn+1 −H3) +

1
3

)
= 1
3(n+ 1)(Hn+1 −

1
3) −

1
2 .

3.3.3 Variances
Computing exact expected costs is pointless from a practical point of view,
unless the actual costs are likely to be close to the mean of their distribution.
The arguably easiest way to check that is to compute the standard deviation of
the costs. Then, Chebyshev’s inequality states that a 1− 1

k2
fraction of all inputs

cause costs of µ± k · σ where µ are the expected costs and σ is the standard
deviation. If further σ ∈ o(µ) for n→∞, this means that the relative deviation
from the mean µ±k·σ

µ → 1 for any constant k; differently stated: For any constant
probability p and error ε, there is a n0 such that for n > n0, the probability of a
relative deviation from the mean of more than ε is less than p.

Bivariate generating functions provide a general approach to compute the
variance and thus the standard deviation, see [SF96, §3.12]. There, the authors
also derive the variance of the number of comparisons of classic Quicksort [SF96,
Theorem 3.12]:

σcmps =
√
7− 2

3π
2 ·n+ o(n) .

11Note that this swap is often not included, as it occurs exactly once per partitioning step and
thus can easily be treated separately. This is done e. g. in [Sed77b]. As I want to count
elementary operations here without doing a Knuthian analysis, I include the swap right
away.
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This result is originally derived by Knuth in [Knu98, exercise 6.2.2-8] via the
correspondence between Quicksort and search trees described in Section 3.5.1.

The standard deviation of the number of swaps is much more difficult
to handle, since their number in the first partitioning step and the sizes for
recursive calls are stochastically dependent. Yet, Hennequin could derive in
[Hen91, Proposition IV.7] asymptotics for the variance of the number of swaps
used by classic Quicksort.12 The exact term is quite lengthy, so I only give
the result with rounded constants here. Thereby the standard deviation is
approximately

σswaps ≈ 0.02372n+ o(n) .

Since the standard deviation for the number of both swaps and comparisons
is linear in n, we indeed have the centralization property described above.
Consequently, the expected values are good estimates of the actual costs for
large n and computing exact expected costs is worth the effort.

3.3.4 Average Case — Processor Cycle Counts
Using the analysis of Section 3.3.2, one can easily compute the number of
primitive instructions used by an implementation of Algorithm 1. I will do that
in detail for two implementations in Chapter 7, where the details are discussed.
Results are found in Table 12

In the literature, there are two authors who published such a Knuthian
analysis of Quicksort. [Knu98, Section 5.2.2] and [Sed75, Chapter 3] both
study the same MIX implementation of classic Quicksort with explicit stack
management, tail recursion elimination and Insertionsort for small subfiles (see
Section 3.4.3). The overall runtime can be expressed in a handful of combinatorial
quantities, namely

A number of partitioning steps,

B number of swaps,

C number of comparisons,

D number of insertions (during insertion sort),

E number of key movements (during insertion sort),

S number of stack pushes .

12In fact, Hennequin gives a much more general result for Quicksort with median of k pivot
selection. Thereby, he could show that pivot sampling reduces variance.
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The total MIX runtime is then

24A+ 11B+ 4C+ 3D+ 8E+ 9S+ 7n .

Inserting the expected values for A, . . . ,S and setting the Insertionsort threshold
to M = 1, we get the MIX runtime of a program similar to Algorithm 1. Its
average runtime is

11.6(n+ 1)Hn + 5.57n− 17.25 .

3.4 Variants of Quicksort
The abstract description of Quicksort leaves room for many possible variants.
The following sections discuss the most prominent ones among those. Improve-
ments of different categories can sometimes be combined successfully.

It is remarkable that most variants discussed below were already suggested
in Hoare’s original publication of Quicksort [Hoa62] in the early 1960s. How-
ever, it took the algorithms community several decades to precisely quantify
their impact. And as new variants keep appearing from time to time, their study
is an ongoing endeavor.

3.4.1 Choice of the Pivot
The abstract description of Quicksort from Section 3.1 leaves it open, how
to choose the pivot — or the s− 1 pivots in the generalized version. Classic
Quicksort chooses one fixed position from the array as pivot element — namely
the last element for Algorithm 1. By applying some more elaborate scheme,
we can influence the distribution of the rank of the pivot elements, which in
turn affects performance. This section gives a mainly chronological review of
suggested pivot selection methods and their impact on classic Quicksort.

In his seminal article [Hoa62] on Quicksort, Hoare analyzes classic Quicksort
and observes that balanced recursion trees contribute the least cost. A perfectly
balanced tree results if the pivot is the median of the current list. Therefore,
Hoare suggests to choose as pivot “the median of a small random sample of
the items in the segment”, which gives a maximum likelihood estimate of the
median of the whole list. However, Hoare attests: “It is very difficult to estimate
the savings which would be achieved by this, and it is possible that the extra
complication of the program would not be justified.”
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The idea is put into practice by Singleton in [Sin69]. He proposes a Quicksort
variant that uses the median of three elements, namely the first, the last and
the middle element of the list. Singleton reports speedups in runtime of
about 25 %.

The first analytical approach to investigate the impact of this pivot sampling
strategy is undertaken by van Emden in [van70]. He assumes a Quicksort
variant that selects as pivot the median of a sample of odd size k = 2t+ 1, for
some constant t ∈N. Using a purely information theoretic argument, he derives
that the expected number of comparisons used by Quicksort with median of k
to sort a random permutation of [n] is

αkn lnn+ o(n logn) with αk = 1
/ k+1∑
i=1

(−1)i+1

i
. (3.2)

Van Emden also notes that limk→∞ αk = 1/ ln 2, which proves that Quicksort
with median of k is asymptotically optimal w. r. t. comparisons if k is allowed
to grow.

The situation that k depends on n is analyzed in [FM70]. Therein Frazer and
McKellar propose Samplesort, which initially selects a sample of size k = k(n),
sorts this sample — potentially recursively by Samplesort — and then select its
median as pivot. What makes Samplesort different from Quicksort with median
of k is that the sorted halves below and above the median are “passed down” to
the recursive calls. Then, the recursive calls pick the median of their half, and
so on. That way, the sample size is halved in each step and recursive calls need
not sort their sample.

When the sample is consumed, Samplesort continues as classic Quicksort.
Considering the recursion tree, Samplesort ensures that the first blog2 k(n)c
levels are complete.

Two Sorts of Samplesort

There is some inconsistency in the use of “Samplesort” in the literature.
Originally, Samplesort as introduced in [FM70] explicitly constructs a
binary search tree. Translated to Quicksort, this means that it once
fixes a sample of size k(n) and passes the sorted halves of the sample
down. That’s how it is described in [FM70], [Tan93] and [Sed75].

In later usages, Samplesort seems to imply the use of s − 1 > 1

pivots, which are selected from a sample of size k(n), e. g. in [SW04],
[BLM+

91], [LOS09]. The main difference between these algorithms is
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how the sample size changes in recursive calls. Classic Samplesort
halves the sample size, whereas the newer interpretations use a sample
of size k(n) at every step. In this thesis, I use Samplesort to refer to
the original algorithm.

Sedgewick’s PhD thesis [Sed75] is considered a milestone in the study of Quick-
sort. In particular, it resolved many open problems regarding the analysis of
pivot selection schemes. In [Sed75, Chapter 7], a detailed analysis of Samplesort
is given. For instance, the optimal sample size is asymptotically k(n) ≈ n

log2 n
and for that sample size, Samplesort is asymptotically optimal w. r. t. the number
of comparisons.

Further, Sedgewick derives the expected number of comparisons and swaps
for Quicksort with median of constant k using generating functions and tech-
niques quite similar to Section 4.2.2. He finds13

comparisons
1

H2t+2 −Ht+1
n lnn+O(n), (3.3)

swaps
4+ 11 t+14t+6

H2t+2 −Ht+1
n lnn+O(n) . (3.4)

Moreover, Sedgewick provides an exact Knuthian analysis of a low level
implementation of Quicksort with median of three [Sed75, Chapter 8]. These
important results are also contained in [Sed77b].

In [Gre83], Greene introduces diminished search trees, which form the search
tree analog of Quicksort with median of k for constant k. This allows to study
Quicksort with median of k using the correspondence described in Section 3.5.1.

In his thesis [Hen91], Hennequin analyzes a more general Quicksort variant,
which combines pivot sampling and multi-pivot partitioning. Hennequin’s
work relies on heavy use of generating functions and is discussed in much
more detail in Section 3.5. The most notable contribution to the study of pivot
sampling is the computation of higher order moments, which is also contained
in [Hen89]. The exact expressions are quite lengthy and the interested reader
is referred to [Hen89, Section 4.3]. I only note that all standard deviations
are in O(n) as for classic Quicksort. Hence, the centralization argument from
Section 3.3.3 also applies for Quicksort with median of k.

13Both Eqs. (3.2) and (3.3) describe the same quantity. Equating the leading terms gives the
noteworthy equivalence H2k −Hk = 1− 1

2 +
1
3 −

1
4 + · · ·+

1
2k−1 −

1
2k .
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A different flavor of pivot selection is proposed by van Emden in [van70]: bound-
ing interval, a. k. a. adaptive partitioning14. Here, the idea is to start partitioning
without having chosen a fixed pivot. Instead, we only maintain an interval of
values, from which the pivot is finally chosen. Partitioning proceeds as usual
as long as it is clear to which partition an element belongs. If an element x
falls inside the current pivot interval, the interval is shrunk, such that x falls
on one side. From the point of view of the analysis, adaptive methods are
problematic, as they do not preserve randomness for sublists. Van Emden

numerically determines the leading term of the number of comparisons of his
algorithm to be 1.6447n log2 n, which sounds promising. However, Sedgewick

argues in [Sed75, Chapter 6] that adaptive methods increase the costs of inner
loops, which overcompensates the savings in comparisons for overall runtime.

In [BM93], Bentley and McIlroy try to design an optimal Quicksort based
sorting method for use in programming libraries. Apart from interesting sugges-
tions to deal with equal elements — which will be covered in Section 3.4.2 — the
authors also propose a revised pivot sampling scheme. The key idea is to use
a cheap surrogate for the real median of a ‘large’ sample, the pseudomedian of
nine. This statistic takes nine elements from the list and divides them in three
groups of three. Then, we choose the median of the three medians from the
three groups as pivot. The expected number of comparisons Quicksort needs
when equipped with this pivot selection strategy is computed in [Dur03] to be

12600
8027 n lnn+O(n) ≈ 1.5697n lnn+O(n) .

Samplesort started off with the idea of using the median of a sample whose size
k depends on n. However, it only uses this size in the very first partitioning step.
It seems natural to ask how k = k(n) should be chosen, if we randomly choose
a sample of size k(n) in each partitioning step, where n then is the size of the
sublist. This question is addressed in [MT95] and [MR01]. Roughly speaking,
k(n) = Θ(

√
n) provides the best overall performance, even if swaps are taken

into account [MR01]. Martínez and Roura also give the optimal constant in
front of the square root.

For the most part of this thesis, I study basic algorithms which choose
their pivots from fixed positions out of the array. However in Chapter 9, I will
consider sampling the pivots from a constant size sample.

14Van Emden calls his variant bounding interval method, Sedgewick refers to it as adaptive
partitioning.
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Algorithm 2. Quicksort variant from [CLRS09, Chapter 7]. It uses a particularly
simple partitioning scheme, which is not based on Hoare’s crossing pointers
technique.

QuicksortCLRS(A, left, right)

1 if left < right
2 p := A[right]; i := left − 1
3 for j := left, . . . , right − 1
4 if A[j] 6 p
5 i := i+ 1

6 Swap A[i] and A[j]
7 end if
8 end for
9 i := i+ 1

10 Swap A[i] and A[right]
11 QuicksortCLRS(A, left , i− 1)
12 QuicksortCLRS(A, i+ 1, right)
13 end if

3.4.2 Implementation of the Partitioning Step
The abstract description of Quicksort from Section 3.1 only defines how the
array should look like after it has been partitioned around the pivot. It does
not give us clues how to arrive there. In his PhD thesis [Sed75], Sedgewick

studies and compares several in-place partitioning methods. I chose the most
effective of those for my classic Quicksort given in Algorithm 1. The underlying
partitioning scheme is Hoare’s crossing pointers technique, whose invariant
is depicted in Figure 2 on page 31. The partitioning method of Algorithm 2 is
given in the classic textbook [CLRS09] and uses a different scheme.

It is appealingly short and probably easier to implement than Algorithm 1.
However, it uses three times as many swaps as Algorithm 1, which probably
renders it uncompetitive.

Apart from different partitioning schemes, there are also little tricks to make
the innermost loops even more efficient. One such idea is the use of sentinels,
first proposed by Singleton in [Sin69]. A pointer scanning the current sublist
must be stopped before it leaves its range. Cleverly placed sentinel elements at
the ends of the sorting range will guard the pointers from running out of range
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without an explicitly check of the bounds. We only have to make sure that the
key comparisons done anyway fail when the range is left.

Algorithm 1 incorporates this idea. The only additional work is to put an
element ‘−∞’ in A[0] before sorting. It suffices if A[0] 6 A[i] for all i, strict
inequality is not needed. Then, pointer j will stop at A[0] for good, as for any
pivot p, A[0] 6 p. Similarly, i will stop at the pivot p, which is chosen to be the
last element of the list. This constitutes the base case of an inductive correctness
proof. To complete it, note that the sentinel property is preserved for recursive
calls: We either have left = 1, in which case A[0] will be the sentinel again, or
left = p+ 1, one cell right of the final position of the pivot. Then, the pivot of
the current phase will serve as sentinel of the upcoming partitioning step. This
works, as all elements right of p are > p by the end of the partitioning step.

Further low level tricks are investigated by Sedgewick in [Sed75] and [Sed78],
which might be worth considering for practical implementations.

Pitfall: Equal Elements Even though partitioning is a rather elementary prob-
lem, some care has to be taken to avoid delicate pitfalls. A typical problem
results from the presence of equal keys. I will assume distinct elements for the rest
of this thesis, but this section puts special emphasis on their existence because
some well-known partitioning methods perform poorly in this situation.

Recall the simple partitioning scheme from [CLRS09] shown in Algorithm 2.
This variant degrades to quadratic average complexity on lists where keys are
taken from a set of constant cardinality, i. e. where many duplicate keys exist.
For demonstration, consider a list where all elements are equal. On this list,
the comparison in line 4 always yields true, so i runs all the way up to right
and we get the worst case for recursive calls: One is empty, the other contains
A[1..n− 1].

In light of this, it is impressive that Algorithm 1 remains linearithmic for
this same list. This is easily seen by inspecting the code, but it might be more
amusing to tell this in form of an anecdote:

A tale of Premature Optimization

At first sight, there seems to be an immediate improvement for Al-
gorithm 1 if many duplicate keys are to be expected, especially if all
elements in the array are equal: The inner while loops in lines 5 and 6

will always terminate immediately and the swap in line 7 is executed
for every (nested) pair of indices. In fact, for a single partitioning step,
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this is the worst case with respect to the number of executed swaps
. . . can’t we do better than that?

When I first made the above observation, I proudly tried the following:
Instead of checking for strict inequality in lines 5 and 6, we check for
6 p and > p, respectively. The algorithm remains correct and indeed
on a list with all elements equal only the unconditional swap in line 9

is done. Hooray!

Yet, the joy was not to last: The clever “improvement” causes the first
while loop to scan over the entire array. This results in a final value
of i = right and we always get the worst possible division: One of
the subfiles is empty, whereas the other contains all but one element.
Consequently, we get overall quadratic runtime. The original method
in Algorithm 1 does indeed perform many swaps, none of which
would be necessary in this case. However, the pointers i and j always
meet in the middle, so we always get the optimal division. In fact, the
number of comparisons performed is the best case for Algorithm 1.
This effect has been known for quite some time, e. g. it is reported in
[Sin69].

So, can we really do better than Algorithm 1 on lists with many
duplicate keys? Well, yes, by using a different partitioning scheme,
e. g. the one from [BM93] specifically designed to handle these inputs
. . . but by tiny clever tweaks? I teeth-gnashingly admit: No.

Three-Way Partitioning
Algorithm 1 remains linearithmic on average for lists with duplicate keys, so our
classic puts up a good fight. Still the many unnecessary swaps seem suboptimal
and in lists with many elements equal to the pivot, we might want to directly
exclude all of them from recursive calls. Algorithm 1 only excludes one copy of
the pivot. As the case of equal elements in the list appears frequently in practice
it might pay to include special handling of this case.

This special handling consists in doing a three-way partitioning — separating
elements that are strictly less than the pivot from those strictly larger and from
all elements equal to the pivot. A surprisingly simple method to do so is shown
in Algorithm 3, originally taken from [SW11]. Therein it is also shown that
Algorithm 3 uses a linear number of comparisons if elements are taken from a
constant size set. A disadvantage of Algorithm 3 is that for distinct elements, it
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Algorithm 3. Quicksort with simple three-way partitioning from [SW11, page 299].
Note the resemblance to Algorithm 8; in fact Yaroslavskiy’s algorithm can be seen
as improved version of this algorithm’s partitioning scheme.

ThreeWayQuicksort(A, left, right)

1 if left < right
2 p := A[left]
3 ` := left; k := left + 1; g := right
4 while k 6 g
5 if A[i] < p
6 Swap A[`] and A[i]
7 ` := `+ 1; k := k+ 1

8 else if A[i] > p
9 Swap A[k] and A[g]
10 g := g− 1

11 else i := i+ 1 end if
12 end while
13 ThreeWayQuicksort(A, left , `− 1)
14 ThreeWayQuicksort(A,g+ 1, right)
15 end if
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Algorithm 4. Quicksort with Bentley and McIlroy’s three-way partitioning method
proposed in [BM93].

QuicksortBentleyMcIlroy(A, left, right)

1 if left < right
2 p := A[left]
3 i := left; j := right + 1
4 ` := left; g := right + 1
5 while true
6 while A[i] < p
7 i := i+ 1

8 if i == right then break inner loop end if
9 end while
10 while A[j] > p
11 j := j− 1

12 if j == left then break inner loop end if
13 end while
14 if i > j then break outer loop end if
15 Swap A[i] and A[j]
16 if A[i] == p

17 ` := `+ 1; Swap A[j] and A[`]
18 end if
19 if A[j] == p

20 g := g− 1; Swap A[j] and A[g]
21 end if
22 end while
23 Swap A[left] and A[j]
24 i := i+ 1; j := j− 1

25 for k := left + 1, . . . , `
26 Swap A[k] and A[j]; j := j− 1

27 end for
28 for k := right, . . . ,g
29 Swap A[k] and A[i] i := i+ 1

30 end for
31 QuicksortBentleyMcIlroy(A, left , j )

32 QuicksortBentleyMcIlroy(A, i , right)
33 end if
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uses much more swaps than Algorithm 1 — in fact roughly six times as many
swaps — and some more comparisons, namely 50 % more than Algorithm 1 for a
random permutation. So, the question arises whether we can find an algorithm
that smoothly adapts to both input types.

In fact, such a Quicksort variant exists: Algorithm 4. This slightly more
involved three-way partitioning scheme was proposed in [BM93]. The main idea
of Algorithm 4 is to move elements equal to the pivot to the left respectively right
end of the array during partitioning. At the end of the partitioning step, they are
swapped into the middle and skipped for recursive calls. By that, Algorithm 4

does not incur additional swaps and only a few more comparisons for lists with
distinct elements than Algorithm 1. For lists with many duplicates however, it
pays to exclude all elements equal to the pivot in a single partitioning step.

3.4.3 Treatment of Short Sublists
We convinced ourselves in Section 3.3 that Quicksort is efficient for medium and
large list sizes. For very small sizes n 6 M, say M = 15, however, Quicksort
is comparatively slow. At first sight one might doubt why this is relevant — if
people really need to sort short lists, they had better use a specialized sort-
ing method. The problem is that Quicksort’s recursive nature leads to many
recursive calls on such small lists, even if the initial list to be sorted is huge!
Therefore, the savings achievable by switching to a cheaper sorting method for
small sublists should not to be underestimated.

This has already been noticed by Hoare in [Hoa62], but without an explicit
recommendation what to do with lists of size 6M. Singleton then uses straight
Insertionsort for small sublists in [Sin69], which he determined empirically to be
a good choice. This choice was later refined by Sedgewick in [Sed75] as follows.
As Insertionsort is very efficient on almost sorted lists, Sedgewick proposes to
first ignore lists of size 6M and later do a single run of Insertionsort over the
whole list. This significantly reduces the overhead of the method.

The variant of special treatment of short sublists can be combined with many
other optimizations without interference as most variants aim to improve behav-
ior on large lists. It is also easily incorporated in recursive analyses of Quicksort’s
costs. Nevertheless, I do not include this optimization in my Quicksort variants
as the additional parameter M clutters the results and computations. I merely
note that the adaption of the analyses is straight-forward.
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3.4.4 Multi-Pivot Quicksort
In the abstract description of Quicksort, I already included the option to gen-
eralize Quicksort to using s− 1 instead of just one pivot element. Whereas the
abstract idea to do so seems natural, multi-pivot Quicksort has been studied by
far not as thoroughly as classic Quicksort in the literature. Especially when it
comes to concrete in-place implementations of multi-pivot partitioning methods,
only a few sources are available.

To the author’s best knowledge, [Sed75] contains the first published imple-
mentation of a dual-pivot Quicksort. It is given as Algorithm 7 on page 62.
Sedgewick analyzes in detail the number swaps15 Algorithm 7 needs to sort a
random permutation of the set [n], namely 0.8n lnn+O(n). This lead the author
to the conclusion that this algorithm is not competitive with classic Quicksort,
which gets along with only 1

3n lnn+O(n) swaps (see Section 3.3.2).
In [Hen91], Hennequin studies the generic list based Quicksort given in

Algorithm 5. Even though this algorithm is not in-place, many properties
can be transferred to in-place implementations of multi-pivot Quicksort and
much of the methodology of analysis carries over. Hennequin determines the
expected number of comparisons as function in s. Considering this quantity, his
conclusion is that multi-pivot Quicksort in general, and dual-pivot Quicksort in
particular, are not promising variations of Quicksort.

However — as we will see throughout Chapter 4 and discuss in Section 4.4.1 —
Hennequin makes some simplifying assumptions by considering Algorithm 5.
These assumptions are not fulfilled by the dual-pivot Quicksort variants Algo-
rithms 7 and 8.

Tan considers multi-pivot Quicksort in his PhD thesis [Tan93] for s = 2r

with r ∈N. Tan’s algorithm is shown for s = 4 in Algorithm 6 and works like
this: First, it selects s− 1 pivot elements and sorts them by a primitive sorting
method. Then, the current sublist is partitioned around the median of s− 1
pivots using an ordinary binary partitioning method, e. g. as in Algorithm 1.
Afterwards the quartiles of the pivots are used to partition the two parts of the
list into four parts. This process is continued until all pivots have been used
and we end up with s partitions. On these, we recursively invoke the algorithm.
That way, one can reuse the efficient partitioning strategies for classic Quicksort
for multi-pivot Quicksort.

15Sedgewick also gives a term for the expected number of comparisons used by Algorithm 7.
However, the leading term is below the information theoretic lower bound of Section 2.3, so
most probably a typing error has happened there.
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Algorithm 5. The general reference Quicksort considered in [Hen91]. This
implementation is based on linked lists. We denote by ⊗ the concatenation of lists
and identify elements with the list containing only this element. Remove(L , m)

removes the first m elements from list L and returns them as list, i. e. we split L
after the mth entry. The BinarySearch procedure uses an implicit perfect binary
search tree (called decision tree in [Hen91]). Note that the for any fixed s, we can
statically unfold BinarySearch (cf. preprocessor macros in the C programming
language).

HennequinsReferenceQuicksort(L)

// Sort linked list L using s− 1 equidistant pivots from a sample of
// k := s · t+ (s− 1) elements and using a special purpose
// SmallListSort for lists of lengths 6M (with M > k− 1).

1 if length(L) 6M then return SmallListSort(L)

2 else
3 sample := Sort

(
Remove(L , k)

)
4 for i := 1, . . . , s− 1
5 Li := Remove(sample , t); pi := Remove(sample , 1)
6 end for
7 Ls := Remove(sample , t) // sample is empty now
8 while L is not empty
9 x := Remove(L , 1)
10 i := BinarySearch[p1···ps−1](x)

11 Li := Li⊗ x
12 end while
13 for i := 1, . . . , s
14 Li := HennequinsReferenceQuicksort(Li)

15 end for
16 return L1⊗ p1⊗ · · · ⊗ Ls−1⊗ ps−1⊗ Ls
17 end if

BinarySearch[pi](x)

18 return if x < pi then i else i+ 1
BinarySearch[pipi+1](x)

19 return if x < pi then i else BinarySearch[pi+1](x)

BinarySearch[pi···pi+`−1](x) // (l > 3)
20 m := b `+12 c
21 if x < pm then return BinarySearch[pi···pm−1](x)

22 else return BinarySearch[pm+1···pi+`−1](x)
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Algorithm 6. Triple-pivot Quicksort by Tan from [Tan93, Figure 3.2]. It uses a
procedure Partition which partitions the array using the first element as pivot and
returns its final index. This procedure can be implemented similar to Algorithm 1. It
is convenient to let the algorithm skip sublists of size 6 3. A final run of Insertionsort
can then be used, as described in Section 3.4.3. The idea of this algorithm easily
extends to s = 2r for r ∈N.

MultiPivotQuicksortTan(A, left, right)

1 if right − left > 2
2 p1 := A[left]; p2 := A[left + 1]; p3 := A[left + 2]
3 Sort pivots s. t. p1 6 p2 6 p3
4 Swap p3 and A[right] // Move p3 out of the way
5 i2 := Partition(A, left + 1, right − 1) // Partition whole list around p2
6 Swap A[right] and A[i1 + 1] // Bring p3 behind p2
7 i1 := Partition(A, left, i2 − 1) // Partition left part around p1
8 i3 := Partition(A, i2 + 1, right) // Partition right part around p3
9 MultiPivotQuicksortTan(A, left , i1 − 1)
10 MultiPivotQuicksortTan(A, i1 + 1, i2 − 1)
11 MultiPivotQuicksortTan(A, i2 + 1, i3 − 1)
12 MultiPivotQuicksortTan(A, i3 + 1, right )
13 end if

Tan’s algorithm is similar to Samplesort of [FM70] described in Section 3.4.1.
However, Samplesort once chooses a sample of size k(n) depending on n and
once this sample is exhausted, Samplesort behaves like ordinary Quicksort. In
contrast, Tan’s algorithm chooses a ‘sample’ of fixed size s− 1 = 2r − 1 in every
partitioning step. Viewed from this perspective, Tan’s multi-pivot Quicksort
resembles classic Quicksort with median of k = s− 1 pivot selection. However,
the next few partitioning steps are predetermined and use the corresponding
order statistics of the sample as pivot.

Tan computes the expected number of comparisons required by Algorithm 6

to sort a random permutation of [n]. He arrives at the recurrence

Cn = 12

n−2∑
j=1

(n− j− 1)(n− j− 2)

n(n− 1)(n− 2)
Cj + 2n− 10

3 .

Since Tan is mainly interested in limiting distributions of costs, he confines
himself to empirically determine Cn from computed points via fitting. That way,
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he found Cn ≈ 1.8449n lnn+O(n). Note that this is very close to the expected
number of comparisons Hennequin computes for Algorithm 5 with s = 4 and
t = 0, namely 1.846n lnn+O(n) (see Section 3.5.4). Therefore, we might take
Tan’s algorithm as an in-place implementation of Algorithm 5 for s = 2r.

Note further that Tan’s algorithm with s = 4 is closely related to classic
Quicksort with median of three pivot sampling. Both methods start by partition-
ing around the median of three elements, but whereas Tan then also uses the
remaining two elements as pivots for two more partitioning calls, classic Quick-
sort immediately picks three new elements. Looking at the expected number
of comparisons, the latter seems to be the better choice: Classic Quicksort with
median of three needs 1.714285n lnn+ O(n) comparisons. So it saves every
14th comparison Tan’s algorithm does — and it is simpler.

It is noteworthy that the analyses done for the above algorithms show only
minor if any savings due to multi-pivot approaches. They might not justify the
additional complexity in practice. Even more so, as we have seen promising
variations of Quicksort in the preceding sections, which are easier to handle.

This might explain the relative low interest in multi-pivot Quicksort. As
we will see in the remaining chapters of this thesis, this rejection might have
been more due to an unlucky selection of implementations than that it is due to
inherent inferiority of multi-pivot partitioning.

3.5 Hennequin’s Analysis
In his PhD thesis “Analyse en moyenne d’algorithmes : tri rapide et arbres de re-
cherche” [Hen91], (“Average case analysis of algorithms: Quicksort and search
trees”), Hennequin considers Quicksort with several pivots. He analyzes the
linked-list based “reference Quicksort” shown in Algorithm 5 on page 48 which
incorporates several of the variants mentioned in Section 3.4 in a parametric
fashion: The current list is divided into s partitions around s− 1 pivots for
an arbitrary, but constant s > 2. The pivot elements are chosen equidistantly
from a sample of k = s · t+ (s− 1) elements for fixed constant t > 0, i. e. the
ith largest pivot pi is chosen to be the i(t+ 1)-st largest element of the sample
(1 6 i < s). Moreover, small (sub) lists of size 6 M are treated specially by a
different sorting method SmallListSort.

I consider Hennequin’s thesis a major contribution to our understanding of
Quicksort. Yet it is only available in French and to the author’s knowledge, there
is no other publication that describes his analysis of general Quicksort. Note

50



3.5.1 Equivalence of Quicksort and Search Trees

in particular, that [Hen89] only covers the results for the case s = 2. Therefore,
the rest of this section is devoted to recapitulate the parts of [Hen91] relevant to
the this thesis in some more detail. That other seminal contributions have been
discussed rather briefly above should not be considered a depreciation of that
work. I merely think, the reader is more willing to read those him- or herself
unless his or her French is better than mine.

To study Algorithm 5, Hennequin uses the the theory of combinatorial
structures introduced in [FS09] as symbolic method. To apply this, we need
to translate the execution of Quicksort to a recursive decomposition of an
equivalent class of combinatorial structures.

3.5.1 Equivalence of Quicksort and Search Trees
The recursion tree of a recursive procedure is defined inductively: For a call
with ‘base case’ arguments, i. e. a call that does not recurse at all, the recursion
tree is a single leaf. Otherwise, there are c > 0 recursive calls. Let T1, . . . , Tc be
the corresponding recursion trees. Then, the recursion tree for the whole call
is a new root with children T1, . . . , Tc, in the order in which the calls appear in
the procedure. By this, we assign to each terminating procedure call a rooted
ordered tree of finite depth and degree.

For Quicksort, each call causes either 0 or s recursive calls. Hence, its
recursion trees are s-ary trees, i. e. all inner nodes have exactly s children. Each
inner node corresponds to a partitioning step with s− 1 pivots and each leaf to
a small list of 6M elements. Thus, we can label internal nodes with the list of
pivot elements and leaf nodes with their 6M-element-list. By definition of the
partitioning process, we have the following fact.

Fact 3.1: A recursion tree of Quicksort fulfills the search tree property, i. e. for
all inner nodes x holds: When Tl and Tr are two subtrees of x where Tl is left of Tr,
then all labels in Tl are smaller than all labels in Tr. Moreover, there is an element p
in the label of x such that p lies between all labels of Tl and the ones of Tr. �

We obtain the same tree if we successively insert elements in the order in
which they are chosen as pivots into an initially empty search tree. In general,
the order in which elements are chosen as pivots can be rather complicated. As
Algorithm 5 always chooses the first elements of a list as pivots, its recursion tree
coincides with the search obtained by successively inserting the list elements
from left to right.

Example 3.2: The ternary search tree resulting from Algorithm 5 with s = 3,
t = 0 and M = 2 on the list [3, 8, 2, 1, 5, 6, 7, 4, 9, 13, 14, 10, 12, 11]
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3.5.2 Combinatorial Analysis of Quicksort
The equivalence established in the Section 3.5.1 allows to reason about the
number of comparisons needed by Quicksort by considering its recursion trees.
Let us first consider the classic Quicksort (s = 2).

Figure 3: Typical random
binary search tree with 100
nodes drawn according to

the binary search tree
model.

This tree is taken from
[Knu11, ex. 7.2.1.6-124].

Then, the labelled recursion trees are plain binary
search trees. Each element of a current sublist expe-
riences one comparison, namely with the pivot. Sum-
ming all comparisons involving the single element x
across all recursive calls is then equivalent to asking
how many partitioning steps there are, where x partici-
pates. All elements are either passed down in the left or
right subfile — except for the pivot. Hence, the number
of partitioning steps for x equals the depth of x in the
associated recursion tree, where the depth of x is the
number of edges on the path from the root to x.

Summing over all elements x yields the overall
number of comparisons for sorting the list with clas-
sic Quicksort, which is exactly the internal path length
(for binary trees). This correspondence is mentioned

by Knuth [Knu98, Section 6.2.2], even though it is not exploited to analyze
Quicksort, there.

The main simplification in analyzing search trees instead of Quicksort itself
lies in the static nature of the trees — we do not have to reason about the
possibly intricate dynamics of a partitioning step. Instead, we analyze the
static properties of static structures. A probability distribution of inputs for the
algorithm translates to a distribution over structures. For the expected number
of comparisons for classic Quicksort, we compute the expected path length of
random binary search trees with n nodes. The random permutation model then

52



3.5.2 Combinatorial Analysis of Quicksort

translates to the following distribution over trees: The probability Pr[T ] of a
search tree T is Pr[T ] := N(T)

n! , where N(T) is the number of permutations such
that successive insertions into an initially empty binary search tree yield T .

Figure 4: Typical random
binary tree with 100 nodes
drawn according to
uniform distribution.
This tree is taken from
[Knu11, ex. 7.2.1.6-124].

Martínez [Mar92, page 35] shows that these prob-
abilities can be defined recursively over the tree struc-
ture:

Pr[T ] =

{
1 if |T | = 0
1
|T |
· Pr[Tl] · Pr[Tr] otherwise

,

where |T | denotes the number of nodes in T and Tl and
Tr are the left and right subtrees of T , respectively. This
decomposition allows to set up a differential equation
for the generating function of the expected path lengths.
The expected path length of a random binary tree under
the binary search tree model is

2nHn − 4n+ 2Hn .
[Mar92, page 36]

or [Knu98, page 431]

The expected number of comparisons for Algorithm 1

is 2nHn−
8
3n+ 2Hn+O(1), see Table 1. The reason for

the deviation is that Algorithm 1 does two extra compa-
risons per partitioning step because of the sentinel-trick
(see Section 3.4.2).

For multi-pivot Quicksort, we may need more than one
comparison per element and partitioning step. In fact,
for each element x in a partitioning step, Algorithm 5

conducts an unsuccessful search for x in a perfect binary
search tree of the pivots. The number of comparisons
needed for this search is not constant — it depends on
the binary search tree and x. Yet, it is known that perfect binary search trees
have all their leaves on two consecutive levels (e. g. [Knu98, exercise 5.3.1-20]),
so the number will not differ by more than one.

As long as we only consider the expected number of comparisons needed by
Quicksort, we can replace the actual costs for the unsuccessful searches by their
expectation — because of the linearity of the expectation and since the total costs
depend linearly on the costs per search. The expected number of comparisons
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needed for an unsuccessful search in a perfect binary search tree with N = s− 1

nodes is given in [Knu98, eq. 6.2.1–(4)]:

k+ 2− 2k+1/(N+ 1) for k = blog2Nc . (3.5)

When we incorporate the selection of pivots equidistantly from a sample of
k = st+ (s− 1) elements, we get a different distribution on the recursion trees.
This distribution assigns more weight to more balanced trees. For example,
for t > 0, degenerate search trees, e. g. linear lists, can no longer occur as
recursion trees.

Greene introduces and analyzes a generalization of binary search trees
in [Gre83, Section 3.2] called diminished trees, which turn out to be equivalent to
recursion trees of classic Quicksort (s = 2) with median of k. A diminished tree
is essentially a binary search tree, which is somewhat reluctant in creating new
inner nodes. The inner nodes are ordinary nodes, but its leaves can store up to
k− 1 keys for an uneven constant k > 1.

To insert a new key c, we traverse the search tree until we reach a leaf. If
this leaf has a free cell, it simply stores c and we are done. Otherwise, the leaf
already contains k− 1 keys. Then, we create a new inner node for the median
of the elements (including c) and two leaves holding the k−1

2 elements that are
smaller respectively larger than the median. These leaves become the children
of the new inner node. By this delayed creation of inner nodes, diminished trees
always take a locally balanced shape.

Hennequin combines all these generalizations in his analysis. However — in
order to avoid the non-uniform probability distributions over recursion trees —
Hennequin translates the operations back to permutations. In the following, I
assume basic familiarity with the symbolic method described in [FS09]. I also
adapted Hennequin’s notation to match that of [FS09].

He gives the following recursive construction for the combinatorial class of
permutations induced by Algorithm 5 [Hen91, Théorème III.1]:

S = TM

[
◦k
(
∆t(S) ? · · · ?∆t(S)︸                   ︷︷                   ︸

s times

)]
+ RM(S) , (3.6)

where S denotes the labelled combinatorial class of permutations [FS09, Exam-
ple II.2], + is the disjoint union of classes and ? denotes the partitional or labelled
product [FS09, Definition II.3]. TM, RM, ◦k and ∆t are special unary operators on
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combinatorial classes:

Truncation at M TM(C) :=
{
c ∈ C : |c| > M

}
,

Remainder up to M RM(C) :=
{
c ∈ C : |c| 6M

}
,

Rooting of order k ◦k(C) := Sk× C,

Deletion of order t ∆t(St× C) := C.

The deletion operator of order t removes the first t components of a structure.
It is not well-defined for arbitrary structures since the notion of “the first t
components” might not make sense for some structures. We only apply it to
S which can always be suitably decomposed, though, so there is no reason to
panic, here.

The construction in eq. (3.6) can be motivated by reversing the partitioning
step: Each permutation is either of size > M or 6M; the latter case being the
base case (Algorithm 5 terminates). A large permutation σ of length n > M
is now formed as follows: The rooting operator says that σ decomposes into
σ = τσ ′ such that τ has length k. τ corresponds to the sample of k elements we
remove in line 3 of Algorithm 5. σ ′ is the part of the permutation constructed
from smaller permutations.

From the sample, we pass down t elements into each partition (line 5). But
we already have those elements in τ. So, when constructing σ from smaller
permutations, we remove these first t elements from each sub-permutation.
Hence, the ∆t operator.

Finally, the s subpartitions are somehow ‘mixed’ to form σ ′. In general, this
mixture operator can be complicated. Yet, as Algorithm 5 preserves the relative
order of elements in the sublists, the mixture reduces to a plain shuffle product
of the sublists. In terms of labelled structures, this is the labelled product ? of
the sub-permutations.

Equation (3.6) only redefines the known class of permutations in a peculiar
way. In order to analyze costs, we have to assign each permutation the costs for
sorting it. For this, we use the notion of weighted combinatorial classes. For a
combinatorial class A and some weight function w : A→ R, w(A) denotes the
weighted class of structures. It consists formally of objects w(a).a for a ∈ A,
i. e. we add to each structure a a “tag” storing its weight w(a). An unweighted
class corresponds to weight w(a) = 1 for all a ∈ A.

As with ordinary classes, we assign generating functions to weighted classes.
As we deal with labelled structures, we are in the realm of exponential generat-
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ing functions. Class w(A) gets assigned

A(z) =
∑
a∈A

w(a)
z|a|

|a|!
=
∑
n>0

∑
a∈A:
|a|=n

w(a)

︸        ︷︷        ︸
Ân:=

zn

n!
.

So, Ân is the total weight of all structures of size n and A(z) is the exponential
generating function of the sequence Ân. Note that A(z) is at the same time

the ordinary generating function for sequence An := Ân
n! . If there are exactly n!

structures of size n— as in the case of permutations — this view is handy, since
then, An is the average weight of a structure of size n.

Instead of defining a cost function C explicitly, Hennequin defines the
weighted class C(S) recursively along the decomposition of (3.6), cf. [Hen91,
Théorème III.1]:

C(S) = TM

[
◦k
(
∆t
(
C(S)

)
?∆t(S) ? · · · ?∆t(S)︸                                   ︷︷                                   ︸
s times

)]
+ TM

[
◦k
(
∆t(S) ?∆t

(
C(S)

)
? · · · ?∆t(S)︸                                   ︷︷                                   ︸

s times

)]
... (3.7)

+ TM

[
◦k
(
∆t(S) ? · · · ?∆t(S) ?∆t

(
C(S)

)︸                                   ︷︷                                   ︸
s times

)]
+ TM

[
PC(S)

]
+ RM

[
CSLS(S)

]
,

where PC(S) respectively CSLS(S) are the weighted classes of permutations,
where we assign each permutation σ the cost to partition it respectively to sort it
with SmallListSort. Note, that the + in eq. (3.6) is the sum of disjoint classes
and hence plays the role of set union. In eq. (3.7), however, the summands are
not disjoint. Hence, we add up cost contributions for permutations from all
summands. Equation (3.7) implicitly defines the cost function C recursively:
If |σ| 6 M, C(σ) is the cost for SmallListSorting σ. Otherwise, the cost is
the sum of the partitioning costs and the costs for sorting each of the sub-
permutations of σ.
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3.5.3 Translation to Generating Functions
Equation (3.7) translates to an equation on generating functions. We define

S(z) :=
∑
σ∈S

z|σ|

|σ|!
=
∑
n

n!
zn

n!
=

1

1− z

and C(z) :=
∑
σ∈S

C(σ)
z|σ|

|σ|!
=
∑
n

Ĉn
zn

n!
with Ĉn :=

∑
σ∈Sn

C(σ)

and similarly PC(z) =
∑
σ∈S PC(σ)z

|σ|

|σ|! . Now, we can apply the following rules
to translate operations on (weighted) combinatorial classes to operations on
their exponential generating functions:

I The sum A+B becomes the sum of generating functions A(z) +B(z)
[FS09, Theorem II.1].

I The labelled product A ?B becomes the product of generating functions
A(z)B(z) [FS09, Theorem II.1].

I Deletion ∆t(A) becomes A(t)(z)/t!, with A(t) the tth derivative [Hen89,
Lemme III.3].

I Rooting ◦k(A) becomes
∫
· · ·
k

∫
k!A(z)dzk [Hen89, Lemme III.3].

I The truncation and remainder operators TM and RM can be directly applied
to generating functions. For A(z) =

∑
n>0 anz

n they are defined by

TM
[
A(z)

]
:=
∑
n>M

anz
n = A(z) −

M∑
n=0

anz
n ,

RM
[
A(z)

]
:=

M∑
n=0

anz
n .

It follows quite directly from the definition that we can interchange
derivatives and truncation respectively remainders:

OM
[
A(z)

](k)
= OM−k

[
A(k)(z)

]
for O ∈ {T ,R} [Hen91, page 40] .

Using all those rules, we get the following differential equation out of eq. (3.7):

C(k)(z) = TM−k

[
PC(k)(z) + s · k!

C(t)(z)

t!

(S(t)(z)
t!

)s−1]
+ RM−k

[
CSLS

(k)(z)
]
(3.8)

with CSLS(z) =
∑
σ∈S

CSLS(σ)
z|σ|

|σ|!
.
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3 Classic Quicksort and its Variants: Previous Work

The differential equation can be rewritten in the form R(θ).C(z) = H(z) for a
function H(z) independent of C(z) and a polynomial R of a differential operator
θ defined by θ.f := (1− z) ddzf. Such differential equations can be transformed
into a sequence of first order equations by factorizing R. Then, these first
order differential equations can be solved explicitly, e. g. by the integrating factor
method for any fixed t and s. Section 4.2.2.1 on page 74 gives more information
of this type of differential equations and also gives an explicit solution for the
special case s = 3 and t = 0.

However, an explicit solution of eq. (3.8) for arbitrary right hand side H(z)
is hard to obtain. Instead, Hennequin uses O-transfer lemmas as introduced
in [FO90] to obtain asymptotic expansions of Cn = Ĉn/n! directly from R(θ)

and H(z). More precisely, the following steps are taken:
First, Proposition III.4 of [Hen91], gives an explicit solution to R(θ).C(z) =

H(z) for H(z) = (1− z)β lnp(1− z). Then, [Hen91]’s Corollaire III.3 says that
bounds on H(z) like H(z) = O

(
(1 − z)β lnp(1 − z)

)
can be transferred to the

solution. Together, this means that we can develop H(z) in terms (1− z)β lnp(1−
z) and then directly determine the coefficients of C(z) up to a corresponding
error term.

The differential equation (3.8) does not determine C(z) uniquely. For exam-
ple, the solution by integrating factors shows that we do as many integrations as
the degree of R. Accordingly, we get the same number of undetermined integra-
tion constants. These constants have to be derived from the initial conditions, i. e.
the costs for small lists. However, it turns out that these integration constants do
not contribute to the leading term of the coefficients of C(z). So, we can directly
compute the leading term from the partitioning cost [Hen91, Corollaire III.4]:

Cn = [zn]F(z) +O(n)

for F(z) an arbitrary solution of

R(θ).F(z) =
(1− z)kPC(k)(z)

k!
.

Such a particular solution to the last equation can then be computed for given
PC(z).

3.5.4 Leading Terms for Algorithm 5
From the generating functions derived in the last section, one can compute the
expected number of comparison needed by Algorithm 5 on a random permuta-
tion of length n. The expected number of comparisons used by Algorithm 5 in
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3.6 Discussion

·n lnn+O(n) t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

s = 2 2 1.714 1.6216 1.5760 1.5489 1.5309

s = 3 2 1.754 1.6740 1.6342 1.6105 1.5947

s = 4 1.846 1.642 1.5750 1.5415 1.5216 1.5083

s = 5 1.870 1.679 1.6163 1.5848 1.5659 1.5534

s = 6 1.839 1.663 1.6047 1.5755 1.5579 1.5463

s = 7 1.793 1.631 1.5768 1.5496 1.5333 1.5224

Table 2: Leading terms of the number of comparisons needed by Algorithm 5 to
sort a random permutation for small values of s and t. This table is an
excerpt from [Hen91, Tableau D.3].

one partitioning step is the number of non-pivot elements times the expected
costs of an unsuccessful search in a perfect binary search tree of s− 1 elements,
given in eq. (3.5). The coefficient of the leading n lnn term does not depend on
M. Its value for small s and t are listed in Table 2.

With respect to this thesis, the following observation is remarkable: If a
random pivot is chosen, Algorithm 5 with s = 3 performs asymptotically the
same number of comparisons as with s = 2. Moreover, if we choose the pivots
as the tertiles of a sample of 3t− 2 elements, Algorithm 5 does significantly
more comparisons than classic Quicksort with median of 2t− 1. Note that the
sample used for pivot selection by the dual-pivot variant is about 50 % larger
and still it performs worse! In fact, judging from this table, s = 3 seems to be a
extraordinary bad choice: It contains the maximum in every column.

3.6 Discussion
Quicksort might be the algorithm, we understand best and know most about.
Therefore, any reasonably sized summary of previous work on Quicksort is
doomed to remain incomplete. For sure, many significant contributions have
not been granted the room they deserve — for that I apologize.

The focus of this thesis is on directly implementable algorithms that are
useful in practice. I tried my best to present a comprehensive collection of pro-
posed variants of the basic Quicksort algorithm, which aim exactly at improving
Quicksort’s efficiency in practice. Some of these variants came to fame by being
adopted as improvements for program library sorting methods. Others have
sunk into oblivion — often legitimately as closer investigation showed them to
be unprofitable.
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It has long been believed that multi-pivot Quicksort is among these not
promising variants. In [Sed75], Sedgewick analyzes Algorithm 7 and finds out
that it needs an excessive number of swap operations compared with classic
Quicksort. In the early 1990s, Hennequin studied the number of comparisons
needed by the parametric multi-pivot Quicksort (Algorithm 5) in his thesis
[Hen91]. As shown in Section 3.5.4, choosing two pivots is rather detrimental,
there. In light of these results, it is not surprising to see two decades pass
without much efforts in this direction.

Then, in 2009, Yaroslavskiy’s algorithm (Algorithm 8) appeared out of thin
air and turned the world of Java sorting methods upside down. It will be the
objective of the following chapters to shed some light on this new algorithm
and possible reasons for its success.
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4 Average Case Analysis of Dual-Pivot
Quicksort: Counting Swaps and
Comparisons

“ People who analyze algorithms have double happiness. First of all they
experience the sheer beauty of elegant mathematical patterns that sur-
round elegant computational procedures. Then they receive a practical
payoff when their theories make it possible to get other jobs done more
quickly and more economically. — D. E. Knuth in the Foreword of [SF96]

”

4.1 Setting for the Analysis

4.1.1 The Algorithms
In this Chapter, I will analyze two Quicksort variants that partition the current
list into s = 3 partitions around two pivots. Sedgewick introduces the imple-
mentation given in Algorithm 7 in his PhD thesis [Sed75]. To the knowledge
of the author, this is the first implementation of a dual-pivot Quicksort in a
procedural language. Sedgewick also gives a precise average case analysis of it,
which I will reproduce here.

In 2009, Yaroslavskiy proposed a new dual-pivot Quicksort implementation
on the Java core library mailing list. The discussion is archived at [Jav09]. The
original proposal was in the form of a Java program, which I distilled down to
Algorithm 8.

The version of Yaroslavskiy’s algorithm which was finally accepted for
the Oracle’s Java 7 runtime library incorporates some variants that turned out
beneficial in performance tests. Most notably, the library implementation selects
as pivots the tertiles of a sample of five elements. Moreover, it features special
treatment of duplicate keys: Elements with keys equal to one of the pivots end
up in the middle partition. In an additional scan over this middle part, such
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4 Average Case Analysis of Dual-Pivot Quicksort

Algorithm 7. Dual-Pivot Quicksort with Sedgewick’s partitioning. This algorithm
appears as Program 5.1 in [Sed75].

DualPivotQuicksortSedgewick(A, left, right)

// Sort the array A in index range left, . . . , right.
1 if right − left > 1
2 i := left; i1 := left
3 j := right; j1 := right
4 p := A[left]; q := A[right]
5 if p > q then Swap p and q end if
6 while true
7 i := i+ 1

8 while A[i] 6 q
9 if i > j then break outer while end if // pointers crossed
10 if A[i] < p
11 A[i1] := A[i]; i1 := i1 + 1; A[i] := A[i1]

12 end if
13 i := i+ 1

14 end while
15 j := j− 1

16 while A[j] > p
17 if A[j] > q
18 A[j1] := A[j]; j1 := j1 − 1; A[j] := A[j1]

19 end if
20 if i > j then break outer while end if // pointers crossed
21 j := j− 1

22 end while
23 A[i1] := A[j]; A[j1] := A[i]

24 i1 := i1 + 1; j1 := j1 − 1

25 A[i] := A[i1]; A[j] := A[j1]

26 end while
27 A[i1] := p

28 A[j1] := q

29 DualPivotQuicksortSedgewick(A, left , i1 − 1)
30 DualPivotQuicksortSedgewick(A, i1 + 1, j1 − 1)
31 DualPivotQuicksortSedgewick(A, j1 + 1, right )
32 end if
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4.1.1 The Algorithms

Algorithm 8. Dual-Pivot Quicksort with Yaroslavskiy’s partitioning.

DualPivotQuicksortYaroslavskiy(A, left, right)

// Sort the array A in index range left, . . . , right.
1 if right − left > 1
2 p := A[left]; q := A[right]
3 if p > q then Swap p and q end if
4 ` := left + 1; g := right − 1; k := `

5 while k 6 g
6 if A[k] < p
7 Swap A[k] and A[`]
8 ` := `+ 1

9 else
10 if A[k] > q
11 while A[g] > q and k < g do g := g− 1 end while
12 Swap A[k] and A[g]
13 g := g− 1

14 if A[k] < p
15 Swap A[k] and A[`]
16 ` := `+ 1

17 end if
18 end if
19 end if
20 k := k+ 1

21 end while
22 ` := `− 1; g := g+ 1

23 Swap A[left] and A[`] // Bring pivots to final position
24 Swap A[right] and A[g]
25 DualPivotQuicksortYaroslavskiy(A, left , `− 1)
26 DualPivotQuicksortYaroslavskiy(A, `+ 1 ,g− 1)
27 DualPivotQuicksortYaroslavskiy(A,g+ 1, right)
28 end if
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4 Average Case Analysis of Dual-Pivot Quicksort

elements are moved to the left and right end of the middle partition, respectively.
Then, they can be excluded from ranges of recursive calls.

The aim of this chapter is to compare basic partitioning schemes — the focus
is on understanding the differences in efficiency, not on building the ultimate
Quicksort implementation right away. Therefore Algorithms 7 and 8 do not
contain any of the mentioned variants.

Resulting from the discussion [Jav09], Yaroslavskiy published a summary
document describing the new Quicksort implementation [Yar09]. Note, however,
that the analysis in the above document gives merely a rough estimate of the
actual expected costs as it is based on overly pessimistic assumptions. In partic-
ular, it fails to notice the savings in the number of comparisons Yaroslavskiy

achieves over classic Quicksort, see Tables 1 and 3.

A Note on Equal Elements
Even though for the rest of this thesis, we will assume elements to be pairwise
distinct, let us for a moment consider the case of equal keys. It is most convenient
to argue for the most degenerate case: a list where all elements are equal. On
such inputs, Algorithm 7 slides into quadratic runtime complexity. The reason
is that the comparison in line 8 is always true, so i runs all the way up until it
meets j. As a consequence, we get worst case partitioning in every step.

There is a very simple modification that can make up for this without
introducing additional costs in the case of distinct keys: We merely have to
make the comparisons in lines 8 and 16 strict, i. e. A[i] < q and A[j] > p instead
of 6 q and > p, respectively. Then, the inner loops are never entered and i1
and j1 meet in the middle. This results in sublists of relative lengths 1

2 , 0 and 1
2 ,

which is not perfect but quite good — way better than 0, 0, 1! In fact, this is very
similar to the way Algorithm 1 operates on lists of all equal elements.

Since we will replace Algorithm 7 by the improved variant Algorithm 9 as a
result of this chapter, I leave Algorithm 7 unchanged. For Algorithm 9 however,
the modification is incorporated.

As mentioned above, the actual Java runtime implementation of Yaroslavskiy’s
algorithm has special code for dealing with equal elements to avoid quadratic
behavior. However, this is in fact not needed! By making the comparison in
line 10 of Algorithm 8 non-strict, we achieve that k and g meet in the middle,
which results again in relative sublist lengths of 12 , 0 and 1

2 . I allowed myself to
include this optimization in Algorithm 8 right away as my personal contribution
to Yaroslavskiy’s partitioning method: the line underneath >.
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4.1.2 Input Model

4.1.2 Input Model
All analyses are done in the random permutation model, i. e. input sequences
are assumed to be random permutations of elements {1, . . . ,n}, where each
permutation occurs with probability 1/n!. As the algorithms only rely on element
comparisons and not on the actual values of elements, we can identify a list
element with its rank inside the list. Note further, that the random permutation
model implies the same behavior as lists of i. i. d. uniformly chosen reals.

The pivots are chosen at fixed positions, namely the first and last elements
of the list. Let the smaller one be p, the larger one q. In the random permuta-
tion model, this is equivalent to uniformly selecting random pivots since the
probability to end up in a certain position is the same for every element and
position.

4.1.3 Elementary Operations of Sorting
In this chapter, we analyze the dual-pivot Quicksort variants in terms of an
abstract cost model. The efficiency of an algorithm is identified with how often
an algorithm needs to make use of certain elementary operations. This provides
a rough estimate of its quality, which is really a property of the algorithm, not
its implementation. Hence, it is also absolutely machine-independent.

According to the problem definition in Section 2.2 on page 18, our sorting
algorithms can only use the relative order of elements, not their absolute values.
The most elementary building block of “determining the relative order” is a key
comparison of two elements. Hence, the number of such comparisons needed
to fully sort a given list of elements is a useful measure for the efficiency of an
algorithm.

One reason why Quicksort is often used in practice is that it can be implemented
in-place, i. e. if the input list is given as a random access array of memory, we can
directly sort this list without having to copy the input. All Quicksort implemen-
tations studied in this thesis are of this kind. [Knu98, exercise 5.2.2.20] shows
that Quicksort is guaranteed to get along with O(logn) additional memory, if
we apply tail-recursion elimination and avoid sorting the largest sublist first.

An in-place implementation of Quicksort can only work with a constant
number of array elements at a time directly, i. e. without reading them from the
array. Indeed, the implementations considered here will only read two array
elements (in addition to the pivots) — and potentially write them at a different
location — before loading the next elements. We will refer to this process of
loading two elements and storing them again as one swap. The number of
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4 Average Case Analysis of Dual-Pivot Quicksort

such swaps an algorithm does in order to sort a list is a second measure of its
efficiency.

Note that in Algorithm 7, the elements are not really exchanged, but written
back one position apart from the old position of their swap partner. As the
runtime contributions will be roughly the same as for a real exchange, we allow
this slightly sloppy definition of a swap.

In Chapter 7, we will use a more detailed measure of efficiency, namely the
number of executed machine instructions for two specific machines. There, we
will show that the leading term is a linear combination of the number of swaps
and the number of comparisons. Hence, even for this much more detailed
measure, swaps and comparisons are the only elementary operations yielding
an asymptotically dominant contribution to the costs.

4.2 Recurrence Relation
Note that all Quicksort variants in this thesis fulfill the following property:

Property 1: Every key comparison involves a pivot element of the current
partitioning step.

In [Hen89], Hennequin shows that Property 1 is a sufficient criterion for pre-
serving randomness in subfiles: If the whole array is a (uniformly chosen) random
permutation of its elements, so are the subproblems Quicksort is recursively
invoked on. This allows us to set up a recurrence relation for the expected costs,
as it ensures that all partitioning steps of a subarray of size k have the same
expected costs as the initial partitioning step for a random permutation of size k.

The expected costs Cn for sorting a random permutation of length n by any
dual-pivot Quicksort with Property 1 satisfy the following recurrence relation:

C0 = 0

C1 = 0

Cn =
∑

16p<q6n

Pr[pivots (p,q)] · (partitioning costs + recursive costs) (4.1)

=
∑

16p<q6n

1
/(
n
2

)
·
(
partitioning costs +Cp−1 +Cq−p−1 +Cn−q

)
= pcn + 1

/(
n
2

) ∑
16p<q6n

(
Cp−1 +Cq−p−1 +Cn−q

)
, (n > 2)
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where pcn is the expected partitioning cost for a list of length n. By inserting
appropriate toll functions pcn, we will later use this recurrence to compute the
expected number of swaps and comparisons.

In the following two subsections, I give two independent derivations of the
closed form of Cn. Section 4.2.1 uses elementary rearrangements — in particular
clever forward differences of the sequence Cn— to find a different recursive,
but telescoping characterization of Cn. Such a representation is then immediately
written as an explicit sum. In the end, this allows us to express Cn directly in
terms of pcn.

The second derivation presented in Section 4.2.2 is based on the symbolic
method (see [FS09, Part A]): We set up a functional equation for the generating
function C(z) of Cn, solve this equation to obtain a closed for C(z) and then
determine Cn as the coefficients of C(z).

Whereas the elementary derivation is more self-contained and essentially
doable with high-school math, the generating function approach requires us
to deal with tractable, yet non-trivial differential equations. On the other
hand, Section 4.2.1 contains some “guess-and-prove” parts, which are hard to
generalize. Here, Hennequin’s approach shines: The symbolic description of
the corresponding generating functions already includes an arbitrary number
of pivots as well as choosing these from a larger sample. (These variants are
introduced in Section 3.4.1 “Choice of the Pivot” and Section 3.4.4 “Multi-Pivot
Quicksort”)

4.2.1 Elementary Solution
The solution presented in this section is a generalization of Sedgewick’s der-
ivation of the expected number of swaps for Algorithm 7 in [Sed75, p. 156ff].
Although the computations in this section allow to actually derive the closed
form — in contrast to only verifying a ‘guessed’ solution — some steps follow
from ‘magic’ insight. The derivation in Section 4.2.2 will appear more directed
to the exercised generatingfunctionologist. On the other hand, the math is more
involved.
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The first step is to use the symmetry in the sum of recursive costs in
eq. (4.1).16∑

16p<q6n

(
Cp−1 +Cq−p−1 +Cn−q

)
=

∑
16p<q6n

Cp−1 +
∑

16p<q6n

Cq−p−1 +
∑

16p<q6n

Cn−q

=

n−1∑
p=1

Cp−1

n∑
q=p+1

1 +

n−2∑
k=0

Ck

n−1−k∑
p=1

1 +

n∑
q=2

Cn−q

q−1∑
p=1

1

=

n−1∑
p=1

Cp−1 (n− p) +

n−2∑
k=0

Ck(n− 1− k) +

n∑
q=2

Cn−q (q− 1)

=

n−2∑
k=0

Ck (n− k− 1) +

n−2∑
k=0

Ck(n− k− 1) +

n−2∑
k=0

Ck(n− k− 1)

= 3

n−2∑
k=0

(n− k− 1)Ck .

So, our recurrence to solve is

C0 = C1 = 0

Cn = pcn +
6

n(n−1)

n−2∑
k=0

(n− k− 1)Ck for n > 2 .

We first consider Dn :=
(
n+1
2

)
Cn+1 −

(
n
2

)
Cn to get rid of the factor in the sum:

Dn =

d(n):=︷                       ︸︸                       ︷(
n+1
2

)
pcn+1 −

(
n
2

)
pcn (n > 3)

+
(n+1)n
2

6
(n+1)n

n−1∑
k=0

(n− k)Ck −
n(n−1)
2

6
n(n−1)

n−2∑
k=0

(n− k− 1)Ck

= d(n) + 3

n−1∑
k=0

Ck .

16Please note: I tried to give all algebraic manipulations in great detail in this section, in the
hope that this will allow the reader to follow the derivation without additional scratch paper.
The veteran mathematician bored by sissy-style calculations is advised to skip every other
line or so of the formulæ as to keep the reading demanding enough.

68



4.2.1 Elementary Solution

The remaining full history recurrence is eliminated by taking ordinary differ-
ences

En := Dn+1 −Dn

= d(n+ 1) − d(n) + 3Cn . (n > 3)

Towards a telescoping recurrence, we consider yet another quantity

Fn := Cn −
n−4
n ·Cn−1 ,

and compute

Fn+2 − Fn+1 = Cn+2 −
n−2
n+2Cn+1 −

(
Cn+1 −

n−3
n+1Cn

)
= Cn+2 −

2n
n+2Cn+1 +

n−3
n+1Cn .

The expression on the right hand side is not quite appealing. However, by
expanding the definition of En, we find

(En − 3Cn)
/ (

n+2
2

)
= (Dn+1 −Dn − 3Cn)

/ (
n+2
2

)
=

((
n+2
2

)
Cn+2 −

(
n+1
2

)
Cn+1

−
((
n+1
2

)
Cn+1 −

(
n
2

)
Cn

)
− 3Cn

)/(
n+2
2

)
= Cn+2 − 2

(
n+1
2

)/(
n+2
2

)
·Cn+1 +

((
n
2

)
− 3
)/(

n+2
2

)
·Cn

= Cn+2 −
2n
n+2Cn+1 +

1
2n(n−1)−3
1
2 (n+2)(n−1)

Cn

= Cn+2 −
2n
n+2Cn+1 +

1
2 (n−3)(n+2)
1
2 (n+2)(n−1)

Cn

= Cn+2 −
2n
n+2Cn+1 +

n−3
n+1Cn .

Hence, we can equate these two terms to get

Fn+2 − Fn+1 = (En − 3Cn)
/ (

n+2
2

)
=
(
d(n+ 1) − d(n)

) / (
n+2
2

)︸                               ︷︷                               ︸
f(n):=

. (n > 3)

This last equation is now amenable to simple iteration:

Fn =

n∑
i=5

f(i− 2) + F4︸                 ︷︷                 ︸
g(n)

. (n > 5)
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Plugging in the definition of Fn = Cn −
n−4
n ·Cn−1 yields

Cn = n−4
n ·Cn−1 + g(n) .

Multiplying by
(
n
4

)
and using

(
n
4

)
· n−4n =

(
n−1
4

)
gives a telescoping recurrence

for Gn :=
(
n
4

)
Cn:

Gn = Gn−1 +
(
n
4

)
g(n)

=

n∑
i=5

(
i
4

)
g(i) +G4

=

n∑
i=1

(
i
4

)
g(i) −

(
4
4

)
F4 +G4

=

n∑
i=1

(
i
4

)
g(i) −

(
C4 −

4−4
4 C3

)
+
(
4
4

)
C4︸                         ︷︷                         ︸

=0

.

Finally, we arrive at an explicit formula for Cn, which is valid for n > 4:

Cn = Gn
/(

n
4

)
=

1(
n
4

) · n∑
i=1

(
i
4

)
g(i)

=
1(
n
4

) · n∑
i=1

(
i
4

)( i−2∑
j=3

f(j) + F4

)

=
1(
n
4

) · n∑
i=1

(
i
4

)(
F4 +

i−2∑
j=3

d(j+ 1) − d(j)(
j+2
2

) )

=
1(
n
4

)F4 · n∑
i=1

(
i
4

)
+
1(
n
4

) · n∑
i=1

(
i
4

) i−2∑
j=3

(
j+2
2

)
pcj+2 − 2

(
j+1
2

)
pcj+1 +

(
j
2

)
pcj(

j+2
2

)
= F4 ·

(
n+1
5

) /(
n
4

)
+
1(
n
4

) n∑
i=1

(
i
4

) i−2∑
j=3

(
pcj+2 −

2j
j+2pcj+1 +

(
j
2

)(
j+2
2

)pcj

)
.

Using F4 = C4 = pc4 +
1
2 pc2, this simplifies to

Cn =
1(
n
4

) n∑
i=1

(
i
4

) i−2∑
j=3

(
pcj+2 −

2j
j+2pcj+1 +

(
j
2

)(
j+2
2

)pcj

)
+ n+1

5

(
pc4 +

1
2 pc2

)
. (4.2)

70



4.2.1.1 Linear Partitioning Costs

The term for Cn in eq. (4.2) is closed in the sense that it only depends on the
partitioning costs pcn, even though it still involves a non-trivial double sum
over binomials. Luckily, such sums are often amenable to computer algebra,
see [PWZ96]. Another nice property is that Cn is linear in pcn, so if pcn is a
linear combination, we can compute the above sum of each of the summands
separately.

How to proceed manually is illustrated in the next section. There, I derive the
total costs Cn for a parametric linear partitioning cost definition (see eq. (4.3)).
The resulting closed form will be general enough for all partitioning costs we
encounter for Algorithm 8. Similar to this computation, one can determine the
total costs for some non-linear partitioning costs pcn, as well.

4.2.1.1 Linear Partitioning Costs

For the toll functions pcn we will encounter, eq. (4.2) can be written in a rather
succinct form in terms of harmonic numbers Hn. Let us set

pcn =


0 n < 2

d n = 2

a(n+ 1) + b n > 2

. (4.3)

The reason for this somewhat peculiar definition is that typical partitioning costs
are essentially linear in n, but behave differently for lists of size 6 2. For the
inner sum in eq. (4.2), we only use the values pci with i > 3. By partial fraction
decomposition, we obtain for the summands

pcj+2 −
2j
j+2pcj+1 +

(
j
2

)(
j+2
2

)pcj =
2b

j+ 1
+
6a− 2b

j+ 2
.

This allows to split the inner sum and represent it in terms of harmonic numbers:

Cn =
1(
n
4

) n∑
i=1

(
i
4

)(
2b

i−2∑
j=3

1
j+1 + (6a− 2b)

i−2∑
j=3

1
j+2

)
+ n+1

5

(
5a+ b+ 1

2d
)

=
1(
n
4

) n∑
i=1

(
i
4

)(
2b

i−1∑
j=4

1
j + (6a− 2b)

i∑
j=5

1
j

)
+ n+1

5

(
5a+ b+ 1

2d
)

=
1(
n
4

) n∑
i=1

(
i
4

)(
2b(Hi−1 −H3) + (6a− 2b)(Hi −H4)

)
+ n+1

5

(
5a+ b+ 1

2d
)

=
1(
n
4

) n∑
i=1

(
i
4

)(
6aHi − 2b(

1
i +H3) − (6a− 2b)H4

)
+ n+1

5

(
5a+ b+ 1

2d
)
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=
1(
n
4

) n∑
i=1

(
i
4

)(
6aHi − 2b

1
i − 2b

11
6 − (6a− 2b)2512

)
+ n+1

5

(
5a+ b+ 1

2d
)

=
1(
n
4

) n∑
i=1

(
i
4

)(
6aHi − 2b

1
i +

1
2(b− 25a)

)
+ n+1

5

(
5a+ b+ 1

2d
)

=
6a(
n
4

) n∑
i=1

(
i
4

)
Hi −

2b(
n
4

) n∑
i=1

1
i

(
i
4

)
+
1
2(b− 25a)(

n
4

) n∑
i=1

(
i
4

)
+ n+1

5

(
5a+ b+ 1

2d
)

=
6a(
n
4

) n∑
i=1

(
i
4

)
Hi −

2b(
n
4

) n∑
i=1

1
4

(
i−1
3

)
+
1
2(b− 25a)(

n
4

) n∑
i=1

(
i
4

)
+ n+1

5

(
5a+ b+ 1

2d
)

.

The first sum is an instance of eq. (ΣiHi) on page 17, which says∑
06k<n

(
k
m

)
Hk =

(
n
m+1

) (
Hn −

1
m+1

)
for integer m > 0 .

The other two sums are plain summations in the upper index (equation (5.10)
of [GKP94, page 160]):∑

06k6n

(
k
m

)
=
(
n+1
m+1

)
for integers m,n > 0 .

Using these, we finally get

Cn =
6a(
n
4

)(n+1
5

) (
Hn+1 −

1
5

)
−

b

2
(
n
4

)(n
4

)
+
1
2(b− 25a)(

n
4

) (
n+1
5

)
+ n+1

5

(
5a+ b+ 1

2d
)

= 6
5a(n+ 1)(Hn+1 −

1
5) −

1
2b+ ( 110b−

25
10a)(n+ 1) + 1

10(n+ 1) (10a+ 2b+ d)

= 6
5a(n+ 1)Hn+1 +

(
− 6
25a−

3
2a+

3
10b+

1
10d
)
(n+ 1) − 1

2b

= 6
5a(n+ 1)Hn+1 +

(
−87
50a+

3
10b+

1
10d
)
(n+ 1) − 1

2b . (4.4)

4.2.2 Generating Function Solution
I assume basic familiarity with generating functions in this section. A full
introduction is beyond the scope of this thesis and excellent textbooks are
available [GKP94, Chapter 7], [SF96] and [Wil06]. A thorough treatment of
the symbolic method appears in [FS09], which also gives methods to obtain
asymptotic approximations from generating functions.

In Section 3.5 on page 50, I summarized Hennequin’s analysis of his parametric
Quicksort implementation: In the most general form it features partitioning
around s− 1 pivots, chosen equidistantly from a sample of k = s · t+(s− 1), and
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special treatment of small sublists. Hennequin derives a differential equation
given in eq. (3.8) on page 57 for the (ordinary) generating function

C(z) =
∑
n>0

Cnz
n

of the expected costs Cn of sorting a random permutation of size n. On page 40

of [Hen91], Hennequin shows that eq. (3.8) is equivalent to the following
recurrence relation on the coefficients Cn of C(z):

Cn =


pcn +

∑
n1+···+ns=n−s+1

(
n1
t

)
· · ·
(
ns
t

)(
n
k

) (
Cn1 + · · ·+Cns

)
if n > M

SLSn if n 6M

[Hen91, (III.11)] .

For the parameter choices

s = 3, M = 2, t = 0 ({ k = 2) ,

corresponding to the basic dual-pivot Quicksort implementations we study in
this chapter, this recurrence reduces to eq. (4.1). Hence, we can use Hennequin’s
approach to solve eq. (4.1). Likewise, for s = 3, M = 2 and t = 0, the differential
equation (3.8) simplifies to

C ′′(z) = T0
[
PC ′′(z) + 3 · 2 ·C(z)

(
1
1−z

)2]
+ R0

[
CSLS

′′(z)
]

. (4.5)

Recall that T0 and R0 are the truncation and remainder operators (of order 0),
respectively. They are defined for general order in Section 3.5.3. For order 0,
they simplify to T0

[
G(z)

]
= G(z) −G(0) and R0

[
G(z)

]
= G(0). As T0 is a linear

operator, eq. (4.5) becomes

C ′′(z) =
(

PC ′′(z) − PC ′′(0)
)
+
(
6
C(z)

(1− z)2
− 6C(0)

)
+ CSLS

′′(0)

= 6
C(z)

(1− z)2
+ PC ′′(z) + CSLS

′′(0) − PC ′′(0) − 6C(0)︸                                 ︷︷                                 ︸
Q:=

.

Multiplying by (1− z)2 and rearranging yields

(1− z)2C ′′(z) − 6C(z) = (1− z)2
(
PC ′′(z) +Q

)
. (4.6)

We observe the correspondence between the order of derivatives and exponents
of (1− z). Such differential equations are known as Cauchy-Euler equations (also
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just Euler equations) or equidimensional equations in the literature, see e. g. [Inc27,
Section 6.3]. They allow an explicit solution using the method of linear operator by
transforming the higher-order differential equation to a sequence of first-order
equations.

We introduce the differential operator θ with θ.f(z) = (1− z)f ′(z). Using
θ(θ+ 1).f(z) = (1− z)2f ′′(z) we can write eq. (4.6) as(

θ(θ+ 1) − 6
)
.C(z) = (1− z)2

(
PC ′′(z) +Q

)
.

Factorizing θ(θ+ 1) − 6 yields

(θ− 2)(θ+ 3).C(z) = (1− z)2
(
PC ′′(z) +Q

)
(4.7)

with Q = CSLS
′′(0) − PC ′′(0) − 6C(0) .

Note that C(0) = C0 = 0 by eq. (4.1) and G ′′(0) = 2g2, so we can actually
compute Q rather easily as

Q = 2
(
SLS2 − pc2

)
. (4.8)

4.2.2.1 Solution to the Differential Equation

If we abbreviate D(z) := (θ+ 3).C(z) in eq. (4.7), we obtain a first order differen-
tial equation for D(z):

(θ− 2).D(z) = (1− z)2
(
PC ′′(z) +Q

)
⇐⇒ D ′(z) −

2

1− z
D(z) = (1− z)

(
PC ′′(z) +Q

)
.

This differential equation can be solved by multiplication with an integrating
factor M(z) = e

∫
− 2
1−z = (1− z)2:

M(z)D ′(z) −M(z)
2

1− z
D(z) =M(z)(1− z)

(
PC ′′(z) +Q

)
⇐⇒ M(z)D ′(z) +

(
−2(1− z)

)︸           ︷︷           ︸
=M ′(z)

D(z) = (1− z)3
(
PC ′′(z) +Q

)
⇐⇒ d

dz

(
M(z) ·D(z)

)
= (1− z)3

(
PC ′′(z) +Q

)
⇐⇒ M(z) ·D(z) =

∫
(1− z)3PC ′′(z)dz+

∫
(1− z)3Qdz

⇐⇒ D(z) =

∫
(1− z)3PC ′′(z)dz

(1− z)2
− 1

4Q(1− z)2 .
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Without fixing the partitioning cost, this is the closest form for D(z) we can hope
for. All partitioning costs we encounter in the analysis will lead to functions
PC(z) for which the antiderivative is easily computed.

To continue, we use the definition of D(z). It gives us a first order differential
equation for C(z):

(θ+ 3).C(z) = D(z)

⇐⇒ C ′(z) +
3

1− z
C(z) =

D(z)

1− z
.

Multiplying with M(z) = e
∫
3
1−z = −(1− z)−3 allows for the same trick as above:

d
dz

(
M(z) ·C(z)

)
=M(z) · D(z)

1− z

⇐⇒ M(z) ·C(z) =
∫
−
D(z)

(1− z)4
dz

⇐⇒ C(z) = (1− z)3
∫
D(z)

(1− z)4
dz

= (1− z)3
∫ ∫

(1− z)3PC ′′(z)dz
(1− z)6

− 1
4Q

1

(1− z)2
dz (4.9)

= (1− z)3
(∫ ∫(1− z)3PC ′′(z)dz

(1− z)6
dz − 1

4Q
1

1− z

)
= (1− z)3

∫ ∫
(1− z)3PC ′′(z)dz

(1− z)6
dz − 1

4Q(1− z)2 .

4.2.2.2 Linear Partitioning Costs

For Hennequin’s approach, we have to define two kinds of primitive costs:
Those for an ordinary Quicksort partitioning step and those for SmallListSort.
Then, the overall costs can be computed as the coefficients of C(z).

As Section 4.3 will show, the costs pcn for an ordinary partitioning step are
linear for most cost measures, so we set17

pcn := a(n+ 1) + b .

Although, we do not explicitly use a procedure SmallListSort, our algorithms
treat lists of size 6 M = 2 differently. In accordance with C0 = C1 = 0— as

17Of course, we could also choose pcn := an+ b, but a(n+ 1) + b will yield a nicer term for
the generating function; see below.
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given in (4.1) — a one- or zero-element list is already sorted and requires no
additional work. Hence SLS0 = SLS1 = 0. For two-element lists, we choose the
symbolic constant SLS2 = d, such that the cost definitions match the definition
of pcn in eq. (4.3) used for Section 4.2.1.

Now that we have fixed our primitive costs, we can compute C(z) from (4.9).
Basically, we only have to insert into known terms. However, I will do the
calculations in a detailed and easily digestible form. We begin with a warm-up:

Q =
(4.8)

2
(
SLS2 − pc2

)
= 2d− 6a− 2b .

Next, we need the ordinary generating function for pcn:

PC(z) :=
∑
n>0

pcnz
n

= a
∑
n>0

(n+ 1)zn + b
∑
n>0

zn

= a
∑
n>1

nzn−1 + b
∑
n>0

zn

= a ddz
1
1−z + b

1
1−z

=
a

(1− z)2
+

b

1− z
.

With these preparations done, we are ready for some calculus exercises: We
tackle the double integral in eq. (4.9):∫ ∫

(1− z)3PC ′′(z)dz
(1− z)6

dz =

∫
(1− z)−6

∫
(1− z)3

( 6a

(1− z)4
+

2b

(1− z)3

)
dzdz

=

∫
(1− z)−6

(∫ 6a

1− z
dz+

∫
2bdz

)
dz

=

∫
(1− z)−6

(
−6a ln(1− z) − 2b(1− z) + c1

)
dz (4.10)

= −6a

∫
ln(1− z)
(1− z)6

dz− 2b

∫
1

(1− z)5
dz+

∫
c1

(1− z)6
dz

= −6
5a

ln(1− z) + 1
5

(1− z)5
− 1
2b(1− z)

−4 + 1
5c1(1− z)

−5 + c2 .

We introduced two integration constants c1 and c2, which we need to determine
from the initial conditions. The first integral in the last line requires integration
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by parts, so it might be worth zooming in:∫
ln(1− z)
(1− z)6

dz =
z=1−x

∫
ln(x)︸ ︷︷ ︸
u

(−x−6)︸    ︷︷    ︸
v ′

dx

[
∫
uv ′ = uv−

∫
u ′v] = ln(x)

(
1
5x

−5
)
−

∫
1
x

(
1
5x

−5
)
dx

= 1
5

ln x
x5

− 1
5

(
−1
5x

−5
)

=
x=1−z

1
5 ln(1− z) + 1

25

(1− z)5
.

Inserting our hard-earned integral (4.10) into eq. (4.9) yields

C(z) = (1− z)3

(
−6
5a

ln(1− z) + 1
5

(1− z)5
− 1
2b(1− z)

−4 + 1
5c1(1− z)

−5 + c2

)
− 1

4Q(1− z)2

= 6
5a

ln( 1
1−z)

(1− z)2
+
(
1
5c1 −

6
25a
) 1

(1− z)2
− 1

2b
1

1− z
+ c2(1− z)

3

− 1
4Q(1− z)2 .

Finally, we have the closed for of the generating function C(z) of the average costs
for dual-pivot Quicksort with linear partitioning costs. From this generating
function, we can now obtain the solution to recurrence eq. (4.1) by taking
coefficients: Cn = [zn]C(z). The series expansion of the first summand can be
found using equation (7.43) of [GKP94, page 351]:

1

(1− z)m+1
ln

1

1− z
=
∑
n>0

(Hm+n −Hm)

(
m+n

n

)
zn .

The last two summands of C(z) form a polynomial of degree three, so for Cn
with n > 4, we can safely ignore them and find

Cn = 6
5a (Hn+1 −H1)

(
n+ 1

n

)
+
(
1
5c1 −

6
25a
)
(n+ 1) − 1

2b (n > 4)

= 6
5aHn+1(n+ 1) +

(
1
5c1 −

6
25a−

6
5a
)
(n+ 1) − 1

2b

= 6
5a(n+ 1)Hn+1 +

(
1
5c1 −

36
25a
)
(n+ 1) − 1

2b . (4.11)

For determining the integration constants c1 and c2, we use the initial
conditions

0 = C0 = [z0]C(z) = C(0) = 1
5c1 −

6
25a−

1
2b+ c2 −

1
4Q

0 = C1 = [z1]C(z) = C ′(0) = 18
25a+

2
5c1 −

1
2b− 3c2 +

1
2Q .
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Solving the linear system for c1 and c2 gives:

c1 = −3
2a+

3
2b+

1
2d ,

c2 = −24
25a−

3
10b+

2
5d .

Inserting into eq. (4.11), we finally find our explicit formula for the total cost of
dual-pivot Quicksort with linear partitioning costs:

Cn = 6
5a(n+ 1)Hn+1 +

(
−87
50a+

3
10b+

1
10d
)
(n+ 1) − 1

2b . (4.12)

Of course, the result is exactly the same as eq. (4.4) which we found in Sec-
tion 4.2.1.

4.3 Partitioning Costs
In this section, we analyze the expected number of swaps and comparisons
used in the first partitioning step on a random permutation of {1, . . . ,n} by
Algorithms 7 and 8. Inserting these as partitioning costs pcn in eq. (4.2) yields
the total number of swaps respectively comparisons for sorting the permutation.

In the following sections, we will always assume n > 3 if not otherwise
stated. For n = 0, 1, Algorithms 7 and 8 do not execute the partitioning step at
all. For n = 2, some execution frequencies behave differently, so we treat those
as special cases. Of course, contributions for n = 2 are trivially determined by a
sharp look at the corresponding algorithm.

The following sections introduce some terms and notations, which are used
in Sections 4.3.3 and 4.3.4 to compute the expected number of swaps and
comparisons.

4.3.1 Notations
The initial call to Quicksort then is DualPivotQuicksortSedgewick(A, 1,n)
respectively DualPivotQuicksortYaroslavskiy(A, 1,n). So, for analyzing the
first partitioning step, we can identify left = 1 and right = n.

Algorithms 7 and 8 use swaps and key comparisons at several locations in
the code. It will pay off to determine the expected execution counts separately
for all these locations. Assume we scan the code for key comparison instructions
and number them consecutively. Then, each comparison done when running
the algorithm can be traced back to one of these locations. Now, denote by ci
the frequency of the ith comparison location in the first partitioning step, i. e.
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how often the comparison location with number i is reached during the first
partitioning step.

Its expected value on a random permutation of size n is written as En ci.
If n is clear from the context, I simply write E ci. As an intermediary step,
I will often compute En [ci | p,q], the conditional expected value of ci given
that the random permutation induces pivots p and q. For swaps, I use similar
definitions based on si, the frequency of the ith swap location.

In the end, we are interested in the total number of comparisons and swaps, not
only counting the first partitioning step. I will use Ci(n) and Si(n) to denote the
expected total number of comparison respectively swaps from the ith location
for a random permutation of size n. Unless the dependence on n needs explicit
emphasis, I will briefly write Ci and Si instead of Ci(n) and Si(n). Given the
solution of the recurrence relation from Section 4.2, we can easily compute Ci(n)
from ci by setting pcn := En ci.

Of course, we get the total number of comparisons and swaps — c and s for
the first partition, C and S for the whole sort — by adding up the frequencies of
all corresponding locations:

c :=
∑
i

ci, s :=
∑
i

si, C :=
∑
i

Ci, and S :=
∑
i

Si.

4.3.2 On Positions and Values — Some More Notation
The sorting algorithms get as input an array A with entries A[i ] for i = 0 , . . . , n .
A[0 ] contains an element less or equal to any element in the list; we write
A[0 ] = −∞. A[1 ], . . . ,A[n] contain a uniformly chosen random permutation of
[n], i. e. more formally, if σ : [n]→ [n] is the random permutation, we initially
set A[i ] = σ(i). I will identify a permutation σ with the array A it induces.

Recall that all considered Quicksort variants work in-place. This means, the
entries of A are changed during the process of sorting. In the analysis, we will
need to refer to the initial contents of A, or equivalently to the underlying
permutation σ. The initial array is denoted by A0, such that at any time
A0[i ] = σ(i), whereas potentially A[i ] , σ(i) = A0[i ] if that entry has been
changed by the sorting procedure.

The numbers 1, . . . ,n occur both as indices / positions for array accesses and
as elements / values of the list to be sorted, i. e. as values stored in A[1 ], . . . ,A[n].
From the context, it should always be clear whether a given number is an
index or an element. Yet, I feel obliged to explicitly warn the reader of possible
confusion. In cases where an explicit discrimination of the indices and values is
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beneficial, I will use the default upright font — e. g. 1, 2 and S— to denote [sets
of] element values, whereas positions and sets thereof will appear in a slanted
respectively curly font: 1 , 2 and S. Note that p and q are used both as values
and as indices in the analysis. Then, of course, the “value p” and the “position
p” still refer to the same number.

Let us define some commonly used sets of values: Let S be the set of all elements
smaller than both pivots, M those in the middle and L the large ones, i. e.

S := {1, . . . ,p− 1},

M := {p+ 1, . . . ,q− 1},

L := {q+ 1, . . . ,n} .

Then by Property 1 on page 66, we cannot distinguish x ∈ C from y ∈ C for
any C ∈ {S,M,L} during the current partitioning step. Hence, for analyzing
partitioning costs, we can treat non-pivot elements as symbolic values s, m or
l when they are elements of S, M or L, respectively. Stated differently: S, M
and L are equivalence classes w. r. t. the behavior in the current partitioning step.
Obviously, all possible results of the partitioning step correspond to the same
word

s · · · s pm · · ·mql · · · l .

(This is the definition of the partitioning process!)
Example 4.1 demonstrates the definitions and shows a possible partitioning
result of an example permutation.

Example 4.1: Permutation before . . .

p q

2 4 7 8 1 6 9 3 5

value p m l l s l l m q

. . . and after partitioning.

1 2 4 3 5 6 9 8 7

s p mm q l l l l

Next, we define the position sets S, M and L as follows:

S := {2 , . . . , p},

M := {p + 1 , . . . , q − 1 },

L := {q , . . . , n − 1 } .

These position sets define three ranges among the non-pivot positions [2 ..n − 1 ],
such that each range contains exactly those positions which are occupied by
the corresponding values after partitioning, but before the pivots are swapped
to their final place. The right list in Example 4.2 demonstrates this: The set of
values at positions S is exactly S, likewise for M and L.
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Example 4.2: Permutation before . . .

S MM L L L L

2 4 7 8 1 6 9 3 5

position 1 2 3 4 5 6 7 8 9
value p m l l s l l m q

. . . and after partitioning
(but before pivots are swapped in place).

S MM L L L L

2 1 4 3 6 9 8 7 5

1 2 3 4 5 6 7 8 9
p s mm l l l l q

Now, we can formulate the main quantities occurring in the analysis below: For a
given permutation, a value type c ∈ {s,m, l} and a set of positions P ⊂ {1 , . . . , n},
I write c@P for the number of c-type elements occurring at positions in P of
the permutation. Note that we are referring to the permutation or, equivalently,
to the initial array A0, not to the ‘current’ array A. The formal definition is

s@P :=
∣∣∣{i ∈ P : A0[i ] ∈ S

}∣∣∣ .

(The definitions for m@P and l@P are similar.)
In Example 4.2, M = {3 , 4 } holds. At these positions, we find elements 7
and 8 (before partitioning), both belonging to L. Thus, l@M = 2, whereas
s@M = m@M = 0. Likewise, we have s@L = m@L = 1 and l@L = 2.

Now consider a random permutation. Then c@P becomes a random variable.
In the analysis, we will encounter the conditional expectation of c@P given that
the random permutation induces the pivots p and q, i. e. given that the first and
last element of the permutation are p and q or q and p, respectively. I abbreviate
this quantity as En [c@P |p,q].

Denote the number of c-type elements by #c. As #c only depends on the
value of the pivots, not on the permutation itself, #c is a fully determined
constant in En [c@P |p,q]. In fact, we can directly state

#s = |S| = p− 1 ,

#m = |M| = q− p− 1 ,

#l = |L| = n− q .

Hence, given pivots p and q, c@P is a hypergeometrically distributed random
variable: For the c-type elements, we draw their #c positions out of n − 2

possible positions via sampling without replacement. Drawing a position in P

is a ‘success’, a position not in P is a ‘failure’. Accordingly, En [c@P |p,q] can
be expressed as the mean of this hypergeometric distribution:

En [c@P |p,q] = #c · |P|

n− 2
. (4.13)
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By the law of total expectation, we finally have

En [c@P] =
∑

16p<q6n

En [c@P |p,q] · Pr[pivots (p,q)]

=
2

n(n− 1)

∑
16p<q6n

#c · |P|

n− 2
.

4.3.3 Yaroslavskiy’s Partitioning Method
For convenience, the partitioning part of Algorithm 8 is reproduced here. The
comparison and swap locations are annotated with the corresponding frequency
counters.

2 p := A[left]; q := A[right]
3 c0, [s0] if p > q then Swap p and q end if
4 ` := left + 1; g := right − 1; k := `

5 while k 6 g
6 c1 if A[k] < p
7 s1 Swap A[k] and A[`]
8 ` := `+ 1

9 else
10 c2 if A[k] > q
11 c3 while A[g] > q and k < g do g := g− 1 end while
12 s2 Swap A[k] and A[g]
13 g := g− 1

14 c4 if A[k] < p
15 s3 Swap A[k] and A[`]
16 ` := `+ 1

17 end if
18 end if
19 end if
20 k := k+ 1

21 end while
22 ` := `− 1; g := g+ 1

23 s4 Swap A[left] and A[`]
24 s5 Swap A[right] and A[g]
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4.3.3.1 States After the Outer Loop

As all implementations studied in this chapter, Algorithm 8 uses Hoare’s
“crossing pointers technique”. This technique gives rise to two different cases
for “crossing”: As the pointers are moved alternatingly towards each other, one
of them will reach the crossing point first — waiting for the other to arrive.

The asymmetric nature of Algorithm 8 leads to small differences in the
number of swaps and comparisons in these two cases: If the left pointer k moves
last, we always leave the outer loop of Algorithm 8 with k = g+ 1 since the
loop continues as long as k 6 g and k increases by one in each iteration. If g
moves last, we decrement g and increment k, so we can end up with k = g+ 2.
Consequently, operations that are executed for every value of k experience one
additional occurrence. To precisely analyze the impact of this behavior, the
following equivalence is useful.

Lemma 4.3: Let A[1 ], . . . ,A[n] contain a random permutation of {1, . . . ,n} for
n > 2.
Then, Algorithm 8 leaves the outer loop with k = q+ δ = g+ 1+ δ for δ ∈ {0, 1}.
(Precisely speaking, the equation holds for the valuations of k, g and q after line 21).
Moreover, δ = 1 iff initially A0[q] > q holds, where q = max{A0[1 ],A0[n]} is the
large pivot.

In order to proof Lemma 4.3, we need another helper lemma concerning the
relation between the array entries in comparisons and the initial entries:

Lemma 4.4: The elements used in the comparisons in lines 6, 10 and 11 have not
been changed up to this point. More formally, in lines 6 and 10 holds A[k ] = A0[k ]
and in line 11, we have A[g] = A0[g].

Proof. First note that in each iteration of the outer loop, k is the index of a ‘fresh’
element, since all swaps occur with indices less than k or greater than g. Thus,
in line 6 always holds A[k ] = A0[k ]. As line 10 is the first statement in the
else-branch of line 6, this has not changed since the beginning of the iteration.
Similarly, in every iteration of the inner loop at line line 11, g refers to a ‘fresh’
element. So, A[g] = A0[g] holds there, completing the proof. �

Now, we can tackle the proof of Lemma 4.3.

Proof of Lemma 4.3. The first part is already proven by the discussion above the
lemma: We move k and g towards each by at most one entry between two
checks, so we always have k 6 g+ 2. We exit the loop once k > g holds. In
the end, q is moved to position g in line 24. Just above this line, g has been
incremented, so when the loop is left, after line 21, we have g = q− 1.
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4 Average Case Analysis of Dual-Pivot Quicksort

For the ‘moreover’ part, we show both implications separately. Assume first
that δ = 1, i. e. the loop is left with a difference of δ+ 1 = 2 between k and g. This
difference can only show up when both k is incremented and g is decremented
in the last iteration. Hence, in this last iteration we must have entered the
else-if-branch in line 10 and accordingly A[k ] > q must have held there — and
by Lemma 4.4 also A0[k ] > q. I claim that in fact even the strict inequality
A0[k ] > q holds. To see this, note that if k < n, we have A0[k ] , A0[n] = q

as we assume distinct elements. This already implies A0[k ] > q. Now assume
towards a contradiction, k = n holds in the last execution of line 10. Since g
is initialized in line 4 to right − 1 = n− 1 and is only decremented in the loop,
we have g 6 n− 1. But this is a contradiction to the loop condition “k 6 g”:
n = k 6 g 6 n− 1. So, we have shown that A0[k ] > q for the last execution of
line 10.

By assumption, δ = 1, so k = q+ 1 upon termination of the loop. As k has
been incremented once since the last test in line 10, we find A0[q] > q there, as
claimed.

Now, assume conversely that A0[q] > q holds. As g stops at q − 1 and is
decremented in line 13, we have g = q for the last execution of line 11. Using
the assumption and Lemma 4.4 yields A[g] = A[q] = A0[q] > q. Thus, the loop
in line 11 must have been left because of a violation of “k < g”, the second
part of its loop condition. The violation implies k > g = q in line 12. With the
following decrement of g and increment of k, we leave the loop with k > g+ 2,
so δ = 1. �

Lemma 4.3 allows to compute the probability for the event δ = 1:

Corollary 4.5: δ = 1 occurs with conditional probability n−q
n−2 given that the large

pivot is q, for n > 3. Consequently, En [δ | p,q] = n−q
n−2 .

Proof. Using Lemma 4.3, we only need to consider A0[q]. We do a case distinc-
tion.

For q < n, A0[q] is one of the non-pivot elements. (We have 1 6 p < q < n.)
Any of the n− 2 non-pivot elements can take position A0[q], and among those,
n− q elements are > q. This gives a probability of n−qn−2 for A0[q] > q.

For q = n, q is the maximum of all elements in the list, so we cannot possibly
have A0[q] > q. This implies a probability of 0 = n−q

n−2 . �
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Corollary 4.6: En δ =
1
3 .

Proof. The proof is by computing:

E δ =
∑

16p<q6n

Pr[pivots (p,q)] ·E [δ | p,q]

=
∑

16p<q6n

2
n(n−1) ·

n−q
n−2

= 2
n(n−1)(n−2)

( ∑
16p<q6n

n −
∑

16p<q6n

q

)

=
(Σc),(Eq)

2
n(n−1)(n−2)n

(
n
2

)
−
2
3(n+ 1)

n− 2

=
n

n− 2
−
2(n+ 1)

3(n− 2)
=
3n− 2n− 2

3(n− 2)

= 1
3 .

�

4.3.3.2 c0 in Algorithm 8

Line 3 — which corresponds to c0 — is executed exactly once in the partitioning
step, no matter how the list looks like. Hence

c0 = 1 . (4.14)

Note however, that we skip the whole partitioning step if right − left ∈ {−1, 0},
as corresponding (sub) lists have length 6 1 and are thus already sorted by
definition.

4.3.3.3 c1 in Algorithm 8

Line 6, corresponding to c1, is the first statement in the outer loop of Algorithm 8.
So, we execute this comparison for every value variable k attains — except for
the last value of k, since we increment k at the end of the loop body in line 20

and then leave the loop.
k is initialized to left + 1 = 2 in line 4 and by Lemma 4.3, it stops with

k = q+ δ with δ ∈ {0, 1}. This means, at line 6, k attains all values in

K := {2 , . . . , q + δ− 1 } . (4.15)

85



4 Average Case Analysis of Dual-Pivot Quicksort

For c1, this means c1 = |K| = q− 2+ δ and by Corollary 4.5 we find

En [c1 | p,q] = q− 2+ En [δ | p,q]

= q− 2+ n−q
n−2 .

By the law of total expectation, we can compute the unconditional expected
value

En c1 =
∑

16p<q6n

Pr[pivots (p,q)] ·En [c1 | p,q]

= 2
n(n−1)

∑
16p<q6n

(
q− 2+ n−q

n−2

)
= 2
n(n−1)

∑
16p<q6n

q − 2
n(n−1)

∑
16p<q6n

2 + En δ

=
Cor. 4.6,(Eq),(Ec)

2
3(n+ 1) − 2 + 1

3

= 2
3n− 1 . (4.16)

4.3.3.4 c2 in Algorithm 8

The last two counters were rather straight-forward to compute. This time it
will get a little harder. c2 corresponds to line 10, which is the first line in the
else-branch. Consequently, line 10 is reached each time the check in line 6 fails.
This immediately tells us c2 6 c1.

In Section 4.3.3.3, I argued that c1 = |K| for K = {2 , . . . , q + δ− 1 }. The
condition of line 6 is “A[k ] < p”, so we reach line 10 for every value k ∈ K

with A[k ] > p. As we assume all elements to be distinct and p and q lie outside
the range K,18 the case A[k ] ∈ {p,q} cannot happen, so c2 =

∣∣{k ∈ K : A[k ] ∈
S ∪M

}∣∣. Applying Lemma 4.4 we can replace A with A0. Hence, with the
definitions from Section 4.3.2, we know

c2 = m@K + l@K .

Note that we have two random variables here: K is random because it de-
pends on δ and c@K for c ∈ {m, l} is random as it depends on the permutation
and on K. So, the random variables are not stochastically independent and we

18Initially, p and q are located at A0[1 ] and A0[n], respectively. 1 < K by definition. The
precise argument why n < K is as follows: If n were in K, then n 6 q+ δ− 1. This is only
possible for, q = n and δ = 1. But by Lemma 4.3, δ = 1 implies A0[q] > q = n, which is a
contradiction to A0[q] ∈ [n].
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4.3.3.5 c3 in Algorithm 8

cannot simply replace them by their expectation. Luckily, Lemma 4.3 allows us
to resolve the dependence by a case distinction:

If δ = 1, K includes as last value the index q+ δ− 1 = q. By Lemma 4.3,
A0[q] > q. This means, we get for sure a contribution to l@K and for sure no
contribution to m@K. If we define K ′ := {2 , . . . , q − 1 }, we make this more
explicit: l@K = l@K ′ + 1 and m@K = m@K ′.

If δ = 0, we have K = K ′. Hence, in this case, we trivially have c@K = c@K ′

for any c ∈ {s,m, l}. Putting both cases together, we find

c2 = m@K ′ + l@K ′ + δ .

For the conditional expected value with given pivots, we know by eq. (4.13) on
page 81:

E [c2 | p,q] = E
[
m@K ′ |p,q

]
+ E

[
l@K ′ |p,q

]
+ E [δ | p,q]

=
(
(q− p− 1) + (n− q)

)q− 2
n− 2

+ E [δ | p,q] .

Computing the total expectation is again a means of elementary summations

E c2 = E
[
m@K ′

]
+ E

[
l@K ′

]
+ E δ

=
Cor. 4.6

2
n(n−1)

∑
16p<q6n

(n− p− 1)
q− 2

n− 2
+ 1
3

=

(
2

n(n−1)

∑
16p<q6n

(
(n− 1)q− pq+ 2p− 2(n− 1)

))/
(n− 2) + 1

3

=
(Eq),(Ep)
(Epq),(Ec)

(n− 1)23(n+ 1) − 1
12(n+ 1)(3n+ 2) + 2

3(n+ 1) − 2(n− 1)

n− 2
+ 1
3

=
1
12(n− 2)(5n− 11)

n− 2
+ 1
3

= 5
12n− 7

12 . (4.17)

4.3.3.5 c3 in Algorithm 8

Although line 11 belonging to c3 seems to be buried deep in the structure of
Algorithm 8, the analysis is not that nasty. First note, that inside the outer loop,
the value of g is only changed in the inner loop body of line 11 and in line 13.
This means that we always decrement g after comparison c3 and only then.
Hence, we execute the comparison in line 11 for all values g attains in the loop
except for the last one.
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In line 4, g is initialized to right − 1 = n− 1 and by Lemma 4.3, we leave the
loop with g = q− 1. So, in line 11 g takes the values

G := {n − 1 , n − 2 , . . . , q} .

Accordingly, we know c3 = |G| = n− q. For given q, c3 is actually constant,
so trivially E [c3 | p,q] = n− q. Finally, we can compute the total expectation
using Eqs. (Ec) and (Eq):

E c3 = 2
n(n−1)

∑
16p<q6n

(n− q)

= n− 2
3(n+ 1)

= 1
3n− 2

3 . (4.18)

4.3.3.6 c4 in Algorithm 8

Frequency c4 corresponds to line 14 of Algorithm 8, which belongs to the else-
if-branch starting in line 10. Consequently, line 14 is reached exactly once for
every comparison at c2 with result true. By the way, the same holds true for the
swap frequency s2 in line 12.

I already showed in Section 4.3.3.4 that c2 = m@K ′ + l@K ′ + δ. Recall
that K ′ = {2 , . . . , q − 1 }. Of these executions of the comparison “A[k ] > q” in
line 10, all those with a key from L yield true.19 Among the indices from K ′,
this happens for l@K ′ positions by definition. The additional contribution to
c2 resulted from the Case δ = 1 (cf. Section 4.3.3.1), where we got the additional
index k = q. By Lemma 4.3 in Case δ = 1, we have A0[q] > q, so we enter the
else-if-branch for sure and c4 inherits the contribution of δ from c2. Putting
everything together, we proved

c4 = l@K ′ + δ .

Using eq. (4.13) and Corollary 4.6, we find

E [c4 | p,q] = E
[
l@K ′ |p,q

]
+ E [δ | p,q]

= (n− q)
q− 2

n− 2
+
n− q

n− 2
.

The law of total probability finally gives

E c4 = E
[
l@K ′

]
+ E δ

= 1
6(n− 3) + 1

3

= 1
6n− 1

6 . (4.19)
19As discussed in Section 4.3.3.4, n < K ′, so A[k ] > q is equivalent to A[k ] > q, here.
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4.3.3.7 s0 in Algorithm 8

Frequency s0 corresponds to the swap of the two pivots in line 3. It is guarded
by the comparison “p > q” in the same line, i. e. we execute the swap as often as
c0, where the result is true: s0 = c0 · [p > q]. In the random permutation model,
Pr[p > q] = 1

2 for two distinct elements, so by c0 = 1 from eq. (4.14) we have

E s0 = 1
2 . (4.20)

4.3.3.8 s1 in Algorithm 8

Frequency s1 comprises the swap in line 7, which is contained in the if-branch
following the comparison “A[k] < p” in line 6. We recall from Section 4.3.3.3
that line 6 is executed for every k ∈ K with K = {2 , . . . , q + δ− 1 }, so s1 = s@K.

Similar to the situation for c2, we have a hidden stochastic dependency, here:
Both s@K and K itself are random, since K depends on δ. The dependency is
resolved by a case distinction following Lemma 4.3. For δ = 1, K = K ′ ∪̇ {q}
with K ′ = {2 , . . . , q − 1 } as in Section 4.3.3.4. Now by Lemma 4.3, A0[q] > q and
we do not get a contribution to s@K for position q. This means s@K = s@K ′

for δ = 1. For the case δ = 0, we have K = K ′ altogether, so we conclude

s1 = s@K ′ . (4.21)

Expected values are then computed as usual

E [s1 | p,q] = E
[
s@K ′ |p,q

]
=

(4.13)
(p− 1)

q− 2

n− 2
.

E s1 = 2
n(n−1)

∑
16p<q6n

(p− 1)
q− 2

n− 2

= 1
4n− 5

12 . (4.22)

4.3.3.9 s2 in Algorithm 8

After every execution of line 12 corresponding to s2, we reach line line 14

exactly once. The frequency of the latter has already been computed as c4, see
Section 4.3.3.6. We rejoice in the saved work and conclude with s2 = c4 and
copy

E s2 = E c4
=

(4.19)
1
6n− 1

6 . (4.23)
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4.3.3.10 s3 in Algorithm 8

The counter s3 corresponds to line 15. The following observation is the key to
determine s3: Variable ` is only changed inside the loop at lines 8 and 16, where
it is incremented by one. Both of these lines immediately follow a swap, namely
in lines 7 and 15. Consequently, if ` attains the values L in the loop, we get
s1+ s3 = |L|− 1 swaps for lines 7 and 15. Since we know s1 from Section 4.3.3.8,
we can use this to determine s3 from |L|.

It remains to determine L. In line 4, ` is initialized to left + 1 = 2. Moreover,
line 23 places the small pivot p at position `, so by the correctness of Algorithm 8,
we must have ` = p at line 23. Just above, ` is decremented, so we leave the
outer loop at line 21 with ` = p + 1. We find L = {2 , . . . , p + 1 } and by eq. (4.21)
for s1:

s3 = |L|− 1− s1 = p− 1 − s@K ′ .

(Recall K ′ = {2 , . . . , q − 1 }.)
By linearity of E, this relation translates to expected values:

E s3 = E p− 1− E s1
=

(Ep),(4.22)
1
3(n+ 1) − 1−

(
1
4n− 5

12

)
= 1
12n− 1

4 . (4.24)

4.3.3.11 s4 and s5 in Algorithm 8

The last two swaps in lines 23 and 24 are both executed exactly once per
partitioning step. This is the same as for c0, see Section 4.3.3.2. We have

s4 = s5 = 1 . (4.25)
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4.3.4 Sedgewick’s Partitioning Method
As in the last section, the partitioning part of Algorithm 7 is reproduced here
for convenience. The comparison and swap locations are annotated with the
corresponding frequency counters.

2 i := left; i1 := left
3 j := right; j1 := right
4 p := A[left]; q := A[right]
5 c0, [s0] if p > q then Swap p and q end if
6 while true
7 i := i+ 1

8 c1 while A[i] 6 q
9 if i > j then break outer while end if
10 c2 if A[i] < p
11 s1 A[i1] := A[i]; i1 := i1 + 1; A[i] := A[i1]

12 end if
13 i := i+ 1

14 end while
15 j := j− 1

16 c3 while A[j] > p
17 c4 if A[j] > q
18 s2 A[j1] := A[j]; j1 := j1 − 1; A[j] := A[j1]

19 end if
20 if i > j then break outer while end if
21 j := j− 1

22 end while
23 s3 A[i1] := A[j]; A[j1] := A[i]

24 | i1 := i1 + 1; j1 := j1 − 1

25 | A[i] := A[i1]; A[j] := A[j1]

26 end while
27 s4 A[i1] := p

28 s5 A[j1] := q

Note that in Algorithm 7, the elements are not directly exchanged, but written
back one position apart from the old position of their swap partner. Thereby,
we do not need a temporary storage for one of the elements. As the runtime
contributions are nearly the same as for a direct exchange, we ignore the
difference in our terminology and call such a sequence of element movements a
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‘swap’. In Chapter 7, I will explicitly count low level instructions, making up for
the sloppiness of this chapter.

4.3.4.1 The Crossing Point of i and j

As for Algorithm 8, we need to state some conditions on when array elements
are first modified. Therefore, the following lemma relates current entries in A
with the initial values of A0:

Lemma 4.7: Except for the pivots, the elements used in the comparisons in
lines 8, 10, 16 and 17 have not been changed up to this point. More formally, in
lines 8 and 10 holds A[i ] = A0[i ]∨A[i ] ∈ {p,q} and in lines 16 and 17, we have
A[j ] = A0[j ]∨A[j ] ∈ {p,q}.

Proof. After a swap involving A[i ] and A[j ], we always increment i respectively
decrement j. So, both point to an element not yet changed when the comparisons
in lines 8 and 16 are done. The pivot elements form an exception to this rule
since they might have been swapped before the loop in line 5. �

Algorithm 7 uses the crossing pointers i and j. i starts from the left end of
the list and moves right, j vice versa. The checks in lines 9 and 20 ensure that
we leave the outer loop as soon as i = j. Therefore, we always have i = j =: χ

when we leave the outer loop at line 26. χ will be called the crossing point of i
and j. For determining the frequencies of comparison and swap locations, it is
vital to know χ. Unfortunately, its detailed value is somewhat intricate.

Lemma 4.8: Let array A[1 ], . . . ,A[n] contain a random permutation of {1, . . . ,n}
for n > 2. p = min{A0[1 ],A0[n]} and q = max{A0[1 ],A0[n]} are the two chosen
pivots.
Then, the crossing point χ of i and j is the index of the (p+ 1)st non-m-type element
in A0.

More formally, define −−→¬m (x), the “not-m-index of x”, to be the number of not-m-
type elements left of x in A0:

−−→¬m (x) :=
∣∣∣{A0[y] : 1 6 y 6 x

}
∩
(
[1..n]\M

)∣∣∣ .

(Recall M = [p+ 1..q− 1] is the value set of m-type elements; see Section 4.3.2).
Then, χ is the smallest position with not-m-index p+ 1:

χ = min
{

x : −−→¬m (x) = p+ 1
}

.
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Remark on Lemma 4.8

For q = p+ 1, there are no m-type elements and the not-m-index
coincides with the ordinary index in A. The reader might find it
instructive to read the proof for this special case by mentally replacing
all occurrences of −−→¬m (x) by x .

Proof. First, we show that the crossing point cannot be on an m-type element:

A0[χ] <M . (4.26)

If we leave the loop via line 9, then either A[j] = q < M— if j has not moved
yet — or A0[j] = A[j] < p as the last j-loop was left violating the condition in
line 16. A0[j] = A[j] follows from Lemma 4.7 for the second case. In the first case,
we have j = n, so A0[j] is either p or q, both of which are not in M. Similarly, if
we leave the outer loop from line 20, then the i-loop above was left by A0[i] > q.

The next step is to prove that when we leave the outer loop, we have

−−→¬m (i) = i1 + 1 . (4.27)

To this end, consider the inner loop starting at line 8. i attains all values in
{2, . . . ,χ} there and for each such i < χ, A[i] = A0[i] is either an s, m or l element.
m-elements always stay between i1 and i. For i < χ, s-elements are swapped
behind i1 in line 11 and for each l-element, the second inner loop finds an
s-partner which is swapped behind i1 in line 23. Each such swap increments
i1. For the last element i = χ, the corresponding swaps are not reached. By
(4.26), A[χ] <M. If A[χ] ∈ S, we enter the i-loop, but then break the outer loop
at line 9, before the swap in line 11. Similarly if A[χ] ∈ L, we skip the i-loop, but
break inside the j-loop, such that the swap in line 23 is not reached. Together,
this means i1 is the number of not-m-elements left of χ in A0 minus the sure
one at A0[χ] itself, so (4.27) follows.

Finally, i1 stops with i1 = p as p is swapped there in line 27. So, at the end

−−→¬m (χ) = −−→¬m (i) =
(4.27)

i1 + 1 = p+ 1 .

A0[χ] <M means that the not-m-index increases at χ, so χ is the smallest index
with −−→¬m (χ) = p+ 1. �
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In addition to the deepened understanding of Algorithm 7, Lemma 4.8 also
allows to compute the expected value of χ:

Proposition 4.9: For the crossing point χ of i and j holds

E [χ | p,q] = p+ 1 + (q− p− 1) p
p+n−q ,

E χ = 1
2n+ 3

2 −
1
n .

Proof. By Lemma 4.8, we know χ = p + 1 + µ for µ the number of m-type
elements left of the (p+1)st non-m-element. Assume now, A0 contains a random
permutation with given pivots p < q. Then, trivially, 0 6 µ 6 |M| = q− p− 1.
By linearity of the expectation, E [χ | p,q] = p+ 1+ E [µ | p,q].

To determine E [µ | p,q], we imagine the following process of creating all
permutations with pivots p and q. First, take the elements from S and L and
arrange them in random order. There are #sl := |S ∪ L| = p− 1+ n− q such
elements and #sl + 1 different places, where insertions are possible — left and
right of the elements and between any two. Now, take the elements from
M in random order and choose a multiset of |M| = q− p− 1 insertion slots
among the #sl + 1 ones. Finally, successively insert the m-elements into the
slots corresponding to the sorted multiset. After each insertion, the slot moves
behind the newly inserted element.

The process is probably best understood via an example, so let us execute
this construction once for n = 9, p = 4 and q = 8. We start with S∪L = {1, 2, 3, 9}
in random order: �2�9�3�1�. The #sl = 4 elements induce #sl + 1 = 5 slots for
possible insertions, written as �. Now we choose some order for M = {5, 6, 7},
say 5, 7, 6. Then, we choose a multiset of slots with cardinality |M| = 3; suppose
we choose the second slot twice and the last one once. Now, all necessary
decisions for the insertions have been taken:

�2�9�3�1� → �2 5�9�3�1� → �2 5 7�9�3�1� → �2 5 7�9�3�1 6�

Note that throughout the process, we have #sl + 1 slots and that the relative
order among the m-elements is preserved. Finally, attach p and q at begin-
ning and end — again in random order. For example �2 5 7�9�3�1 6� becomes
8 2 5 7 9 3 1 6 4.

If all random choices are done uniformly, the resulting permutation is
uniformly distributed among all with pivots p and q: We create each such
permutation in exactly one way as the shuffle of elements from S ∪ L and
elements from M, retaining relative order.

Recall that µ is the number of m-type elements left of the (p+ 1)st non-m-
element. The above process reveals the behavior of µ: There are exactly p slots
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4.3.4.1 The Crossing Point of i and j

left of the (p+ 1)st non-m-element. For the example from above, i and j will
cross on the 1 and we have p = 4 slots left of the crossing point: 8×�2×�9×�3×�1�4.

Any m-element that is inserted into one of these slots contributes to µ. Their
number of binomially distributed: We draw |M| balls with replacement from an
urn with #sl + 1 balls in total, p of which are red. µ is the total number of red
balls drawn. Consequently, E [µ | p,q] is the mean of this binomial distribution:

E [µ | p,q] = |M|
p

#sl + 1
= (q− p− 1)

p

p+n− q
.

By the law of total expectation and the linearity of E, we can express the
unconditional expectation of χ as

E χ = E p+ E 1+ E µ

=
(Ec),(Ep)

1
3(n+ 1) + 1+ E µ .

E µ can be computed from E [µ | p,q]:

E µ =
∑

16p<q6n

Pr[pivotsp,q] ·E [µ | p,q]

= 2
n(n−1)

∑
16p<q6n

(q− p− 1) p
p+n−q

= 2
n(n−1)

n−1∑
p=1

p

n−p−1∑
m=0

m
(n−1)−m

= 2
n(n−1)

n−1∑
p=1

p

n−p−1∑
m=0

(
−1+ n−1

(n−1)−m

)
= − 2

n(n−1)

n−1∑
p=1

p(n− p) + 2
n

n−1∑
p=1

p

n−1∑
m=p

1
m

= − 2
n(n−1)

n−1∑
p=1

p(n− p) + 2
n

n−1∑
p=1

p(Hn−1 −Hp−1)

=
(Ep)

−1
3(n+ 1) +Hn−1(n− 1) − 2

n

n−1∑
p=1

(p− 1)Hp−1 −
2
n

n−1∑
p=1

Hp−1

=
(ΣiHi)

−1
3(n+ 1) +Hn−1(n− 1) − 2

n

(
n−1
2

)
(Hn−1 −

1
2) −

2
n(n− 1)(Hn−1 − 1)
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= −1
3(n+ 1) +Hn−1

(
n− 1−

(n−1)(n−2)
n −

2(n−1)
n︸                               ︷︷                               ︸

=0

)
+ 1
2n

(
(n− 1)(n− 2) + 4(n− 1) + 2︸                                   ︷︷                                   ︸

=n(n+1)

−2
)

= 1
6(n+ 1) − 1

n .

These lengthy rearrangements yield E µ = 1
6(n+ 1) − 1

n , so that we finally find

E χ = 1
3(n+ 1) + 1 + 1

6(n+ 1) − 1
n

= 1
2n+ 3

2 −
1
n .

�

4.3.4.2 c0 in Algorithm 7

Line 5 corresponds to c0 and is executed exactly once per partitioning step.
Hence

c0 = 1 . (4.28)

4.3.4.3 c1 in Algorithm 7

Frequency c1 corresponds to line 8. To determine how often this line is reached,
we consider the locations where the value of i is changed. In fact, after initial-
ization in line 2, i is only incremented — namely in lines 7 and 13. Now, every
execution of line 8 is immediately preceded by one of those two increments. So,
line 8 is reached once for every value of i except the initialization value left = 1.
In Section 4.3.4.1, the largest value attained by i was called χ, so with

I := {2 , . . . ,χ} (4.29)

we can state c1 = |I| = χ− 1. The conditional and total expected values follow
from Proposition 4.9 and the linearity of the expectation:

E [c1 | p,q] = E [χ | p,q] − 1

= p+
(q− p− 1)p

p+n− q

E c1 = E χ− 1

= 1
2n+ 1

2 −
1
n . (4.30)
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4.3.4.4 c2 in Algorithm 7

4.3.4.4 c2 in Algorithm 7

Comparison marker c2 corresponds to line 10, which is located inside the first
inner loop. Thus, it is only reached if A[i] 6 q. Moreover, since the check for
i > j in line 9 is above line 10, we do not reach line 10 for the last value of i,
namely χ. This ensures that A[i] = q cannot happen. With

I ′ := I\{χ} =
(4.29)

{2 , . . . ,χ− 1 } , (4.31)

we hence find c2 = s@ I ′ +m@ I ′. As for c2 in Algorithm 8, we have a nasty
hidden dependence here: Both I ′ and c@ I ′ are random variables and they
depend non-trivially on each other. Therefore, we can not directly compute the
expectation of c2 from s@ I ′ +m@ I ′ using eq. (4.13) and Proposition 4.9.

Let us tackle the two summands separately and start with s@ I ′. Since we
count s-type elements here, no position x ∈ I ′ with A0[x] ∈ M contributes.
Therefore, we can restrict our view entirely to positions of non-m-type elements.
There are |S∪ L| = (p− 1) + (n− q) such positions in total, excluding the pivot
positions. But how many of those are contained in I ′? Luckily, Lemma 4.8
provides the answer: χ is the first index with p+ 1 non-m-elements left of it.
I ′ does not contain positions 1 and χ, both of which contain a non-m-element:
A0[1 ] ∈ {p,q} and A0[χ] <M by eq. (4.26) from the proof of Lemma 4.8. Ergo,
p− 1 of the “not-m-positions” are contained in I ′ and we conclude by eq. (4.13)

E
[
s@ I ′ |p,q

]
= (p− 1)

p− 1

(p− 1) + (n− q)
.

For m@ I ′, Lemma 4.8 is again the key: If χ is the first index with p+ 1 non-m-
elements left of it, there are exactly χ− (p+ 1) m-type elements left of it! By the
same arguments as above, all of those m-elements are located at positions in I ′,
so we have m@ I ′ = χ− p− 1 and by linearity of E

E
[
m@ I ′ |p,q

]
= E [χ | p,q] − p− 1

=
Proposition 4.9

p+ 1+ (q− p− 1)
p

p+n− q
− p− 1

= (q− p− 1)
p

p+n− q
.

Together, we have

E [c2 | p,q] =
(p− 1)2

n+ p− q− 1
+

(q− p− 1)p

n+ p− q
.
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The usual application of total expectation gives

E c2 = E

[
(p− 1)2

n+ p− q− 1

]
+ E

[
(q− p− 1)p

n+ p− q

]
= 2
n(n−1)

∑
16p<q6n

(p−1)2

n+p−q−1 + 1
6(n+ 1) − 1

n ,

where the second expectation has already been computed as E µ in the proof of
Proposition 4.9. Consider the remaining sum in isolation:

2
n(n−1)

∑
16p<q6n

(p−1)2

n+p−q−1 =
2

n(n−1)

n−1∑
p=2

(p− 1)2
n∑

q=p+1

1
n+p−q−1

= 2
n(n−1)

n−2∑
p=1

p2
(
Hn−2 −Hp−1

)
= 2
n(n−1)Hn−2

n−2∑
p=1

p2 −

n−3∑
p=0

(p+ 1)2Hp

=
2(n− 2)(n− 1)(2n− 3)

6n(n− 1)
Hn−2 −

n−3∑
p=0

(
2
(
p
2

)
+ 3p+ 1

)
Hp

= 2
9n− 5

18 −
1
3

1
n(n−1) ,

where the last step splits the sum to apply eq. (ΣiHi) on page 17 for m = 0, 1, 2.
The lengthy terms are simplified by computer algebra.

Finally, we can put the two summands together and obtain

E c2 =
(
2
9n− 5

18 −
1
3

1
n(n−1)

)
+
(
1
6(n+ 1) − 1

n

)
= 7
18n− 1

9 −
1
n − 1

3
1

n(n−1) . (4.32)

4.3.4.5 c3 in Algorithm 7

Frequency c3 counts the occurrences of the comparison in line 16, which consti-
tutes the loop condition of the second inner loop. Completely analogous to the
argument for c1 from Section 4.3.4.3, line 16 is executed once for every value of
j except for the initialization value right = n. So at line 16, j attains the values

J := {n − 1 , n − 2 , . . . ,χ} . (4.33)

(Note that j is decremented.)
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4.3.4.6 c4 in Algorithm 7

So, c3 = |J| = n− χ and by Proposition 4.9, we find

E [c3 | p,q] = n− E [χ | p,q]

= n− 1− p−
(q− p− 1)p

p+n− q

E c3 = n− E χ

= 1
2n− 3

2 +
1
n . (4.34)

4.3.4.6 c4 in Algorithm 7

Frequency c4 counts how often line 17 is reached. Line 17 is inside the second
inner loop, so c4 behaves similar to c2. However, there is a slight asymmetry to
take into account: Whereas in the i-loop, we first check in line 9 for i > j, the
j-loop first does the comparison in line 17 and then the check for i > j in line 20.
In fact, line 17 is reached for every value of j from J where A[j] = A0[j] > p

(Lemma 4.7), so c4 = m@ J+ l@ J.
Both J and c@ J are random and they are interdependent. Yet, we can

compute the expectation similarly as in Section 4.3.4.4. We consider the two
summands separately. For l@ J, we restrict our view to non-m-type positions:
In Section 4.3.4.4, I show that there are in total |S ∪ L| = (p − 1) + (n − q)

such positions, p− 1 of which are contained in I ′ = {2 , . . . ,χ− 1 }. Now, J =

{2 , . . . , n − 1 }\I ′ is the complement of I ′ w. r. t. the non-pivot positions. Thus,
n− q non-m-positions are contained in J and eq. (4.13) yields

E [l@ J |p,q] = (n− q)
n− q

(p− q) + (n− q)
.

For m@ J we can also reuse knowledge from Section 4.3.4.4: E [m@ I ′ |p,q] =
(q−p−1)p
p+n−q and by J = {2 , . . . , n − 1 }\I ′ this gives

E [m@ J |p,q] = (q− p− 1) −
(q− p− 1)p

p+n− q
.

Adding up already yields the conditional expected value for c4. By symmetry∑
16p<q6n

(p−1)2

(p−1)+(n−q) =
∑
16p<q6n

(n−q)2

(p−1)+(n−q) , so we can reuse the computa-
tions form Section 4.3.4.4 and find

E [c4 | p,q] = (n−q)2

n+p−q−1 + (q− p− 1) −
(q− p− 1)p

n+ p− q
.

E c4 = 2
9n− 5

18 −
1
3

1
n(n−1) + 1

3(n− 2) − 1
6(n+ 1) + 1

n

= 7
18n− 10

9 + 1
n − 1

3
1

n(n−1) . (4.35)
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4.3.4.7 s0 in Algorithm 7

Line 5 is executed once per partitioning step where the pivots need to be
swapped, so E s0 = 1

2 .

4.3.4.8 s1 in Algorithm 7

Counter s1 corresponds to line 11. This line is guarded by the comparison
“A[i] < p” of line 10, so line 11 is executed for every value of i where A0[i] < p:
s1 = s@ I ′ with I ′ = {2 , . . . ,χ− 1 }. Most fortunately, we already computed the
expected value of s@ I ′ in Section 4.3.4.4.

E [s1 | p,q] = (p−1)2

(p−1)+(n−q)

E s1 = 2
9n− 5

18 −
1
3

1
n(n−1) . (4.36)

4.3.4.9 s2 in Algorithm 7

The frequency s2 belongs to line 18, which is the body of the if-statement inside
the j-loop. In analogy to Section 4.3.4.8, line 18 is executed for every value of j
with A0[j] > q. i. e. s2 = l@ J. For the expected values, we can happily reuse
calculations from Section 4.3.4.6:

E [s2 | p,q] = (n−q)2

(p−1)+(n−q)

E s2 = 2
9n− 5

18 −
1
3

1
n(n−1) = E s1 . (4.37)

4.3.4.10 s3 in Algorithm 7

Frequency s3 denotes the number of times line 23 is reached — which equals
the number of outer loop iterations. To determine this frequency, consider the
pointer i1. It is only incremented during the swaps in lines 11 and 23. Moreover
it is initialized to left = 1 and stops with i1 = p, the rank of the small pivot.
This means it is incremented p− 1 times in total an thus s1 + s3 = p− 1. In
Section 4.3.4.8, we found s1 = s@ I ′ and computed its expected value. By
linearity of the expectation, we close with

E [s3 | p,q] = p− 1− E [s1 | p,q]

= p− 1−
(p−1)2

(p−1)+(n−q) ,
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and

E s3 = E p− 1− E s1

=
(Ep),(4.36)

1
3(n− 2) −

(
2
9n− 5

18 −
1
3

1
n(n−1)

)
= 1
9n− 7

18 +
1
3

1
n(n−1) . (4.38)

4.3.4.11 s4 and s5 in Algorithm 7

The markers s4 and s5 correspond to lines 27 and 28. These lines consist of a
plain array write operation, so one might wonder why I count them as a swap.
However, line 4 contains the corresponding read operations. There is just some
delay between the reads and the writes. As mentioned at the beginning of this
section, Algorithm 7 does not use explicit exchanges, but rather moves a ‘whole’
through the array, which might be slightly cheaper, since we do not temporary
storage. Nevertheless, we count lines 27 and 28 as one swap each. Of course,
lines 27 and 28 are both executed exactly once per partitioning step, so

E s4 = 1 ,

E s5 = 1 .
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4.3.5 Re-occurring Sums
In this section, I collect some sums that keep occurring as building blocks in the
analyses in the preceding sections. All sums are straight-forward to evaluate
and the closed forms are even found automatically by contemporary computer
algebra systems. ∑

16p<q6n

c = c
(
n
2

)
(Σc)

2
n(n−1)

∑
16p<q6n

c = c (Ec)

∑
16p<q6n

p = 1
6n(n

2 − 1) (Σp)

2
n(n−1)

∑
16p<q6n

p = 1
3(n+ 1) (Ep)

∑
16p<q6n

q = 1
3n(n

2 − 1) (Σq)

2
n(n−1)

∑
16p<q6n

q = 2
3(n+ 1) (Eq)

∑
16p<q6n

p2 = 1
12n

2(n2 − 1) (Σp2)

∑
16p<q6n

q2 = 1
12(n− 1)n(n+ 1)(3n+ 2) (Σq2)

∑
16p<q6n

pq = 1
24(n− 1)n(n+ 1)(3n+ 2) (Σpq)

2
n(n−1)

∑
16p<q6n

pq = 1
12(n+ 1)(3n+ 2) (Epq)

4.4 Results & Discussion
In this chapter, we conducted a precise average case analysis of Algorithms 7

and 8 at the elementary operations level: Assuming the random permutation
model, we computed the exact expected numbers of swaps and comparisons
needed by the dual-pivot Quicksort variants to sort a random list of n distinct
elements. The results are shown in Tables 3 and 4. Plots of the total expected
numbers of comparisons and swaps are shown in Chapter 6.
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location exact expected executions asymptotics (error O(logn))

C0 2
5n− 1

10 0.4n

C1 4
5nHn −

83
50n+ 4

5Hn −
2
75 0.8n lnn− 1.198n

C2 1
2nHn −

41
40n+ 1

2Hn −
1
40 0.5n lnn− 0.736n

C3 2
5nHn −

22
25n+ 2

5Hn +
1
50 0.4n lnn− 0.649n

C4 1
5nHn −

39
100n+ 1

5Hn −
7
300 0.2n lnn− 0.275n

S0 1
5n− 1

20 0.2n

S1 3
10nHn −

127
200n+ 3

10Hn −
1
600 0.3n lnn− 0.462n

S2 1
5nHn −

39
100n+ 1

5Hn −
7
300 0.2n lnn− 0.275n

S3 1
10nHn −

49
200n+ 1

10Hn +
13
600 0.1n lnn− 0.187n

S4 = S5 2
5n− 1

10 0.4n

C =
∑

Ci 19
10nHn −

711
200n+ 19

10Hn −
31
200 1.9n lnn− 2.458n

S =
∑

Si 3
5nHn −

27
100n+ 3

5Hn −
19
75 0.6n lnn+ 0.076n

Table 3: Total expected frequencies of all swap and comparison locations for dual-
pivot Quicksort with Yaroslavskiy’s partitioning. The formul are obtained
by inserting the results from Section 4.3.3 into eq. (4.4) on page 72.
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location exact expected executions asymptotics (error O(logn))

C0 2
5n− 1

10 0.4n

C1 3
5nHn −

41
50n+ 3

5Hn −
11
50 0.6n lnn− 0.474n

C2 7
15nHn −

397
450n+ 7

15Hn −
149
900 0.46n lnn− 0.613n

C3 3
5nHn −

71
50n+ 3

5Hn +
9
50 0.6n lnn− 1.074n

C4 7
15nHn −

487
450n+ 7

15Hn +
121
900 0.46n lnn− 0.813n

S0 1
5n− 1

20 0.2n

S1 4
15nHn −

122
225n+ 4

15Hn −
23
900 0.26n lnn− 0.388n

S2 4
15nHn −

122
225n+ 4

15Hn −
23
900 0.26n lnn− 0.388n

S3 2
15nHn −

76
225n+ 2

15Hn +
41
900 0.13n lnn− 0.261n

S4 = S5 2
5n− 1

10 0.4n

C =
∑

Ci 32
15nHn −

856
225n+ 32

15Hn −
77
450 2.13n lnn− 2.573n

S =
∑

Sia 4
5nHn −

19
25n+ 4

5Hn −
21
100 0.8n lnn− 0.298n

aNote that the line corresponding to S3 contributes two swaps, so S = S0 + S1 + S2 + 2S3 +
S4 + S5.

Table 4: Total expected frequencies of all swap and comparison locations for
dual-pivot Quicksort with Sedgewick’s partitioning.
As most of the partitioning costs derived in Section 4.3.4 involve non-
linear terms, we cannot directly apply eq. (4.4) on page 72. However, by
linearity of the general solution eq. (4.2) on page 70, we can use eq. (4.4)
to determine the contribution of the linear part of partitioning costs and
then add the contribution of non-linear terms. The latter is derived directly
from eq. (4.2) — in fact it suffices to compute two contributions:
(a) pcn = [n > 3] · 1n , which yields Cn = 1

20(n+ 1).
(b) pcn = [n > 3] · 1

n(n−1) , which contributes Cn = 1
60(n+ 1).
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4.4.1 The Superiority of Yaroslavskiy’s Partitioning Method

The analysis consisted of two parts: First in Section 4.2, we solved the dual-
pivot Quicksort recurrence of expected costs for general partitioning costs. Then
we computed precise expected numbers of comparisons and swaps in the first
partitioning step of Algorithms 7 and 8 in Section 4.3. Putting both together
yields the results in Tables 3 and 4. For Algorithm 8, we can directly apply
eq. (4.4) on page 72, for the solutions in Table 4 we have to start with eq. (4.2)
on page 70.

For convenience, here are the exact coefficients of the leading n lnn-term,
again. The corresponding numbers for classic Quicksort from Section 3.3.2 on
page 33 are also given.

Comparison (n lnn+O(n)) Swaps (n lnn+O(n))

Classic Quicksort 2 0.3
Dual-Pivot Sedgewick 2.13 0.8

Dual-Pivot Yaroslavskiy 1.9 0.6

In terms of comparisons, the new dual-pivot Quicksort by Yaroslavskiy is best
for large n. However, it needs more swaps, so whether it can outperform the
classic Quicksort, depends on the relative runtime contribution of swaps and
comparisons, which in turn differ from machine to machine. In Chapter 7, I
will approach these relative contributions on the machine instruction level and
Chapter 8 looks at wall clock running times in one particular setup. Remarkably,
the new algorithm is significantly better than Sedgewick’s dual-pivot Quicksort
in both measures. Given that Algorithms 7 and 8 are based on the same algo-
rithmic idea, the considerable difference in costs is surprising. The explanation
of the superiority of Yaroslavskiy’s partitioning scheme is the major discovery
of this chapter.

4.4.1 The Superiority of Yaroslavskiy’s Partitioning Method
We proved that Yaroslavskiy’s dual-pivot Quicksort needs less comparisons
than the classic one-pivot Quicksort and as Sedgewick’s dual-pivot variant.
While the rigorous analysis was fun and all, one might easily lose the overall
picture while figuring out special contribution δ =

√
42 for comparison counter

c147 . . .
Just kidding. Seriously though, it pays to adopt a slightly more abstract

view on the results. Would you have expected Algorithm 8 to save 5 % of all
comparisons Algorithm 1 does? When I found out this difference, I immediately

105



4 Average Case Analysis of Dual-Pivot Quicksort

suspected such a pronounced effect to have an intuitive explanation, one that
can be understood without digging into every detail of the implementation.
And in fact, there is such an explanation.

However, before I explain how Yaroslavskiy’s algorithm saves comparisons
compared to classic Quicksort, let us discuss a — flawed — argument why this is
impossible.

A Wrong Lower Bound for Dual-Pivot Quicksort
Let p < q be the two pivots. For partitioning, we need to determine for every
x < {p,q} whether x < p, p < x < q or q < x holds by comparing x to p and/or q.
Assume, we first compare x to p, then averaging over all possible values for p, q
and x, there is a 1/3 chance that x < p – in which case we are done. Otherwise,
we still need to compare x and q. The expected number of comparisons for
one element is therefore 1/3 · 1+ 2/3 · 2 = 5/3. For a partitioning step with n
elements including pivots p and q, this amounts to 5/3 · (n− 2) comparisons in
expectation.

In the random permutation model, knowledge about an element y , x does
not tell us whether x < p, p < x < q or q < x holds. Hence, one could think
that any partitioning method should need at least 5/3 · (n− 2) comparisons in
expectation. . . . but this is not the case!

The argument seems quite plausible. In fact, previous work on multi-pivot
Quicksort uses 5/3n + o(n) comparisons as partitioning cost for dual-pivot
Quicksort, e. g. [Hen91] and [Tan93]. This partitioning cost yields 2n lnn+O(n)

comparisons in total — the same as classic Quicksort.
But where does the lower bound argument break down? The reason is

the independence assumption above, which only holds true for algorithms
that do comparisons at exactly one location in the code — like Algorithm 5. But
Algorithms 7 and 8 have several compare-instructions at different locations, and
how often those are reached depends on the pivots p and q. Now of course, the
number of elements smaller, between and larger than p and q, directly depends
on p and q, as well! So if a comparison is executed often if p is large, it is clever
to first check x < p there: The comparison is done more often than on average
if and only if the probability for x < p is larger than on average. Therefore,
the expected number of comparisons can drop below the “lower bound” 5/3 for
this element!

And this is exactly, where Algorithms 7 and 8 differ: Yaroslavskiy’s parti-
tioning always evaluates the “better” comparison first, whereas in Sedgewick’s
dual-pivot Quicksort this is not the case.
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4.4.2 Making Sedgewick’s Dual-Pivot Quicksort Competitive
Now that we understand how the new Quicksort saves key comparisons, we can
try to exploit our new knowledge for algorithmic improvements. In fact, there
is no inherent reason to first compare elements with q in line 8 respectively
with p in line 16 of Algorithm 7. We can simply reverse Sedgewick’s order
of comparisons to obtain a variant of Algorithm 7, which I will refer to as
Kciwegdes. In the following chapter, I put this reversal idea to practice and
analyze its impact.
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5 Kciwegdes — Sedgewick Reversed

“ The Quicksort algorithm is better understood through analysis, and the
analysis is very interesting in its own right. The many variations of
the algorithm lead to much more spectacular variations in the analysis,
and it is this combination of algorithm and analysis that makes the
study of Quicksort so fascinating. — R. Sedgewick [Sed75, page 265]

”

The analysis of Chapter 4 reveals that Sedgewick’s partitioning (Algorithm 7)
does more comparisons than necessary. In fact, the bottom line of Section 4.4.2
was that we can make Sedgewick’s partitioning method competitive by reversing
the order of comparisons in the inner loops. Algorithm 9 makes this idea
concrete. To assess the effect of the reversal, I transfer the average case analysis
of Chapter 4 to Algorithm 9.

Note that I also made the loop conditions strict before reversing the comparisons.
This decent change was suggested in Section 4.1.1 because it dramatically
improves performance in the presence of equal elements. For the analysis in
this chapter, we will assume distinct elements. For that case, the change has no
consequences at all.

5.1 Average Case Analysis
Luckily, much of the reasoning done for Algorithm 7 remains valid for Algo-
rithm 9: Lemma 4.7 and Lemma 4.8 can be directly transferred, so we can make
use of them in our analysis. Accordingly, Proposition 4.9 is available, as well.
Moreover, reversing the order in which comparisons are done does not affect
how often we swap, so all swap location frequencies are the same as for the
original version of Sedgewick’s partitioning method.

It remains to analyze the frequencies of the comparison markers. As intended,
they behave differently for Algorithm 9. Yet, their analysis is still rather similar
to the analyses done in Section 4.3.4 and we will only link to corresponding
sections there, if arguments can be transferred.
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5 Kciwegdes — Sedgewick Reversed

Algorithm 9. Dual-Pivot Quicksort with Kciwegdes Partitioning.

DualPivotQuicksortKciwegdes(A, left, right)

// Sort the array A in index range left, . . . , right.
1 if right − left >M // Skip small subfiles (M > 0 a constant)
2 i := left; i1 := left
3 j := right; j1 := right
4 p := A[left]; q := A[right]
5 c0, [s0] if p > q then Swap p and q end if
6 while true
7 i := i+ 1

8 while true
9 if i > j then break outer while end if
10 c1 if A[i] < p
11 s1 A[i1] := A[i]; i1 := i1 + 1; A[i] := A[i1]

12 c2 else if A[i] > q then break inner while end if
13 i := i+ 1

14 end while
15 j := j− 1

16 while true
17 c3 if A[j] > q
18 s2 A[j1] := A[j]; j1 := j1 − 1; A[j] := A[j1]

19 c4 else if A[j] 6 p then break inner while end if
20 if i > j then break outer while end if
21 j := j− 1

22 end while
23 s3 A[i1] := A[j]; A[j1] := A[i]

24 | i1 := i1 + 1; j1 := j1 − 1

25 | A[i] := A[i1]; A[j] := A[j1]

26 end while
27 s4 A[i1] := p

28 s5 A[j1] := q

29 DualPivotQuicksortKciwegdes(A, left , i1 − 1)
30 DualPivotQuicksortKciwegdes(A, i1 + 1, j1 − 1)
31 DualPivotQuicksortKciwegdes(A, j1 + 1, right )
32 end if
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5.1.1 Who Crosses Whom
As we will see in the analysis, Algorithm 9 behaves slightly differently depend-
ing on which of the two crossing pointers i and j moves last. By the structure
of Algorithm 9, i moves last iff we leave the outer loop via line 9. Let Φ be the
indicator variable for that event, i. e.

Φ :=

{
1 if the outer loop is left via line 9

0 if the outer loop is left via line 20

.

Lemma 5.1: Φ = 0 iff A0[χ] > q and conversely, Φ = 1 iff A0[χ] < p∨ q = n.

Proof. It follows from Lemma 4.8, that A0[χ] ∈ S ∪ L ∪ {q}. Since we assume
distinct list elements, we have A0[χ] ∈ {p,q} iff χ = n. Now if χ = n, we never
took the break-branch in line 12. This implies A0[i ] < q for i ∈ {2 , . . . , n − 1}

and thus q = n. This shows that the right hand sides “A0[χ] > q” and “A0[χ] <
p∨ q = n” of the two claimed equivalences are mutually exclusive. Thus, it
suffices to prove both claimed implications from left to right.

To this end, assume Φ = 0, i. e. the outer loop is left via line 20. To reach
this point, we must have left the first inner loop via line 12, so we had A[i] > q
there. As i has not been changed since then, i = χ and by Lemma 4.7, A0[χ] > q
follows. Additionally, as Φ = 0, j has been decremented at least once, so χ < n ,
such that A0[χ] , q. It follows A0[χ] > q, as claimed.

Now assume Φ = 1. There are two cases here: Either we have left the first
inner loop at least once — or never. In the latter case, χ = n and we already
argued above that q = n in this case. So, suppose we have executed the j-loop
at least once and consider now its last execution. This execution must have been
quit via line 19 because of “A[j] 6 p”. j has not been changed since this last
iteration and will never be changed again in this partitioning step. Hence, χ = j

and by Lemma 4.7 follows A0[χ] 6 p. As furthermore i is at least 2 , also χ > 2 ,
such that we finally find A0[χ] < p. �

Proposition 5.2: For Φ holds

E [Φ | p,q] =

{
1 if p = 1 and q = n

p−1
(p−1)+(n−q) otherwise

,

EΦ = 1
2 +

1
n(n−1) . (5.1)

Proof. Let us start with E [Φ | p,q] for the special case q = n. In this case, there
cannot possible exist an index x , such that A0[x] > q. In particular, A0[χ] 6 q,
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5 Kciwegdes — Sedgewick Reversed

so by Lemma 5.1, Φ = 1. Note that the claimed expression for E [Φ | p,q] is 1
whenever q = n, not only for p = 1.

Now assume the other case q < n. By Lemma 5.1, A0[χ] ∈ S∪ L then. As all
permutations are assumed equally likely, A0[χ] is uniformly distributed in S∪ L.
Accordingly,

Pr
[
A0[χ] < p | pivotsp,q

]
= p−1

(p−1)+(n−q) .

Finally, again by Lemma 5.1, we have E [Φ | p,q] = Pr
[
A0[χ] < p | pivotsp,q

]
.

The unconditional expected value can now be computed as usual:

EΦ = 2
n(n−1)

∑
16p<q6n

E [Φ | p,q]

= 2
n(n−1)

( ∑
26p<q6n

p−1
p−1+n−q + 1

)

= 2
n(n−1)

n∑
q=3

q−2∑
p=1

(
1− n−q

p+n−q

)
+ 2
n(n−1)

= 2
n(n−1)

n−3∑
q=0

(
(n− q− 2) − q

n−q−2∑
p=1

1
p+q

)
+ 2
n(n−1)

= 2
n(n−1)

n−3∑
q=0

(
(n− q− 2) − q(Hn−2 −Hq)

)
+ 1+1
n(n−1)

=
(ΣiHi)

2(n− 2)2 − (n− 3)(n− 2)(Hn−2 + 1) + 2
(
n−2
2

)
(Hn−2 −

1
2) + 1

n(n− 1)
+ 1
n(n−1)

=
2(n− 2)2 − 3

(
n−2
2

)
+ 1

n(n− 1)
+ 1
n(n−1) ,

Now, factorizing the numerator yields 2(n− 2)2 − 3
(
n−2
2

)
+ 1 = 1

2n(n− 1) and
we conclude with EΦ = 1

2 +
1

n(n−1) . �

5.1.2 c0 in Algorithm 9
Line 5 corresponds to c0 and is executed exactly once per partitioning step.
Hence

c0 = 1 . (5.2)

5.1.3 c1 in Algorithm 9
c1 belongs to line 10. Its frequency is quite similar to that of line 8 of Algo-
rithm 7 — however in Algorithm 9, the check for i > j precedes this comparison.
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Therefore, we have two cases: If the outer loop if left via line 9, line 10 is not
executed for the last value χ of i. On the other hand, if we leave the outer loop
from line 20, we must have left the first inner loop through line 12. Then, line 10

has been executed for i = χ. Using Φ from Section 5.1.1, we can write

c1 = |Ĩ| , where

Ĩ := {2, . . . ,χ−Φ} . (Ĩ ⊆ I)

Then, c1 = |J̃| = χ−Φ− 1 and by using Proposition 4.9 and eq. (5.1) we find

E c1 = E χ− EΦ− 1

=
(
1
2n+ 3

2 −
1
n

)
−
(
1
2 +

1
n(n−1)

)
− 1

= 1
2n− 1

n − 1
n(n−1) . (5.3)

5.1.4 c2 in Algorithm 9
Frequency c2 counts executions of line 12, which is located in the else-branch of
“A[i] < p” in line 10. In the then-branch of the same if-statement, we find line 11,
i. e. the swap corresponding to s1. Hence, c2 = c1 − s1 and by linearity of E

E c2 = E c1 − E s1

=
(5.3),(4.36)

(
1
2n− 1

n − 1
n(n−1)

)
−
(
2
9n− 5

18 −
1
3

1
n(n−1)

)
= 5
18n+ 5

18 −
1
n − 2

3
1

n(n−1) . (5.4)

5.1.5 c3 in Algorithm 9
The location corresponding to c3 in Algorithm 9 is line 17. It is executed
exactly as often as line 16 of Algorithm 7, namely for every value of j in
J = {n− 1,n− 2, . . . ,χ}. As discussed in Section 4.3.4.5, c3 = |J| and

E c3 = 1
2n− 3

2 +
1
n . (5.5)

5.1.6 c4 in Algorithm 9
Finally, for line 19 — whose frequency is c4— the same argumentation as in
Section 5.1.4 applies: After the comparison in line 17, we either do the swap in
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5 Kciwegdes — Sedgewick Reversed

line 18 or we execute line 19. Accordingly, c4 = c3 − s2.

E c4 = E c3 − E s2

=
(5.5),(4.37)

(
1
2n− 3

2 +
1
n

)
−
(
2
9n− 5

18 −
1
3

1
n(n−1)

)
= 5
18n− 11

9 + 1
n + 1

3
1

n(n−1) . (5.6)

5.2 Results & Discussion
In this chapter, we used the insight gained during the analysis of Algorithm 7 in
Chapter 4 to create the reversed version of Sedgewick’s partitioning method. The
result is shown in Algorithm 9. Moreover, to evaluate whether the modification
was an actual improvement, we performed an average case analysis in the flavor
of Chapter 4 for Algorithm 9. The results are shown in Table 5.

It is evident that in terms of elementary operations, Algorithm 9 is superior
to Algorithm 7. Actually, I find it very remarkable that such a small change in
the algorithm suffices to save one eighth of all comparisons in the average.

Looking at our situation from a broader perspective, we now have three compet-
itive algorithms:

I Classic Quicksort shines when it comes to the number of swaps.

I Dual-Pivot Quicksort with Yaroslavskiy’s partitioning method can save
some comparisons, but needs more swaps.

I Dual-Pivot Quicksort with Kciwegdes partitioning needs even more swaps
than Yaroslavskiy’s method, but it achieves yet another reduction in the
number of needed key comparisons.

Here is the updated summary table of leading term coefficients:

Comparison (n lnn+O(n)) Swaps (n lnn+O(n))

Classic Quicksort 2 0.3
Dual-Pivot Sedgewick 2.13 0.8

Dual-Pivot Yaroslavskiy 1.9 0.6
Dual-Pivot Kciwegdes 1.86 0.8
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location exact expected executions asymptotics (error O(logn))

C0 2
5n− 1

10 0.4n

C1 3
5nHn −

163
150n+ 3

5Hn −
71
300 0.6n lnn− 0.740n

C2 1
3nHn −

49
90n+ 1

3Hn −
19
90 0.3n lnn− 0.352n

C3 3
5nHn −

71
50n+ 3

5Hn +
9
50 0.6n lnn− 1.074n

C4 1
3nHn −

79
90n+ 1

3Hn +
37
180 0.3n lnn− 0.685n

S0 1
5n− 1

20 0.2n

S1 4
15nHn −

122
225n+ 4

15Hn −
23
900 0.26n lnn− 0.388n

S2 4
15nHn −

122
225n+ 4

15Hn −
23
900 0.26n lnn− 0.388n

S3 2
15nHn −

76
225n+ 2

15Hn +
41
900 0.13n lnn− 0.261n

S4 = S5 2
5n− 1

10 0.4n

C =
∑

Ci 28
15nHn −

794
225n+ 28

15Hn −
73
450 1.86n lnn− 2.451n

S =
∑

Si 4
5nHn −

19
25n+ 4

5Hn −
21
100 0.8n lnn− 0.298n

Table 5: Total expected frequencies of all swap and comparison locations for
dual-pivot Quicksort with Kciwegdes partitioning. Note that the results for
swaps are copied from Table 4.
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5 Kciwegdes — Sedgewick Reversed

This leaves us with the question, which of these algorithms to use. Counting
elementary operations cannot get us closer to the answer. Instead, it is time for
a more fine-grained cost model! This is where the journey will lead us to in
Chapter 7.
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6 Predictive Quality of the
Expectation

“ If the facts don’t fit the theory, change the facts. ”
— attributed to Albert Einstein

In Chapters 4 and 5, we obtained precise expected values for the number of
swaps and comparisons used by the considered dual-pivot Quicksort variants on
a random permutation of size n. Whereas the average complexity is Θ(n logn),
all variants have quadratic worst case inputs. This might cast doubts on the
predictive quality of the expectation: If there is a worst case which is so far away
from the expected value, how much trust can be put in the average case? The
short answer is: Quite much.

For the long answer, one should have a closer look at the distribution of
costs. The arguably simplest parameter of a distribution allowing to assess the
predictive power of the mean is the standard deviation of the distribution. Then,
Chebyshev’s inequality states that a 1− 1

k2
fraction of all inputs cause costs

of µ± k · σ where µ are the expected costs and σ is the standard deviation.
If further σ ∈ o(µ) for n → ∞, this means that the relative deviation from
the mean µ±k·σ

µ → 1 for any constant k; differently stated: For any constant
probability p and error ε, there is a n0 such that for n > n0, the probability of a
relative deviation from the mean of more than ε is less than p.

For classic Quicksort with median of k, e. g. Hennequin shows in [Hen89,
Section 4.3] that the variance of the number of comparisons and swaps is in
Θ(n2) for any constant k. In particular, this holds for k = 1 and thus for
Algorithm 1. In [Hen91, Proposition IV.8], the result for comparisons is even
generalized to Algorithm 5 with arbitrary constant s and t.

A crucial argument in Hennequin’s derivation is that the number of com-
parisons used in the first partitioning step of Algorithm 5 only depends on the
size of the input, but is stochastically independent of the list itself. Due to the
asymmetry discovered in the preceding chapters, this is not the case for our
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dual-pivot Quicksort variants. Therefore, precise analysis of variances is more
difficult for Algorithms 8 and 9 and not considered in this thesis.

However, I empirically investigated by how much actual costs deviate from
the expected value. The following series of plots shows the number of compa-
risons and swaps needed to sort the random lists generated according to the
parameters of Section 8.1.2. For every input size, 1000 random permutations are
used. The cost for sorting one of them contributes one semi-transparent gray
blob in the plot. Where many points are close to each other, their opacity adds
up, so the darkness of an area corresponds to its probability mass. The smaller
white dot inside the gray lines shows the sample mean. Finally, the continuous
line shows the expected values computed in the preceding chapters.
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It is remarkable that even for the moderate size of 1000, the sample means show
no visible deviation from the expected value. This is also reassuring in the face
of the many error-prone calculations involved in the derivation of the expected
values.

The asymmetry of the distribution of the number of comparisons is clearly
visible: Deviations above the mean are more extreme than those below it. This
fits known properties of the limiting law for classic Quicksort, e. g. [KS99].
An empirically determined plot of its density can be found e. g. in [Hen91,
Figure IV.2].

In absolute terms, all measurements remain quite close to the mean. While
it is evident in the above plots that the variance increases, it is hard to speculate
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at the order of growth. It is natural to hypothesize quadratic growth as for
Algorithm 5, i. e. linear growth for the standard deviation. To test this hypothesis,
here is a plot of the standard deviation of the samples for the different values
of n.
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Judging from this plot, linear growth is not implausible. In contrast to the
number of comparisons, much less is known about the distribution of swaps,
since their number is much more dependent on the algorithm considered.
Below, I show the same plot as above for the number of swaps. Here as well,
the standard deviation appears to grow linearly in n. The difference in variance
between classic Quicksort and the dual-pivot variants is remarkable. Note
further that Sedgewick’s and Kciwegdes partitioning use exactly the same
swaps, hence the variance points coincide, as well.
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7 Counting Primitive Instructions

“ Not everything that can be counted counts, and not everything that
counts can be counted. — attributed to Albert Einstein

”
The study of algorithms by counting the number of dominating elementary
operations — as done in Chapter 4 — is inherently limited. Here are some of the
potential problems arising from such an approach.

I First of all, we have to somehow define the elementary operations. Sometimes,
good candidates are already given by the problem definition. In fact, this
is the case for the sorting problem definition from Section 2.2. However,
it might be the case that an abstract definition does not explicitly list all
relevant operations. Or, some of the “elementary operation” turn out not
to be elementary after all, if they are not implementable in constant time.

I Analyzing the (expected) number of certain elementary operations only
helps comparing algorithms using the same operations. For example,
assume we know more about the elements we are sorting. Then, more effi-
cient, specialized sorting methods are available, e. g. distribution counting
[Knu98, Algorithm 5.2D]. This algorithm is based on different elementary op-
erations, so an analysis in the flavor of Chapter 4 does not allow comparing
it to our Quicksort variants.

I By looking only at elementary operations, we typically lose lower terms of
the runtime. For example, in Quicksort, swaps and comparisons are the
dominant operations — a linear combination of their frequency determines
the leading n lnn term of the total runtime. For moderately sized inputs,
however, the linear term in runtime yields non-negligible contributions. As
we will see below, the linear term is mostly due to overhead per partitioning
step. Only counting the overall number of swaps and comparisons does
not capture this overhead.

I Most algorithms involve several types of elementary operations. Counting
them separately often results in two algorithms to be incomparable. This is

123



7 Counting Primitive Instructions

the case with Algorithms 1 and 8: Algorithm 1 needs less swaps, but more
comparisons than Algorithm 8. Unless we somehow determine the relative
runtime contributions of all operations, we cannot rank the algorithms.

The last point is the most important shortcoming of counting abstract operations
in the author’s opinion. It severely limits the usefulness of such analyses in
choosing the best algorithm for a problem at hand.

Counting primitive instructions for an implementation on a particular ma-
chine provides a sound way to derive relative runtime contributions of elemen-
tary operations. The exact ratios certainly depend on the machine and details
of the implementation, so they only allow to compare implementations, not
abstract algorithms. Nevertheless, one should expect to find roughly similar
ratios for ‘similar’ implementations on ‘similar’ machines, such that distinct
qualitative rankings might be transferable.

Ambiguity Alarm

It should be noted for clarity that the term “relative runtime contri-
bution” of elementary operations can be understood in two rather
different ways: First, we can simply consider the computation time
it takes to execute a single occurrence of an elementary operation in
isolation. As different operations involve different computation steps,
their computation time will differ. Several executions of the same
operation type always have the same running time.

This model is somehow tacitly assumed in Chapter 4, where we
added up all frequencies for all comparison locations to get the total
number of comparisons. This total tally is only appropriate, if all
comparisons are assumed to yield the same cost contribution. For
predicting runtime, the mere number of an elementary operation
is only interesting, if we assume the rest of the program to have
negligible cost.

The second interpretation of “relative runtime contribution” is the
one adopted in this chapter. We perceive the elementary operation
locations as mere markers of certain basic blocks, and the contribution
of one elementary operation is the cost of the whole basic block in which
the operation location happens to reside. Then, different locations
for the same operation may naturally yield very different runtime
contributions.
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Section 7.4.1 uses the implementations discussed in this chapter to derive the
relative runtime impact of swaps and comparisons in our Quicksort variants.

The Devil is in the details.

There is a hidden subtlety in this second interpretation of relative run-
time contributions: It may happen that a single basic block contains
more than one elementary operation. Then, it is not clear, whom to
assign the costs of this block. In fact, Algorithm 8 contains a block
with both a swap and a comparison. We will propose and discuss a
possible solution in Section 7.4.1.

The instruction counts obtained in this chapter are additive cost models in the
sense of Section 2.5 on page 24. Hence, we can analyze the expected costs via
Knuthian analysis.

As our programs tend be somewhat lengthy, we use a trivial variation of
the methodology. We first partition the program listing into basic blocks, i. e.
maximal sequences of instructions which are always executed sequentially. By
definition, every instruction in a block is executed the same number of times as
any other instruction in the same block. Hence, we can replace a basic block by
a imaginary instruction whose cost contribution is the sum of all contributions
in the block. Then, we apply Knuthian analysis as described in Section 2.5.

When it comes to implementations of algorithms, we have to decide on which
machine the implementation is to be run. This choice is vital as it inevitably
influences how we implement an algorithm. Furthermore, the machine partially
dictates the cost model. I try to alleviate the severity of this decision by not
choosing one machine, but two machines — at the price of double effort . . .

The first machine is the “mythical computer” MMIX which Knuth uses in
his books to describe and analyze algorithms. The main advantages over real
machines is that the runtime behavior is well-defined and the architecture is free
of legacy quirks. In practice, backward-compatibility often takes precedence
over clean design. A mythical machine need not bother with that. That — and
the many well-studied programs from Knuth’s books — made this machine the
arguably canonical choice for theoretically inclined algorithm researchers.

As second platform I chose the Java Virtual Machine (JVM), which interprets
Java Bytecode. The reason for my choice is twofold. First of all, Yaroslavskiy’s
algorithm originates from and was adopted by the Java community. Thus,
it is natural to study the efficiency of an implementation in Java Bytecode.
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Second, the JVM has become one of the major software platforms over the last
decade — both for running commercial software and for teaching algorithms (e. g.
in [SW11]). Therefore, performance evaluations of Bytecode implementations
are of immediate practical interest.

By TCM
n , I denote the expected cost for sorting a random permutation of size n

in the cost model CM. Accordingly, I write TMMIX
n and T JVM

n for the costs of the
MMIX and JVM implementations, respectively.

7.1 MMIX

“ MMIX [. . .] is very much like nearly every general-purpose computer
designed since 1985, except that it is, perhaps, nicer.

— D. E. Knuth in [Knu05]

”

For the first edition of his book series “The Art of Computer Programming”,
Knuth designed a “mythical machine” called MIX. His intention was to create a
detailed model computer that can be used to study and compare implementa-
tions of algorithms. Therefore, the model should be similar to actual machines,
which MIX achieved for over 20 years with flying colors. However, the advent
of reduced instruction set computers (RISC) caused a fundamental change in
processor architectures. This moved modern computers quite far away from MIX.

Knuth realized this change very early and designed a successor for MIX
during the 1990’s. The result is called MMIX and is presented in [Knu05]. MMIX
gets rid of some intricacies20 of MIX, while retaining its likable features. Most
importantly, every instruction causes well-defined costs. The costs are expressed
in υ (“oops”) and µ (“mems”), where one υ represents one processor clock
cycle and one µ symbolizes one memory access. The cost contribution for each
instruction type can be found in Table 1 of [Knu05].

In this basic cost model, advanced pipelined execution and caching are
neglected. An exception, however, is the inclusion of static branch prediction.
Every conditional jump exists in two flavors: A standard version and a prob-
able jump version. They only differ in their prediction which outcome of the
conditional jump is to be expected: The standard branch expects not to jump,
whereas the probable branch expects the jump to happen. MMIX will prepare to
seamlessly follow the predicted route. However, if the prediction was wrong,
20“[. . . ] one couldn’t even use it with ASCII code to print lowercase letters. And ouch, its

standard subroutine calling convention was irrevocably based on self-modifying instructions!”
(from the Preface of [Knu05]).
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Listing 1. MMIX implementation of Classic Quicksort (Algorithm 1)

1 Qsort pCMP tmp,lleft,rright R if left > right terminate.
2 xPBNN tmp,9F R

3 pLDO p,A,rright A pivot p := A[right].
4 SUBU ii,lleft,8 A i := left − 1.
5 xSET jj,rright A j := right.

6 do . . .
7 1H pADDU ii,ii,8 C1 | do i := i+ 1

8 LDO Ai,A,ii C1 |
9 CMP tmp,Ai,p C1 | while A[i] < p

10 xPBN tmp,1B C1 |

11 2H pSUBU jj,jj,8 C2 | do j := j− 1

12 LDO Ai,A,jj C2 |
13 CMP tmp,Ai,p C2 | while A[j] > q
14 xPBP tmp,2B C2 |

15 pCMP tmp,jj,ii S1 +A | if j > i
16 xBNP tmp,after S1 +A | (i. e. jump away if j 6 i)

17 pSTO Ai,A,jj S1 | | Swap A[i] and A[j].
18 STO Ai,A,ii S1 | |
19 while j > i
20 xJMP 1B S1 (We checked j > i above already.)

21 after pLDO Ai,A,ii A Swap A[i] and pivot.
22 STO p,A,ii A

23 STO Ai,A,rright A

24 Recursive Calls: Rescue needed registers.
25 STO rright,sp,1*8 A (A will just stay in the register.)
26 STO return,sp,2*8 A

27 STO ii,sp,3*8 A Quicksort(A, left, i− 1)
28 left already in arg1
29 SUBU arg2,ii,8 A arg2
30 ADDU sp,sp,4*8 A Advance stackpointer.
31 GETA argRet,@+8 A Store return address.
32 xJMP Qsort A Jump back to start.

33 pSUBU sp,sp,4*8 A Pop stored registers from stack.
34 Quicksort(A, i+ 1, right)
35 LDO arg1,sp,3*8 A Restore i.
36 ADDU arg1,arg1,8 A arg1 := i+ 1.
37 LDO arg2,sp,1*8 A Restore right.
38 ADDU sp,sp,4*8 A Advance stackpointer.
39 GETA argRet,@+8 A Store return address.
40 xJMP Qsort A Jump back to start.

41 pSUBU sp,sp,4*8 A Pop stored registers from stack.
42 xLDO return,sp,2*8 A Only restore return here.

43 9H pxGO return,return,0 R Return to caller.
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these preparations need to be undone. The model accounts for that by charging
2υ to mispredicted branches.

This treatment of mispredicted branches uses context information of the
trace and hence is not a constant additive cost model (recall the definitions from
Section 2.5 on “Knuthian Analysis of Algorithms”). However, we can transform
it into one! For every branch instruction, we add an imaginary instruction / basic
block with weight 2υ ‘inside’ the edge for the mispredicted branch. This means,
the imaginary instruction is inserted into the trace after a branch instruction iff
that branch was mispredicted. The cost including branch mispredictions via
this augmented traces is then a constant additive cost model. So, we can apply
Knuthian analysis. To do so, we need to derive the frequency of the imaginary
blocks. Using Kirchhoff’s laws, we can compute the flow on all edges from
the excesses of all nodes. So, the additional effort is quite small.

7.1.1 Remarks for MMIX Implementations
As MMIX is a 64bit computer, it is natural to assume A to be the base address
of an array of n+ 1 64-bit-integer numbers. The first number is the smallest
representable integer, which we use as a sentinel. The following n numbers are
the elements to be sorted.

Although the basic unit of operation for MMIX is an 8 byte word, the unit
of main memory is addresses is single bytes. Therefore, the address of the
ith entry of the array A is found at address A + 8i. It is then more efficient to
directly store 8i instead of i for all array indices. I will indicate this by doubling
the first letter of a variable name, i. e. if the pseudocode variable is called left
and we actually store 8 · left, I will call the corresponding register lleft. I have
given all registers used in the MMIX implementations symbolic names. In the
actual MMIXAL21 programs, these symbolic names are mapped to actual register
numbers.

A nice feature of MMIX is the direct support for procedure calls using the
PUSHJ and POP instructions. However, these instructions hide some of the costs
of the call stack management22. Therefore, I decided to implement explicit stack
management manually. Register sp is the stack pointer, which always points to
the topmost element on the stack. Then pushing a word onto the stack consists
of writing it to address sp + 8 and setting sp := sp + 8. Accordingly, we can

21MMIXAL is the assembly languages for MMIX, described in [Knu05, Section 1.3.2’].
22The costs for PUSHJ and POP are υ and and 3υ respectively, i. e. both do not involve memory

accesses. However, since the number of registers is constant, but the call stack is unbounded,
we eventually need to put part of the stack into memory.
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pop the topmost word off the stack by reading it from address sp and setting
sp := sp− 8.

7.1.2 MMIX Implementation for Algorithm 1
An MMIX implementation of Algorithm 1 is given in Listing 1. Registers lleft
and rright contain left and right respectively and register A contains the base
address of array A. i and j are stored in registers ii and jj, respectively.

Basic blocks are embraced by px and for each line, its frequency is given after
the instruction. Many of the frequencies are counters of swaps and comparisons
markers, which were defined in Section 4.3.1 and whose expected values are
given in Table 1 on page 35. For the remaining ones, we determine the expected
value in Section 7.3.

Listing 1 contains four conditional jumps: The first in line 2 skips the whole
partitioning step if needed. As Section 7.3.2 will show, it is actually slightly
more probable that we skip the partitioning step, so we use the probable jump
version of the branch instruction. Accordingly, line 2 causes a mispredicted
branch for every real partitioning step, i. e. in total A mispredictions.

Similar reasoning applies to the other branch locations. lines 10 and 14 form
the back-jump of the inner loops of Algorithm 1. The inner loops are left exactly
as often as the block following the loops is executed, which is S1 +A. Finally,
line 16 terminates the outer loop, which happens exactly A times in total.

Summing the products of cost contributions and frequencies — including those
for the branch mispredictions — gives the following grand total

TMMIX
n = A(33υ+ 12µ) + R · 5υ+ (C1 + C2)(4υ+ µ) + S1(9υ+ 2µ) .

Note that the two different comparison locations contribute by the same amount
to the total cost. This is due to the symmetry of the inner loops. Therefore
it suffices to know C := C1 + C2, the total number of comparisons done by
Algorithm 1. For the number of swaps, Table 1 gives S, wherein I included
the swap in line 9 of Algorithm 1, so S = S1 + S2. The second swap is located
after the outer loop, so we simply have S2 = A. Finally, Section 7.3.2 shows that
R = 2A+ 1.

With these cosmetic simplifications, we find the expected total costs in the
MMIX cost model for sorting a random permutation by Listing 1 to be

TMMIX
n = A(43υ+ 12µ) + C(4υ+ µ) + S1(9υ+ 2µ) + 5υ . (7.1)
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7.1.3 MMIX Implementation for Algorithm 8
Listing 2 shows an MMIX implementation of Algorithm 8. Its sheer length may
seem scary at first sight, but notice that almost half of the code deals with
preparing the arguments and stack management for the recursive calls.

The swap of the pivots in line 3 of Algorithm 8 does not involve array
accesses in my MMIX implementation. Instead, I only exchange the contents of
the two registers p and q (line 7). Later, Algorithm 8 moves the pivots to their
final positions in lines 23 and 24 by two more swaps. In Listing 2, we simply
omit reading the pivots from the array and use the register contents instead.

The basic blocks and their cost contribution are shown in Table 7. Deter-
mining the frequencies of the mispredicted branches is a bit of a nuisance.
However, be assured that all frequencies can be determined by directly applying
Kirchhoff’s laws to derive the edge flows from the block frequencies. Drawing
the relevant parts of the control flow graph on a scratch paper helps a lot.

Almost all block frequencies can be described in terms of swap and com-
parison location frequencies. The single exception is the block used to evaluate
the second part of the conjunction that forms the loop condition in line 11 of
Algorithm 8. This block is executed whenever the first part of the condition
evaluates to true, so its frequency is a new quantity X. It will be discussed in
detail in Section 7.3.3.

Applying Knuthian analysis and directly using R = 3A+ 1 and S0 = 1
2A

(see Sections 7.3.1 and 7.3.2) yields the total expected cost of Listing 2 on a
random permutation of length n:

TMMIX
n = A(1292 υ+ 18µ) + C1(9υ+ µ) + C3(5υ+ µ)

+ S1(5υ+ 3µ) + S2(7υ+ 2µ) + S3(6υ+ 3µ) +X · 2υ+ 5υ .

Due to the asymmetry of Algorithm 8, different swap and comparison locations
contribute quite different costs.
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Lines Frequency Instruction Costs Mispredicted Branch Frequency

1 – 2 R 2υ 2{ 3 A

3 – 5 A 3υ+ 2µ

7 – 10 C1 4υ+ µ 10{ 11 S1 +A
11 – 14 C2 4υ+ µ 14{ 15 S1 +A
15 – 16 S1 +A 2υ 16{ 21 A

17 – 20 S1 3υ+ 2µ

21 – 32 A 11υ+ 7µ

33 – 40 A 7υ+ 2µ

41 – 42 A 2υ+ µ

43 – 43 R 3υ

Table 6: Basic Block Instruction costs for the MMIX implementation (Listing 1) of
classic Quicksort (Algorithm 1). The costs are given in terms of υ (“oops”)
and µ (“mems”). Moreover, for every conditional jump, the frequency of
the mispredicted branch is given.
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Lines Frequency Instruction Costs Mispredicted Branch Frequency

1 – 2 R 2υ 2{ 3 A

3 – 6 A 4υ+ 2µ 6{ 10 A− S0
7 – 9 S0 3υ

10 – 12 A 3υ

13 – 14 C1 +A 2υ 14{ 43 A

15 – 17 C1 3υ+ µ 17{ 18 S1
18 – 22 S1 5υ+ 3µ

23 – 24 C1 − S1 2υ 24{ 25 S2
25 – 27 C3 3υ+ µ 27{ 32 C3 −X
28 – 29 X 2υ 29{ 30 X− (C3 − S2)
30 – 31 C3 − S2 2υ

32 – 36 S2 5υ+ 2µ 36{ 37 S3
37 – 40 S3 4υ+ 3µ

41 – 42 C1 2υ

43 – 61 A 17υ+ 11µ

62 – 70 A 8υ+ 2µ

71 – 78 A 7υ+ 2µ

79 – 80 A 2υ+ µ

81 – 81 R 3υ

Table 7: Basic Block Instruction costs for the MMIX implementation (Listing 2) of
dual-pivot Quicksort with Yaroslavskiy’s partitioning (Algorithm 8). The
costs are given in terms of υ (“oops”) and µ (“mems”). Moreover, for
every conditional jump, the frequency of the mispredicted branch is given.
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Listing 2. MMIX implementation of dual pivot Quicksort with Yaroslavksiy’s
partitioning method (Algorithm 8).

1 Qsort pCMP tmp,lleft,rright R if left > right terminate.
2 xPBNN tmp,9F R

3 pLDO p,A,lleft A pivot p := A[left]
4 LDO q,A,rright A pivot q := A[right]
5 CMP tmp,p,q A if p > q
6 xBNP tmp,1F A | (Skip if p 6 q.)

7 pSET tmp,p S0 | Swap registers p and q
8 SET p,q S0 | Real swap not needed!
9 xSET q,tmp S0 |

10 1H pADDU ll,lleft,8 A ` := left + 1
11 SUBU gg,rright,8 A g := right − 1
12 xSET kk,ll A k := `

13 loop pCMP tmp,kk,gg C1 +A while k 6 g
14 xBP tmp,after C1 +A | (Break if k > g)

15 pLDO Ak,A,kk C1 |
16 CMP tmp,Ak,p C1 | if A[k] < p
17 xPBNN tmp,2F C1 | | (Skip if A[k] > p.)

18 pLDO tmp,A,ll S1 | | Swap A[`] and A[k].
19 STO Ak,A,ll S1 | |
20 STO tmp,A,kk S1 | |
21 ADDU ll,ll,8 S1 | | ` := `+ 1

22 xJMP 3F S1 | | Skip else-branch.

23 2H pCMP tmp,Ak,q C1 − S1 | else if A[k] > q
24 xPBN tmp,3F C1 − S1 | | (Skip if A[k] < q).

25 4H pLDO Ag,A,gg C3 | | while A[g] > q∧ k < g
26 CMP tmp,Ag,q C3 | | | (Break if A[g] 6 q . . .
27 xBNP tmp,5F C3 | | |

28 pCMP tmp,kk,gg X | | | . . . or if k > g).
29 xPBNN tmp,5F X | | |

30 pSUBU gg,gg,8 C3 − S2 | | | g := g− 1

31 xJMP 4B C3 − S2 | | end while

32 5H pSTO Ak,A,gg S2 | | Swap A[k] and A[g]
33 STO Ag,A,kk S2 | | (Ak, Ag now swapped!)
34 SUBU gg,gg,8 S2 | | g := g− 1

35 CMP tmp,Ag,p S2 | | if A[k] < p (Ag == A[k])
36 xPBNN tmp,3F S2 | | | (Skip if A[k] > p.)
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37 pLDO tmp,A,ll S3 | | | Swap A[k] and A[l].
38 STO tmp,A,kk S3 | | |
39 STO Ag,A,ll S3 | | |
40 xADDU ll,ll,8 S3 | | | ` := `+ 1

41 3H pADDU kk,kk,8 C1 | k := k+ 1

42 xJMP loop C1 end while

43 after pSUBU ll,ll,8 A ` := `− 1

44 ADDU gg,gg,8 A g := g+ 1

45 LDO tmp,A,ll A Swap A[left] and A[`].
46 STO tmp,A,lleft A

47 STO p,A,ll A

48 LDO tmp,A,gg A Swap A[right] and A[g].
49 STO tmp,A,rright A

50 STO q,A,gg A

51 Recursive Calls
52 STO lleft,sp,0 A Rescue registers on stack.
53 STO rright,sp,1*8 A

54 STO return,sp,2*8 A

55 STO ll,sp,3*8 A

56 STO gg,sp,4*8 A

57 Quicksort(A, left, `− 1)
58 SUBU arg2,ll,8 A

59 ADDU sp,sp,5*8 A Advance stack pointer.
60 GETA argRet,@+8 A Store return address.
61 xJMP Qsort A

62 pSUBU sp,sp,5*8 A Pop stored registers.
63 Quicksort(A, `+ 1,g− 1)
64 LDO arg1,sp,3*8 A

65 ADDU arg1,arg1,8 A

66 LDO arg2,sp,4*8 A

67 SUBU arg2,arg2,8 A

68 ADDU sp,sp,5*8 A Advance stack pointer.
69 GETA argRet,@+8 A Store return address.
70 xJMP Qsort A

71 pSUBU sp,sp,5*8 A Pop stored registers.
72 Quicksort(A,g+ 1, right)
73 LDO arg1,sp,4*8 A

74 ADDU arg1,arg1,8 A

75 LDO arg2,sp,1*8 A

76 ADDU sp,sp,5*8 A Advance stack pointer.
77 GETA argRet,@+8 A Store return address.
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78 xJMP Qsort A

79 pSUBU sp,sp,5*8 A Pop stored registers.
80 xLDO return,sp,2*8 A Restore return address.

81 9H pxGO return,return,0 R Return to caller.

7.1.4 MMIX Implementation for Algorithm 9
After having managed the 81 lines of Listing 2, the 84 lines of the MMIX imple-
mentation of Algorithm 9 in Listing 3 on page 137 should not come as a shock.
As for Listing 2, almost half of the code deals with stack management for the
recursive calls, which results in easily analyzable sequential code.

The similarities with the implementation of Algorithm 8 continue: Again,
the swap of the two pivot elements can be done entirely in registers. Only when
p and q are written back to their final positions in lines 27 and 28 of Algorithm 9

do we need the actual array write operation.
It is pleasant to see the clumsy control flow description of the inner loop in

Algorithm 9 vanish at machine code level: In pseudocode, the “while true” loop
gives the feeling of increased complexity compared to the ‘cleaner’ inner loops
of Sedgewick’s original partitioning method in Algorithm 7. In MMIX however,
both variants of the inner loops consist of an unconditional back jump and some
conditional exit branch in the body.

The basic blocks of Listing 3 are summarized in Table 8, including their
frequencies and corresponding costs. Most frequencies can be expressed in
terms of swap and comparison location frequencies, which we determined in
Section 5.1. However, the frequency of some basic blocks depends on how often
we leave the outer loop through the break inside the first inner loop. In the new
quantity Y, we count how often this happens.

As an example, take line 31 of Listing 3, corresponding to line 15 of Algo-
rithm 9. It is executed for every iteration of the outer loop if we leave through
the j-loop, which amounts to frequency S3 +A. However, if we leave the outer
loop via the i-loop, line 31 is not reached in this last iteration. So, we find
frequency S3 +A− Y in total.

Table 8 also contains the penalties for mispredicted branches. Their fre-
quencies are easily computed using Kirchhoff’s laws from the given block
frequencies. Drawing the relevant parts of the control flow graph on a scratch
paper can be handy.
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Lines Frequency Instruction Costs Mispr. Branch Frequency

1 – 2 R 2υ 2{ 3 A

3 – 6 A 4υ+ 2µ 6{ 10 A− S0
7 – 9 S0 3υ

10 – 13 A 4υ

15 – 15 S3 +A υ

17 – 18 C1 + Y 2υ 18{ 55 Y

19 – 21 C1 3υ+ µ 21{ 22 S1
22 – 26 S1 5υ+ 3µ

27 – 28 C1 − S1 2υ 28{ 31 S3 +A− Y

29 – 30 C1 − (S3 +A− Y) 2υ

31 – 31 S3 +A− Y υ

32 – 34 C3 3υ+ µ 34{ 35 S2
35 – 39 S2 5υ+ 3µ

40 – 41 C3 − S2 2υ 41{ 46 S3
42 – 43 C3 − S3 2υ 43{ 55 A− Y

44 – 45 C3 − (A− Y) − S3 2υ

46 – 54 S3 9υ+ 6µ

55 – 66 A 11υ+ 7µ

67 – 74 A 8υ+ 2µ

75 – 81 A 7υ+ 2µ

82 – 83 A 2υ+ µ

84 – 84 R 3υ

Table 8: Basic Block Instruction costs for the MMIX implementation (Listing 3) of
dual-pivot Quicksort with Kciwegdes partitioning (Algorithm 9). The costs
are given in terms of υ (“oops”) and µ (“mems”). Moreover, for every
conditional jump, the frequency of the mispredicted branch is given.

136



7.1.4 MMIX Implementation for Algorithm 9

Using R = 3A+ 1 and S0 = 1
2A and applying Knuthian analysis yields the

total expected cost of Listing 3 on a random permutation of length n:

TMMIX
n = A(1152 υ+ 14µ) + C1(9υ+ µ) + C3(9υ+ µ)

+ S1(5υ+ 3µ) + S2(5υ+ 3µ) + S3(9υ+ 6µ) + Y · 3υ+ 5υ .

Listing 3. MMIX implementation of dual pivot Quicksort with Kciwegdes

partitioning method (Algorithm 9).

1 Qsort pCMP tmp,lleft,rright R if left > right terminate
2 xPBNN tmp,9F R

3 pLDO p,A,lleft A pivot p := A[left]
4 LDO q,A,rright A pivot q := A[right]
5 CMP tmp,p,q A if p > q
6 xBNP tmp,1F A | (Skip if p 6 q.)

7 pSET tmp,p S0 | Swap registers p and q
8 SET p,q S0 | Real swap not needed!
9 xSET q,tmp S0 |

10 1H pSET ii,lleft A i := left
11 SET ii1,lleft A i1 := left
12 SET jj,rright A j := right
13 xSET jj1,rright A j1 := right

14 while true
15 loop pxADDU ii,ii,8 S3 +A | i := i+ 1

16 | while true
17 3H pCMP tmp,ii,jj C1 + Y | | if i > j
18 xBNN tmp,after C1 + Y | | | Break outer while.

19 pLDO Ai,A,ii C1 | |
20 CMP tmp,Ai,p C1 | | if A[i] < p
21 xPBNN tmp,4F C1 | | | (Skip if A[i] > p.)

22 pSTO Ai,A,ii1 S1 | | | “Hole-move swap”

23 ADDU ii1,ii1,8 S1 | | | i1 := i1 + 1

24 LDO tmp,A,ii1 S1 | | |
25 STO tmp,A,ii S1 | | |
26 xJMP 7F S1 | | | Skip else branch.

27 4H pCMP tmp,Ai,q C1 − S1 | | else if A[i] > q
28 xBNN tmp,2F C1 − S1 | | | Break inner loop.

29 7H pADDU ii,ii,8 C1 − (S3 +A− Y) | | i := i+ 1
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30 xJMP 3B C1 − (S3 +A− Y) | end while

31 2H pxSUBU jj,jj,8 S3 +A− Y | j := j− 1

32 3H pLDO Aj,A,jj C3 | while true
33 CMP tmp,Aj,q C3 | | if A[j] > q
34 xPBNP tmp,4F C3 | | | (Skip if A[j] 6 q.)

35 pSTO Aj,A,jj1 S2 | | | “Hole-move swap”

36 SUBU jj1,jj1,8 S2 | | | j1 := j1 − 1

37 LDO tmp,A,jj1 S2 | | |
38 STO tmp,A,jj S2 | | |
39 xJMP 7F S2 | | | Skip else branch.

40 4H pCMP tmp,Aj,p C3 − S2 | | else if A[j] 6 p
41 xBNP tmp,5F C3 − S2 | | | Break inner loop.

42 7H pCMP tmp,ii,jj C3 − S3 | | if i > j
43 xBNN tmp,after C3 − S3 | | | Break outer while.

44 pSUBU jj,jj,8 C3 − (A− Y) − S3 | | j := j− 1

45 xJMP 3B C3 − (A− Y) − S3 | end while

46 5H pSTO Aj,A,ii1 S3 | “Double hole move
swap”

47 STO Ai,A,jj1 S3 |
48 ADDU ii1,ii1,8 S3 | i1 := i1 + 1

49 SUBU jj1,jj1,8 S3 | j1 := j1 − 1

50 LDO tmp,A,ii1 S3 |
51 STO tmp,A,ii S3 |
52 LDO tmp,A,jj1 S3 |
53 STO tmp,A,jj S3 |
54 xJMP loop S3 end while

55 after pSTO p,A,ii1 A A[i1] := p

56 STO q,A,jj1 A A[j1] := q

57 Recursive Calls
58 STO lleft,sp,0 A Rescue registers on stack.
59 STO rright,sp,1*8 A

60 STO return,sp,2*8 A

61 STO ii1,sp,3*8 A

62 STO jj1,sp,4*8 A

63 SUBU arg2,ii1,8 A Quicksort(A, left, i1 − 1)
64 ADDU sp,sp,5*8 A Advance stack pointer.
65 GETA argRet,@+8 A Store return address.
66 xJMP Qsort A
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67 pSUBU sp,sp,5*8 A Pop stored registers.
68 LDO arg1,sp,3*8 A Quicksort(A, i1 + 1, j1 − 1)
69 ADDU arg1,arg1,8 A

70 LDO arg2,sp,4*8 A

71 SUBU arg2,arg2,8 A

72 ADDU sp,sp,5*8 A Advance stack pointer.
73 GETA argRet,@+8 A Store return address.
74 xJMP Qsort A

75 pSUBU sp,sp,5*8 A Pop stored registers.
76 LDO arg1,sp,4*8 A Quicksort(A, j1 + 1, right)
77 ADDU arg1,arg1,8 A

78 LDO arg2,sp,1*8 A

79 ADDU sp,sp,5*8 A Advance stack pointer.
80 GETA argRet,@+8 A Store return address.
81 xJMP Qsort A

82 pSUBU sp,sp,5*8 A Pop stored registers.
83 xLDO return,sp,2*8 A Restore return address.

84 9H pxGO return,return,0 R Return to caller.

7.2 Java Bytecode

“ And it was patently obvious that the internet and Java were a match
made in heaven. So that’s what we did.

— J. A. Gosling in “Java Technology: An Early History”

”

Since the release by Sun Microsystems in 1995, the Java programming language
and the associated Java Virtual Machine (JVM) have become one of the major
platforms of software industry. Arguably the most striking feature of Java
is its platform independence — encapsulated in the slogan “Write Once, Run
Everywhere”. This might have helped the Java technology to co-emerge with
the world wide web, where developing for heterogeneous systems has become
the default. The choice as main development language for the Android mobile
operating system gave Java a further boost.

At the same time, Java has also been widely accepted in academia. Textbooks
on algorithms like [SW11] use Java, as do many lectures on programming.
Moreover, Java is well-suited for research on programming languages due to its
well-defined semantics.
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Listing 4. Java implementation of classic Quicksort (Algorithm 1).

1 static void Qsort(int[] A, int left, int right) {
2 if (right > left) {
3 final int p = A[right]; // the pivot
4 int i = left - 1, j = right;
5 while (true) {
6 do ++i; while (A[i] < p);
7 do --j; while (A[j] > p);
8 if (i >= j) break;
9 final int tmp = A[i]; A[i] = A[j]; A[j] = tmp;

10 }
11 final int tmp = A[i]; A[i] = A[right]; A[right] = tmp;
12 Qsort(A, left, i - 1);
13 Qsort(A, i + 1, right);
14 }
15 }

Lines Frequency number of instructions

2 – 4 R 3

5 – 14 A 10

15 – 20 C1 6

21 – 26 C2 6

27 – 29 S1 +A 3

30 – 30 A 1

31 – 45 S1 15

46 – 65 A 20

66 – 71 A 6

72 – 72 R 1

Table 9: Basic Block Instruction costs for the Java Bytecode implementation (List-
ing 5) of classic Quicksort (Algorithm 1). The costs of a block are the
number of Bytecode instructions in it.
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7.2 Java Bytecode

Listing 5. Bytecode implementation of classic Quicksort (Algorithm 1). It was
obtained by compiling the Java implementation Listing 4 and disassembling the
result.

1 Qsort ([III)V :
2 pILOAD right R

3 ILOAD left R

4 xIF_ICMPLE L5 R

5 pALOAD A A

6 ILOAD right A

7 IALOAD A

8 ISTORE p A

9 ILOAD left A

10 ICONST_1 A

11 ISUB A

12 ISTORE i A

13 ILOAD right A

14 xISTORE j A

15 L1 pIINC i,1 C1
16 ALOAD A C1
17 ILOAD i C1
18 IALOAD C1
19 ILOAD p C1
20 xIF_ICMPLT L1 C1

21 L2 pIINC j, -1 C2
22 ALOAD A C2
23 ILOAD j C2
24 IALOAD C2
25 ILOAD p C2
26 xIF_ICMPGT L2 C2

27 pILOAD i S1 +A
28 ILOAD j S1 +A
29 xIF_ICMPLT L3 S1 +A

30 pxGOTO L4 A

31 L3 pALOAD A S1
32 ILOAD i S1
33 IALOAD S1
34 ISTORE tmp S1
35 ALOAD A S1
36 ILOAD i S1

37 ALOAD A S1
38 ILOAD j S1
39 IALOAD S1
40 IASTORE S1
41 ALOAD A S1
42 ILOAD j S1
43 ILOAD tmp S1
44 IASTORE S1
45 xGOTO L1 S1

46 L4 pALOAD A A

47 ILOAD i A

48 IALOAD A

49 ISTORE tmp A

50 ALOAD A A

51 ILOAD i A

52 ALOAD A A

53 ILOAD right A

54 IALOAD A

55 IASTORE A

56 ALOAD A A

57 ILOAD right A

58 ILOAD tmp A

59 IASTORE A

60 ALOAD A A

61 ILOAD left A

62 ILOAD i A

63 ICONST_1 A

64 ISUB A

65 xINVOKESTATIC Qsort A

66 pALOAD A A

67 ILOAD i A

68 ICONST_1 A

69 IADD A

70 ILOAD right A

71 xINVOKESTATIC Qsort A

72 L5 pxRETURN R
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Listing 6. Java implementation of dual pivot Quicksort with Yaroslavskiy’s
partitioning method (Algorithm 8).

1 static void Qsort(int[] A, int left, int right) {
2 if (right - left >= 1) {
3 if (A[left] > A[right]) {
4 final int tmp = A[left]; A[left] = A[right]; A[right] = tmp;
5 }
6 final int p = A[left]; final int q = A[right];
7 int l = left + 1, g = right - 1, k = l;
8 while (k <= g) {
9 if (A[k] < p) {

10 final int tmp = A[k]; A[k] = A[l]; A[l] = tmp;
11 ++l;
12 } else if (A[k] >= q) {
13 while (A[g] > q && k < g) --g;
14 {final int tmp = A[k]; A[k] = A[g]; A[g] = tmp;}
15 --g;
16 if (A[k] < p) {
17 final int tmp = A[k]; A[k] = A[l]; A[l] = tmp;
18 ++l;
19 }
20 }
21 ++k;
22 }
23 --l; ++g;
24 {final int tmp = A[left]; A[left] = A[l]; A[l] = tmp;}
25 {final int tmp = A[right]; A[right] = A[g]; A[g] = tmp;}
26 Qsort(A, left, l - 1);
27 Qsort(A, l + 1, g - 1);
28 Qsort(A, g + 1, right);
29 }
30 }
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Lines Frequency number of instructions

2 – 6 R 5

7 – 13 A 7

14 – 27 S0 14

28 – 45 A 18

46 – 48 C1 +A 3

49 – 53 C1 5

54 – 69 S1 16

70 – 74 C1 − S1 5

75 – 79 C3 5

80 – 82 X 3

83 – 84 C3 − S2 2

85 – 104 S2 20

105 – 119 S3 15

120 – 121 C1 2

122 – 157 A 36

158 – 165 A 8

166 – 171 A 6

172 – 172 R 1

Table 10: Basic Block Instruction costs for the Java Bytecode implementation
(Listing 7) of dual-pivot Quicksort with Yaroslavskiy’s partitioning (Algo-
rithm 8). The costs of a block are the number of Bytecode instructions
in it.
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Apart from the success of the Java programming language, the underlying
virtual machine has proven to be a stable and quite efficient platform. In more
recent years, it has been adopted as target platform for many new program-
ming languages, which shows that Java Bytecode is flexible enough to support
different programming paradigms.

As with the Java programming language, the platform’s popularity is in part
due to the good specification [LY99] of Java Bytecode and the JVM. However,
unlike for Knuth’s MMIX, no guarantee about the execution time of Bytecode
instructions is given. In fact, the portable nature of Java Bytecode renders such
global guarantees impossible. Even for a given machine, runtime predictions
are tough — especially since the introduction of just-in-time compilers into the
JVM.

However in [CHB06], Camesi et al. experimentally study the correlation
between running time and number of executed Bytecode instructions. For that,
they run a set of benchmark applications and measure runtime and number of
executed Bytecodes over time.

They report a quite reliable correlation for a fixed JVM implementation and
a fixed application, even if the just-in-time compiler of Oracle’s JVM implemen-
tation is used. This means, that the expected number of executed Bytecodes
approximates the runtime of a Java implementation of an algorithm up to a
constant factor. In particular, the relative runtime contributions of different
dominant elementary operations can be derived from that. Yet, more empirical
evidence is needed, especially with pure algorithms instead of whole software
suites to support the hypothesis.

A trivial extension of the cost model might improve the accuracy: Instead
of simply counting the number of Bytecodes, we can assign a weight to each
Bytecode instruction, approximating its runtime cost. I do not know a sensible
source of such weights and hence confine myself to noting that my analysis
trivially generalizes to weighted Bytecode counts.

7.2.1 Remarks for the Java Bytecode Implementations
A full introduction of Java Bytecode is well beyond the scope of this thesis. How-
ever, the very readable JVM specification [LY99] can be warmly recommended.
It is also available online and has an index of all Bytecode instructions. For the
reader familiar with assembly languages it might be enough to wrap up the
rough concepts. Java Bytecode is a stack-oriented language. Instructions pop
their operands from the stack and push results back onto the stack. In addition,
some instructions can access a local variable of the current procedure.
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7.2.2 Bytecode Implementation for Algorithm 1

The Bytecode programs used here were obtained from the Java source code
shown in Listings 4, 6 and 8 using Oracle’s Java compiler (javac version 1.7.0_03).

7.2.2 Bytecode Implementation for Algorithm 1
Listing 4 on page 140 shows the code for my Java implementation of classic
Quicksort. In comparison with Algorithm 1, I included a tiny optimization:
Instead of checking “j > i” twice — once before the swap and then in the loop
condition — Listing 4 only does this check once before the swap. If it fails, the
loop is quit.

The Java compiler produces Listing 5 on page 141 out of Listing 4. As
for the MMIX programs, basic blocks are embraced by px and each instruction is
accompanied by its frequency of execution. This information is also summarized
in Table 9 on page 140.

Summing over the product of block costs and frequencies gives the total
expected costs for an execution of Listing 5:

T JVM
n = 4 · R+ 40 ·A+ 6(C1 + C2) + 18 · S1 .

Using R = 2A+ 1 from Section 7.3.2, C = C1 + C2 and S1 = S −A for S reported
in Table 1 on page 35, we get the final result

T JVM
n = 48 ·A+ 6 · C + 18 · S1 + 4 .

7.2.3 Bytecode Implementation for Algorithm 8
Compiling the straight-forward Java implementation Listing 6 on page 142 of
Algorithm 8 yields the slightly lengthy Bytecode program shown in Listing 7

on the following page. Much of this length is due to the six locations S0, . . . , S5
in Listing 7, where swaps are done: To avoid method invocation overhead, the
Bytecode instructions comprising a single swap are copied six times.

Listing 7 induces the basic blocks shown in Table 10 on page 143. The
corresponding frequencies and cost contributions are also given. Summing these
up and directly using R = 3A+ 1 (see Section 7.3.2) as well as S0 = 1

2A yields

T JVM
n = 103 ·A+ 15 · C1 + 7 · C3 + 11 · S1 + 18 · S2 + 15 · S3 + 3 ·X+ 6 .

It is remarkable that the different swap and comparison locations contribute
quite different amounts to the total costs. This is a consequence of the asymmet-
ric nature of Algorithm 8.

145



7 Counting Primitive Instructions

Listing 7. Bytecode implementation of dual pivot Quicksort with Yaroslavskiy’s
partitioning method (Algorithm 8). It was obtained by compiling the Java
implementation Listing 6 and disassembling the result.

1 QSort ([III)V :
2 pILOAD right R

3 ILOAD left R

4 ISUB R

5 ICONST_1 R

6 xIF_ICMPLT L12 R

7 pALOAD A A

8 ILOAD left A

9 IALOAD A

10 ALOAD A A

11 ILOAD right A

12 IALOAD A

13 xIF_ICMPLE L1 A

14 pALOAD A S0
15 ILOAD left S0
16 IALOAD S0
17 ISTORE tmp S0
18 ALOAD A S0
19 ILOAD left S0
20 ALOAD A S0
21 ILOAD right S0
22 IALOAD S0
23 IASTORE S0
24 ALOAD A S0
25 ILOAD right S0
26 ILOAD tmp S0
27 xIASTORE S0

28 L1 pALOAD A A

29 ILOAD left A

30 IALOAD A

31 ISTORE p A

32 ALOAD A A

33 ILOAD right A

34 IALOAD A

35 ISTORE q A

36 ILOAD left A

37 ICONST_1 A

38 IADD A

39 ISTORE l A

40 ILOAD right A

41 ICONST_1 A

42 ISUB A

43 ISTORE g A

44 ILOAD l A

45 xISTORE k A

46 L2 pILOAD k C1+A
47 ILOAD g C1+A
48 xIF_ICMPGT L11 C1+A

49 pALOAD A C1
50 ILOAD k C1

51 IALOAD C1
52 ILOAD p C1
53 xIF_ICMPGE L3 C1

54 pALOAD A S1
55 ILOAD k S1
56 IALOAD S1
57 ISTORE tmp S1
58 ALOAD A S1
59 ILOAD k S1
60 ALOAD A S1
61 ILOAD l S1
62 IALOAD S1
63 IASTORE S1
64 ALOAD A S1
65 ILOAD l S1
66 ILOAD tmp S1
67 IASTORE S1
68 IINC l,1 S1
69 xGOTO L10 S1

70 L3 pALOAD A C1− S1
71 ILOAD k C1− S1
72 IALOAD C1− S1
73 ILOAD q C1− S1
74 xIF_ICMPLT L10 C1− S1

75 L4 pALOAD A C3
76 ILOAD g C3
77 IALOAD C3
78 ILOAD q C3
79 xIF_ICMPLE L9 C3

80 pILOAD k X

81 ILOAD g X

82 xIF_ICMPGE L9 X

83 pIINC g,-1 C3− S2
84 xGOTO L4 C3− S2

85 L9 pALOAD A S2
86 ILOAD k S2
87 IALOAD S2
88 ISTORE tmp S2
89 ALOAD A S2
90 ILOAD k S2
91 ALOAD A S2
92 ILOAD g S2
93 IALOAD S2
94 IASTORE S2
95 ALOAD A S2
96 ILOAD g S2
97 ILOAD tmp S2
98 IASTORE S2
99 IINC g,-1 S2
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100 ALOAD A S2
101 ILOAD k S2
102 IALOAD S2
103 ILOAD p S2
104 xIF_ICMPGE L10 S2

105 pALOAD A S3
106 ILOAD k S3
107 IALOAD S3
108 ISTORE tmp S3
109 ALOAD A S3
110 ILOAD k S3
111 ALOAD A S3
112 ILOAD l S3
113 IALOAD S3
114 IASTORE S3
115 ALOAD A S3
116 ILOAD l S3
117 ILOAD tmp S3
118 IASTORE S3
119 xIINC l,1 S3

120 L10 pIINC k,1 C1
121 xGOTO L2 C1

122 L11 pIINC l,-1 A

123 IINC g,1 A

124 ALOAD A A

125 ILOAD left A

126 IALOAD A

127 ISTORE tmp A

128 ALOAD A A

129 ILOAD left A

130 ALOAD A A

131 ILOAD l A

132 IALOAD A

133 IASTORE A

134 ALOAD A A

135 ILOAD l A

136 ILOAD tmp A

137 IASTORE A

138 ALOAD A A

139 ILOAD right A

140 IALOAD A

141 ISTORE tmp A

142 ALOAD A A

143 ILOAD right A

144 ALOAD A A

145 ILOAD g A

146 IALOAD A

147 IASTORE A

148 ALOAD A A

149 ILOAD g A

150 ILOAD tmp A

151 IASTORE A

152 ALOAD A A

153 ILOAD left A

154 ILOAD l A

155 ICONST_1 A

156 ISUB A

157 xINVOKESTATIC Qsort A

158 pALOAD A A

159 ILOAD l A

160 ICONST_1 A

161 IADD A

162 ILOAD g A

163 ICONST_1 A

164 ISUB A

165 xINVOKESTATIC Qsort A

166 pALOAD A A

167 ILOAD g A

168 ICONST_1 A

169 IADD A

170 ILOAD right A

171 xINVOKESTATIC Qsort A

172 L12 pxRETURN R

7.2.4 Bytecode Implementation for Algorithm 9
Finally, I also wrote a Java implementation of Algorithm 9. It is shown in
Listing 8 on the following page. Compiling it to Bytecode yields Listing 9

on page 150. Again, I inlined the swap instructions, such that many of the
instructions in Listing 9 are found at the swap locations S0, . . . , S5.

Listing 9 induces the basic blocks shown in Table 11 on page 149. As
usual, we sum over all these blocks and take the product of frequency and cost
contribution, directly incorporating R = 3A+ 1 and S0 = 1

2A. The total costs of
Listing 9 are

T JVM
n = 70 ·A+ 15(C1 + C3) + 9 · (S1 + S2) + 24 · S3 + 5 · Y + 4 .

147



7 Counting Primitive Instructions

Listing 8. Java implementation of dual pivot Quicksort with Kciwegdes partitioning
(Algorithm 9).

1 static void Qsort(int[] A, int left, int right) {
2 if (right - left >= 1) {
3 if (A[left] > A[right]) {
4 final int tmp = A[left]; A[left] = A[right]; A[right] = tmp;
5 }
6 final int p = A[left]; final int q = A[right];
7 int i = left, i1 = left, j = right, j1 = right;
8 outer: while (true) {
9 ++i;

10 while (true) {
11 if (i >= j) break outer;
12 if (A[i] < p) {
13 A[i1] = A[i]; ++i1; A[i] = A[i1];
14 } else if (A[i] >= q) break;
15 ++i;
16 }
17 --j;
18 while (true) {
19 if (A[j] > q) {
20 A[j1] = A[j]; --j1; A[j] = A[j1];
21 } else if (A[j] <= p) break;
22 if (i >= j) break outer;
23 --j;
24 }
25 A[i1] = A[j]; A[j1] = A[i];
26 ++i1; --j1;
27 A[i] = A[i1]; A[j] = A[j1];
28 }
29 A[i1] = p;
30 A[j1] = q;
31 Qsort(A, left, l - 1);
32 Qsort(A, l + 1, g - 1);
33 Qsort(A, g + 1, right);
34 }
35 }
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Lines Frequency Instructions

2 – 4 R 3

5 – 11 A 7

12 – 25 S0 14

26 – 41 A 16

42 – 42 S3 +A 1

43 – 45 C1 + Y 3

46 – 46 Y 1

47 – 51 C1 5

52 – 65 S1 14

66 – 70 C1 − S1 5

71 – 71 S3 +A− Y 1

72 – 73 C1 − (S3 +A− Y) 2

74 – 74 S3 +A− Y 1

75 – 79 C3 5

80 – 93 S2 14

94 – 98 C3 − S2 5

99 – 99 S3 1

100 – 102 C3 − S3 3

103 – 103 A− Y 1

104 – 105 C3 − (A− Y) − S3 2

106 – 132 S3 27

133 – 146 A 14

147 – 154 A 8

155 – 160 A 6

161 – 161 R 1

Table 11: Basic Block Instruction costs for the Java Bytecode implementation (List-
ing 9) of dual-pivot Quicksort with Kciwegdes partitioning (Algorithm 9).
The costs of a block are the number of Bytecode instructions in it.
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Listing 9. Bytecode implementation of dual pivot Quicksort with Kciwegdes

partitioning (Algorithm 9). It was obtained by compiling the Java implementation
Listing 8 and disassembling the result.

1 QSort ([III)V :
2 pILOAD right R

3 ILOAD left R

4 xIF_ICMPLE L14 R

5 pALOAD A A

6 ILOAD left A

7 IALOAD A

8 ALOAD A A

9 ILOAD right A

10 IALOAD A

11 xIF_ICMPLE L1 A

12 pALOAD A S0
13 ILOAD left S0
14 IALOAD S0
15 ISTORE tmp S0
16 ALOAD A S0
17 ILOAD left S0
18 ALOAD A S0
19 ILOAD right S0
20 IALOAD S0
21 IASTORE S0
22 ALOAD A S0
23 ILOAD right S0
24 ILOAD tmp S0
25 xIASTORE S0

26 L1 pILOAD left A

27 ISTORE i A

28 ILOAD left A

29 ISTORE i1 A

30 ILOAD right A

31 ISTORE j A

32 ILOAD right A

33 ISTORE j1 A

34 ALOAD A A

35 ILOAD left A

36 IALOAD A

37 ISTORE p A

38 ALOAD A A

39 ILOAD right A

40 IALOAD A

41 xISTORE q A

42 L2 pxIINC i,1 S3+A

43 L3 pILOAD i C1+Y
44 ILOAD j C1+Y
45 xIF_ICMPLT L4 C1+Y

46 pxGOTO L13 Y

47 L4 pALOAD A C1
48 ILOAD i C1
49 IALOAD C1

50 ILOAD p C1
51 xIF_ICMPGE L5 C1

52 pALOAD A S1
53 ILOAD i1 S1
54 ALOAD A S1
55 ILOAD i S1
56 IALOAD S1
57 IASTORE S1
58 IINC i1 1 S1
59 ALOAD A S1
60 ILOAD i S1
61 ALOAD A S1
62 ILOAD i1 S1
63 IALOAD S1
64 IASTORE S1
65 xGOTO L6 S1

66 L5 pALOAD A C1− S1
67 ILOAD i C1− S1
68 IALOAD C1− S1
69 ILOAD q C1− S1
70 xIF_ICMPLT L6 C1− S1

71 pxGOTO L7 S3+A−Y

72 L6 pIINC i,1 C1−(S3+A−Y)

73 xGOTO L3 C1−(S3+A−Y)

74 L7 pxIINC j,-1 S3+A−Y

75 L8 pALOAD A C3
76 ILOAD j C3
77 IALOAD C3
78 ILOAD q C3
79 xIF_ICMPLE L9 C3

80 pALOAD A S2
81 ILOAD j1 S2
82 ALOAD A S2
83 ILOAD j S2
84 IALOAD S2
85 IASTORE S2
86 IINC j1,-1 S2
87 ALOAD A S2
88 ILOAD j S2
89 ALOAD A S2
90 ILOAD j1 S2
91 IALOAD S2
92 IASTORE S2
93 xGOTO L10 S2

94 L9 pALOAD A C3− S2
95 ILOAD j C3− S2
96 IALOAD C3− S2
97 ILOAD p C3− S2
98 xIF_ICMPGT L10 C3− S2
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99 pxGOTO L12 S3

100 L10 pILOAD i C3− S3
101 ILOAD j C3− S3
102 xIF_ICMPLT L11 C3− S3

103 pxGOTO L13 A−Y

104 L11 pIINC j,-1 C3−(A−Y)− S3
105 xGOTO L8 C3−(A−Y)− S3

106 L12 pALOAD A S3
107 ILOAD i1 S3
108 ALOAD A S3
109 ILOAD j S3
110 IALOAD S3
111 IASTORE S3
112 ALOAD A S3
113 ILOAD j1 S3
114 ALOAD A S3
115 ILOAD i S3
116 IALOAD S3
117 IASTORE S3
118 IINC i1,1 S3
119 IINC j1,-1 S3
120 ALOAD A S3
121 ILOAD i S3
122 ALOAD A S3
123 ILOAD i1 S3
124 IALOAD S3
125 IASTORE S3
126 ALOAD A S3
127 ILOAD j S3
128 ALOAD A S3
129 ILOAD j1 S3
130 IALOAD S3

131 IASTORE S3
132 xGOTO L2 S3

133 L13 pALOAD A A

134 ILOAD i1 A

135 ILOAD p A

136 IASTORE A

137 ALOAD A A

138 ILOAD j1 A

139 ILOAD q A

140 IASTORE A

141 ALOAD A A

142 ILOAD left A

143 ILOAD i1 A

144 ICONST_1 A

145 ISUB A

146 xINVOKESTATIC Qsort A

147 pALOAD A A

148 ILOAD i1 A

149 ICONST_1 A

150 IADD A

151 ILOAD j1 A

152 ICONST_1 A

153 ISUB A

154 xINVOKESTATIC Qsort A

155 pALOAD A A

156 ILOAD j1 A

157 ICONST_1 A

158 IADD A

159 ILOAD right A

160 xINVOKESTATIC Qsort A

161 L14 pxRETURN R

7.3 Analyzing The Missing Frequencies
Thanks to the farsighted decision in Chapter 4 to compute the expected fre-
quencies separately per swap and comparison location, most of the quantities
occurring in the basic block frequencies above are already known. Tables 3

and 5 summarize the results and Table 1 gives the results for classic Quicksort.
Nevertheless, a few quantities remain to be determined, which are not directly
related with the execution frequency of any swap or comparison location.
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7.3.1 Number of Partitions
7.3.1.1 Classic Quicksort

The number of partitioning steps is analyzed e. g. in [Sed77b]. The result is
given on page 334, where it says (notation adapted)

A = 2
n+ 1

M+ 2
− 1 ,

where a specialized sorting method is used lists of size 6M (cf. Section 3.4.3).
For our Algorithm 1, we have M = 1, so

A = 2
3n− 1

3 .

7.3.1.2 Dual-Pivot Quicksort

If we set a = 0, b = 1 and d = 1 in eq. (4.3) on page 71, the partitioning costs are
pcn = [n > 2]. This is exactly the behavior for the “number of partitioning steps
per partitioning step”: For primitively sorted lists, we omit the partitioning
altogether. For the parameters above, eq. (4.4) on page 72 yields

A = 2
5(n+ 1) − 1

2 .

= 2
5n− 1

10 .

For both Algorithms 8 and 9 we can express some more frequencies in terms of
A, the number of partitioning steps: C0 = S4 = S5 = A and S0 = 1

2A.

7.3.2 Number of Recursive Calls
All considered Quicksort algorithms skip the partitioning step for lists of length
6 1— such lists are trivially sorted, anyway. Yet, we invoke the corresponding
recursive call, which causes some overhead. In the implementations consid-
ered here, some basic blocks are executed for every recursive call, even if the
partitioning step is omitted. Their frequency is R.

There is a simple argument to express R in terms of A, the number of ‘real’
partitioning steps: For classic one-pivot Quicksort, every partitioning step causes
two additional recursive calls. Moreover, there is one additional call — namely
the initial call which started the whole sorting process. Hence, R = 2A+ 1. For
dual-pivot Quicksort, each partitioning step invokes three recursive calls, so we
get R = 3A+ 1.
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7.3.3 X in Algorithm 8
In the implementations of Algorithm 8, we get one basic block whose frequency
is not directly expressible in terms of swap and comparison markers. It results
from the loop condition in line 11 of Algorithm 8, which is the conjunction of
A[g] > q and k < g. I decided to implement the check as non-strict conjunction:
If the first operand evaluates to false, the second is not evaluated at all.

In Java, the &&-operator has exactly these semantics, so the loop condition
becomes A[g] > q && k < g there (line 13 of Listing 6). The Java compiler
translated that to the Bytecode instructions starting at line 75 of Listing 7. I used
the same scheme in the MMIX implementation, as well (line 25 of Listing 2).

In both cases, there is a basic block with unknown frequency X, which
evaluates the second part of the loop condition — but only if the first part was
true. The loop body is executed C3 − S2 times, so X = C3 − S2 +X ′, where X ′ is
the number of times the loop is left because of k ≮ g, i. e. k > g.

The expected costs for the whole sorting process depend linearly on the
expected costs for the first partitioning step, see eq. (4.2). Hence, it suffices to
determine the expected contribution to X ′ in the first partitioning step. Let us
call this contribution x ′, i. e. x ′ is the expected number of times we leave the
inner loop because of k > g in the first partitioning step.

Leaving the inner loop at line 11 because of the second condition was the
key to the proof of Lemma 4.3 on page 83 and indeed, the same arguments will
help here, as well. The reader is gently advised to recall Lemma 4.3 and its
proof, if the following revision appears sketchy.

During one partitioning step, k only increases and stops with k = g+ 1+ δ,
where δ ∈ {0, 1}. This holds at the end of the outer loop — for the inner loop at
line 11, this means that, at any time, k 6 g. Accordingly, we can leave this loop
at most once because of k > g (per partitioning step). Moreover, if δ = 0, we
always have k < g at line 11.

So, we only get contributions to x ′ for δ = 1. Now, Lemma 4.3 says that
δ = 1 if and only if A[q] > q. As we have g = q for the last execution of the
inner loop, we must leave it via k > g, as A[g] = Q[q] > q. Consequently, we
have x ′ = 1 in this case. Incorporating the case δ = 0, we finally find

x ′ = δ .

Using eq. (4.4), we find X ′ = 1
10n− 1

15 and finally

X = C3 − S2 +X ′

= 1
5(n+ 1)Hn+1 −

39
100(n+ 1) + 1

6 .
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7.3.4 Y in Algorithm 9
The implementations of Algorithm 9 induce a new quantity Y, which counts how
often we leave the outer loop through the break inside the first inner loop. More
precisely, Y is the expected number of partitioning steps, where the condition in
line 9 of Algorithm 9 is eventually true.

Using the definitions of Section 5.1.1 on page 111, the contribution of the first
partitioning step to the overall value of Y is exactly Φ, whose expected value is
given in eq. (5.1): EΦ = 1

2 +
1

n(n−1) for n > 2. Using pcn := [n > 2] ·EΦ in the
closed form eq. (4.2) on page 70 of the recurrence relation, gives the expectation
of Y

Y = 4
15n+ 1

60 .

7.4 Results & Discussion
The exact expected costs for the MMIX and Java Bytecode implementations are
given in Table 12. The overall results are quite clear and the same for both MMIX
and JVM implementations: Classic Quicksort uses by far the least number of
instructions for sorting large random permutations. Among the two dual-pivot
Quicksort variants, Yaroslavskiy’s partitioning is slightly better, at least for
large n. However, the two are rather close.

Let us make this more quantitative. First, I consider the number of executed
Bytecodes. Here in fact, Classic Quicksort is strictly better than both dual-pivot
variants for n > 13. Among the two dual-pivot Quicksorts, Yaroslavskiy’s
partitioning is more efficient for large n: For n 6 n0 := 1535, Listing 9 causes
less Bytecode instructions, for n > n0, Listing 7 is better.

The MMIX costs cannot be compared directly, as they are two-dimensional.
However, under the plausible assumption that µ = α ·υ for some constant α > 0,
we can rank the costs. For reasonable values of α ∈ [0, 100], we find Algorithm 9

is surprisingly fastest for very small n. The turnover occurs between 29 and
35 depending on α. Then, for medium sized lists, Algorithm 8 is fastest. The
turnover point n∗ grows very fast with α. For n > n∗, Algorithm 1 is again the
fastest. Here are some numerically computed values for n∗

α 0 1 1.5 2 2.5 3 4 5 10 20

n∗ 225 501 719 1009 1388 1877 3272 5400 36729 339 086

The bottom line is that under the detailed cost model of counting primitive
instructions, the savings in terms of comparisons — which both dual-pivot
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Implementation Tn with symbolic frequencies

MMIX Classic
Quicksort

(43υ+ 12µ)A+ (4υ+ µ)C + (9υ+ 2µ)S1 + 5υ

MMIX Dual-Pivot
Yaroslavskiy

(1292 υ+ 18µ)A+ (9υ+ µ)C1 + (5υ+ µ)C3
+ (5υ+ 3µ)S1 + (7υ+ 2µ)S2 + (6υ+ 3µ)S3 + 2υ ·X+ 5υ

MMIX Dual-Pivot
Kciwegdes

(1152 υ+ 14µ)A+ (9υ+ µ)(C1 + C3)
+ (5υ+ 3µ)(S1 + S2) + (9υ+ 6µ)S3 + 3υ · Y + 5υ

Bytecode Classic
Quicksort

48 ·A+ 6 · C + 18 · S1 + 4

Bytecode Dual-Pivot
Yaroslavskiy

103 ·A+ 15 · C1 + 7 · C3 + 11 · S1 + 18 · S2 + 15 · S3 + 3 ·X+ 6

Bytecode Dual-Pivot
Kciwegdes

70 ·A+ 15(C1 + C3) + 9 · (S1 + S2) + 24 · S3 + 5 · Y + 4

Implementation Tn with inserted frequencies (valid for n > 4)

MMIX Classic
Quicksort

(11υ+ 2.6µ)(n+ 1)Hn + (11υ+ 3.7µ)n+ (−11.5υ− 4.5µ)

MMIX Dual-Pivot
Yaroslavskiy

(13.1υ+ 2.8µ)(n+ 1)Hn + (−1.695υ+ 1.24µ)n
+ (−1.6783υ− 1.793µ)

MMIX Dual-Pivot
Kciwegdes

(14.6υ+ 3.6µ)(n+ 1)Hn + (−7.2υ+−2.186µ)n
+ (−1.05υ+−1.336µ)

Bytecode Classic
Quicksort

18(n+ 1)Hn + 2n− 15

Bytecode Dual-Pivot
Yaroslavskiy

23.8(n+ 1)Hn − 8.71n− 4.743

Bytecode Dual-Pivot
Kciwegdes

26(n+ 1)Hn − 26.13n− 3.13

Table 12: Total expected costs of the Quicksort implementations for MMIX and
JVM. The upper table lists the cost where the block frequencies are still
given symbolically. In the lower table, I inserted the expected values
for the frequencies from Tables 1 and 3 and Section 7.3. For better
comparability, I use (repeating) decimal representations. I would like to
stress that all results are exact, not rounded.
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Quicksort variants achieve — is outweighed by the many additional swaps they
incur. Of course, this picture might totally change, if the sorting keys are no
longer plain integers. For example, if every key comparison has to compare
two strings lexicographically, it might be worthwhile to save some of these
comparisons at the cost of more swaps.
In order to estimate the impact of such a change, we can try to squeeze out some
information about how the two elementary operations of Quicksort — swaps and
comparisons — contribute to the overall cost of an execution. The next section
pursues this goal and reveals some of the differences of the implementations in
passing.

7.4.1 Distributing Costs to Elementary Operations
The goal of this section is to ‘distribute’ the total costs obtained for the various
implementations to the different elementary operations considered in Chapter 4.
This might help to understand differences between algorithms and identify
potential bottlenecks.

7.4.1.1 Relative Runtime Contributions in Algorithm 1

For the MMIX implementation of classic Quicksort, each comparison contributes
cost(C) = 4υ+ µ to the total costs on average, whereas a swap costs cost(S) =
9υ+ 2µ. Assuming a fixed ratio between the cost units, i. e. µ = α · υ for some
α > 0, we get for the relative cost

cost(S)
cost(C)

=
9+ 2α

4+α
∈ [2, 2.25] for any α > 0 .

So, for this implementation, swaps are a little bit more expensive than two com-
parisons. Recall from Table 1 on page 35 that classic Quicksort asymptotically
does 6 times as many comparisons as swaps. This indicates that we can make
classic Quicksort significantly better if we can save some comparisons.

For the Java Bytecode implementation, we have cost(C) = 6 and cost(S) = 18,
hence

cost(S)
cost(C)

= 3 .

Here, swaps are, relatively speaking, slightly more expensive than in MMIX, but
still the main bottleneck is formed by comparisons.
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7.4.1.2 Relative Runtime Contributions in Algorithm 8

The asymmetry of Algorithm 8 leads to different cost contributions for different
swap and comparison locations. As a consequence, we can only compare
expected cost contributions of swaps and comparisons. The different locations
are not reached equally often, and the relative proportions depend on n. For
the sake of simplicity, I confine myself to the limiting case n→∞, i. e. I weigh
a location’s contribution by the asymptotic proportion of the frequency of this
location among the total number of operations. More formally, I compute
limn→∞ Ci

C respectively limn→∞ Si
S from the frequencies in Table 3:

C0 C1 C2 C3 C4
0 8/19 5/19 4/19 2/19

S0 S1 S2 S3 S4 S5
0 1/2 1/3 1/6 0 0

Now we need the cost contributions of all locations with weight > 0. For MMIX,
we find

cost(C1) = 7υ+ µ, cost(C2) = 2υ, cost(C3) = 5υ+ µ, cost(C4) = 7υ+ 2µ,

cost(S1) = 7υ+ 3µ, cost(S2) = 7υ+ 2µ, cost(S3) = 6υ+ 3µ .

All terms for the swaps and the last one for comparisons contain the branch
misprediction penalty of 2υ. Similarly, Listing 7 gives the following Bytecode
contributions

cost(C1) = 10, cost(C2) = 5, cost(C3) = 7, cost(C4) = 20,

cost(S1) = 16, cost(S2) = 20, cost(S3) = 15 .

For classic Quicksort, we had the fortunate situation that every basic block
contained at most either a comparison or a swap. Therefore, we had no trouble
distributing blocks to either swaps or comparisons. In Algorithm 8, however,
swaps and comparisons appear together: The swap in line 12 and the comparison
in line 14 fall into the same basic block. This implies that C4 = S2— as already
noticed in Section 4.3.3.9 — and hence cost(C4) = cost(S2).

How to deal with that? Should we simply attribute the cost contribution
to both swaps and comparisons? Rather not, since we would count the corre-
sponding block twice, then. In fact, there seems to be no ultimately satisfying
solution for this. The cleanest solution I could find is to introduce a new chimera
elementary operation: The dreaded swapcomp, which first swaps two elements
and then does a comparison on one of them. Hence, the block where both a
comparison and a swap happens, is neither assigned to the swaps nor to the
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comparisons, but rather to this new kind of elementary operation. I write
SC = C4 = S2 for the frequency of the corresponding block.

For the MMIX implementation, we then find the following average contribu-
tions for swaps, comparisons and swapcomps:

cost(C) = lim
n→∞ C1cost(C1) + C2cost(C2) + C3cost(C3)

C1 + C2 + C3
= 8
17(7υ+ µ) +

5
17 · 2υ+

4
17(5υ+ µ)

= 86
17υ+

12
17µ ≈ 5.06υ+ 0.71µ

cost(S) = lim
n→∞ S1cost(S1) + S3cost(S3)

S1 + S3
= 3
4(7υ+ 3µ) +

1
4(6υ+ 3µ)

= 27
4 υ+ 3µ ≈ 6.75υ+ 3µ

cost(SC) = 7υ+ 2µ .

Similarly, one computes the contributions in the JVM cost model

cost(C) = 8
17 · 10+

5
17 · 5+

4
17 · 7

= 133
17 ≈ 7.82

cost(S) = 3
4 · 16+

1
4 · 15

= 63
4 ≈ 15.75

cost(SC) = 20 .

The picture is remarkably less clear than for classic Quicksort. Swaps are still
distinctly more expensive. For the MMIX implementation, the difference in υs
is rather small, but swaps need much more µs. Note in particular that we use
less than one memory access per comparison in expectation, which is due to
clever caching of array elements in registers. By exploiting the same trick, the
swapcomp costs roughly as much as a half comparison plus a half swap.

The Bytecode implementation cannot use registers to store array accesses.
Therefore, a swap typically has to load all elements from memory.23 Hence, a
single swap already amounts to 14 Bytecodes. The remaining ones are overhead
like pointer increments and control flow instructions. Thus, it comes at no
surprise, that the ratio of swap costs vs. comparison costs is higher than for
MMIX, unless MMIX runtime is dominated by memory accesses.
23We might use local variables to cache array elements. However, in Bytecode, we would also

need to push the contents of local variables on the stack before we can work with them.
So, even if both array elements already reside in local variables, 8 Bytecode instructions are
needed for the swap.
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7.4.1.3 Relative Runtime Contributions in Algorithm 9

Even though Algorithm 9 is much more symmetric than Algorithm 8, there
still are ‘inner’ and ‘outer’ locations, which contribute different amounts of
costs. As above, I will weight the different locations by their asymptotic relative
frequencies limn→∞ Ci

C respectively limn→∞ Si
S .

C0 C1 C2 C3 C4
0 9/28 5/28 9/28 5/28

S0 S1 S2 S3 S4 S5
0 2/5 2/5 1/5 0 0

Note that S3 corresponds to two swaps. Since we are looking for the expected
cost contribution of a single randomly selected swap, its relative weight in the
average has to be doubled and its cost halved.

For the MMIX cost contributions from Listing 3, we find

cost(C1) = cost(C3) = 9υ+ µ, cost(C2) = cost(C4) = 2υ

cost(S1) = cost(S2) = 7υ+ 3µ, cost(S3) = 13υ+ 6µ .

The terms for the swaps contain branch misprediction penalties of 2υ. Luckily,
each basic block contains either a comparison or a swap — or neither of them,
so we can unambiguously assign cost contributions. Together, we obtain

cost(C) = lim
n→∞ C1cost(C1) + C2cost(C2) + C3cost(C3) + C4cost(C4)

C1 + C2 + C3 + C4
= ( 928 +

9
28)(9υ+ µ) + ( 528 +

5
28)(2υ)

= 73
14υ+

9
14µ ≈ 5.21υ+ 0.64µ

cost(S) = lim
n→∞ S1cost(S1) + S2cost(S2) + 2S3

cost(S3)
2

S1 + S2 + 2S3

= (13 +
1
3)(7υ+ 3µ) +

1
3

13υ+ 6µ

2

= 41
6 υ+ 3µ ≈ 6.83υ+ 3µ .

Similarly, Listing 9 gives the following Bytecode contributions

cost(C1) = cost(C3) = 10, cost(C2) = cost(C4) = 5

cost(S1) = cost(S2) = 14, cost(S3) = 27 .
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From those, we again compute the average cost contributions

cost(C) = lim
n→∞ C1cost(C1) + C2cost(C2) + C3cost(C3) + C4cost(C4)

C1 + C2 + C3 + C4
= ( 928 +

9
28)(10) + ( 528 +

5
28)(5)

= 115
14 ≈ 8.21

cost(S) = lim
n→∞ S1cost(S1) + S2cost(S2) + 2S3

cost(S3)
2

S1 + S2 + 2S3

= (13 +
1
3)(14) +

1
3

27

2

= 83
3 ≈ 13.83 .

As for Algorithm 8, the MMIX implementation behaves differently in the two cost
dimensions: The difference in υs is rather small, whereas swaps need much
more µs. As explained in the last section, this is partly due to caching of array
elements.

For the JVM implementation, one swap costs as much as 581
345 ≈ 1.68 compari-

sons. This ratio is much smaller than for both Algorithms 1 and 8. In fact, the
“hole-move” type swaps used in Algorithm 9 do not require temporary storage,
which allows a swap to be done in 12 Bytecodes. This low ratio explains, why
Listing 9 remains rather competitive despite the many extra swaps it needs.
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“ A man with a watch knows what time it is. A man with two watches
is never sure. — Segal’s Law

”
Chapters 4 and 5 showed that the dual-pivot Quicksort variants save key compa-
risons, but need more swaps. In Chapter 7, we determined the expected number
of primitive instructions performed by implementations of the algorithms on
two machines — with the result that on those machines, swaps are so expensive
that they outweigh the savings in comparisons.

This rises the question, whether dual-pivot Quicksort is competitive on real
machines, if we consider actual running time. After all, Yaroslavskiy’s dual-pivot
Quicksort was chosen as standard sorting method for Oracle’s Java 7 runtime
library based on such runtime tests!

Those tests were based on an optimized implementation intended for pro-
duction use. For example, the original code in the runtime library selects the
tertiles of five elements as pivots. Such additional variations might have distorted
the results of those runtime studies. To eliminate such secondary influences,
this chapter presents a runtime study directly based on Algorithms 1, 8 and 9.

The particular optimization of pivot sampling is investigated in Chapter 9.
There, we will show that in terms of the number of primitive instructions,
selecting the tertiles of five elements is not as helpful for Algorithm 8 as one
might think at first sight. In fact, a slight variation of the pivot sampling
scheme improves the expected number of instructions by more than 3 % without
any additional costs. This shows that one can very easily fall for premature
optimization when applying variations of Quicksort. This is another important
reason for studying the runtime of the basic algorithms in isolation.

8.1 Setup for the Experiments
Here I describe as briefly as possible, yet hopefully sufficiently completely, my
setup for the runtime study.
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8.1.1 Machine & Software
I used straight-forward implementations of Algorithms 1, 7, 8 and 9 in Java
and C++. The Java programs were compiled using javac version 1.7.0_03 from
the Oracle Java Development Kit and run on the HotSpot 64-bit Server VM,
version 1.7.0_03. For C++, I used the GNU C++ compiler g++ version 4.4.5 with
optimization level 3 (-O3).

To keep the effort reasonable, I confine myself to one test machine, even
though influences of different processors, operating systems etc. would be
interesting to investigate. The computer has an Intel Core i7 920 processor with
four cores with hyperthreading, running at 2.67GHz. This processor has 8MB of
shared on-die L3 cache. The system has 6GB of main memory. The operating
system is Ubuntu 10.10 with Linux 2.6.35-32-generic kernel. Whilst running the
simulations, graphical user interface was completely disabled to have as little
background services running as possible.

8.1.2 Input Generation
I created a test bed of random permutations once and run all algorithms on
these same inputs. This “common random number” method was suggested in
[McG92] as a variance reduction technique. The lists were created as follows:
For every input size n ∈ sizes, with

sizes :=
{
101, 102, 103, 104, 105, 2.5 · 105, 5 · 105, 7.5 · 105,
106, 1.25 · 106, 1.5 · 106, 1.75 · 106, 2 · 106

}
,

I created 1000 random permutations by the following folklore algorithm, shown
here as Java code.

1 int[] A = new int[len];
2 for (int i = 1; i <= len; ++i)
3 A[i - 1] = i;
4 for (int i = len - 1; i > 1; --i)
5 swap(A, i - 1, random.nextInt(i));

If random.nextInt(i) provides perfectly random uniformly distributed integers
in [0..i− 1], the above code creates every permutation of [1..len] with the same
probability. As real random numbers are not available or at least too expensive,
I used the Mersenne twister pseudo random number generator proposed in
[MN98]. The used Java implementation is due to Luke and available from
http://cs.gmu.edu/~sean/research/.
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8.1.3 Runtime Measurement Methodology
Measuring running times of programs is a nuisance. In principle, one only
needs to record time before and after a run, then the difference is the running
time. However, the devil is in the detail. The first question is the notion of time.
We have wall clock time — the actual time period passed according to the clock
attached to you office wall — versus processor time, the time that the processor
actually spent executing your program. I measure processor time to alleviate
disturbances by other programs.

The next task is to find processor timers that offer sufficient resolution and
accuracy. Sorting a single list for the considered sizes takes between a few
and a few hundred milliseconds. For C++, I used the Linux runtime library,
specifically the function clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &res);
from sys/time.h. On the test machine, its claims to have nanosecond accuracy,
which sounds very optimistic. It reported reasonable time spans in a small test.

For Java, I could not find a suitable processor timer with high accuracy.
However, the function ManagementFactory.getThreadMXBean().getThreadCpu-
Time(threadId) can give the processor time of a given thread with 10 ms accu-
racy. So, I repeat every single sorting process until it takes some seconds to run
in total in a new thread. Then, the above function is called for this new thread.
For time spans of a few seconds, 10 ms accuracy provides measurements with
±1 % error, which is acceptable. The total time is then divided by the number of
repetitions. This increases the overall time for simulations, but provides reliable
measurements.

I conducted some experiments to assess the quality of both methods of runtime
measurements. To this end, I ran the same algorithm on the same input many
times and recorded every single running time. In a perfect environment, every
such run should take exactly the same time and the variance should be zero.
The actual result is then somewhat disillusioning: A spread of about ±2 % was
observed repeatedly. Moreover, a typical measurement contains a few outliers
that took much more time than the rest. Presumably those outliers are due to
interferences of task switches and interrupts by other processes.

This liability of runtime measurements to noise should be taken into account
when interpreting experimental results. For example, the actual variance in
runtimes due to different lists of the same size is most probably buried by
measurement noise. However, the sample mean provides a usable estimate of
the actual expected runtime.
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8.2 Runtime Comparison
Using the setup described in the last section, I conducted my runtime study of
all considered sorting methods on three different runtime platforms24:

I Java
The Oracle HotSpot 64-bit Server VM with just-in-time Bytecode compiler.

I C++
C++ implementation compiled to native binary using g++ -O3.

I Java -Xint
The Oracle HotSpot 64-bit Server VM in pure interpretive mode, i. e. with
just-in-time Bytecode compiler disabled. This is achieved by java -Xint.
Interpretive mode of modern JVMs is typically one order of magnitude
slower than just-in-time compiled code. Therefore, it is no longer used
in production systems. I nevertheless included it here, as this runtime
platform is the closest we can get to the runtime model of counting executed
Bytecode instructions. As interpretive mode is much slower, only 100

instead of 1000 inputs per size were used.

In addition to implementations of Algorithms 1, 7, 8 and 9, I also report running
times for the sorting method of the corresponding programming library. For Java,
this is a tuned variant of Algorithm 8, whereas the Standard Template Library
of C++ ships an implementation of Introsort. Introsort is a decently modified
Quicksort with median of three, which falls back to Heapsort whenever the
recursion depth of a sublist exceeds 2 log2 n. Thereby it eliminates the quadratic
worst case. Introsort was proposed in [Mus97].

The resulting running times are shown in Figures 5, 6 and 7. Each of these
figures contains two plots, one comparing the absolute runtime and one with
normalized times. The first is suitable to get an overall view of the differences
in running time and also allows to directly compare implementations of the
same algorithm on different runtime platforms. The normalized plot clearly
conveys the relative ranking of the algorithms on a given runtime platform. The
three smallest sizes n ∈ {10, 100, 1000} are omitted in the plots, as they would be
placed above each other.

24“Runtime platform” might not be the best umbrella term for these three settings. Improve-
ments are welcome.
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Figure 5: Comparison of the actual runtime for the Java implementation of our
Quicksort variants. Also included is the sorting method Oracle ships in
the Java 7 runtime library, abbreviated as “Java 7 Lib”. The upper plot
shows absolute runtimes, the lower plot the same data, but normalized
through division by n lnn. Both plot contain error bars that indicate one
standard deviation.
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Figure 6: Comparison of the actual runtime for the C++ implementation of our
Quicksort variants. Also included is “STL introsort”, the sorting method
from the algorithms part of the Standard Template Library. The upper plot
shows absolute runtimes, the lower plot the same data, but normalized
through division by n lnn. Both plot contain error bars that indicate one
standard deviation.
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Figure 7: Comparison of the actual runtime for the Java implementation of our
Quicksort variants, run in interpretive mode. The upper plot shows
absolute runtimes, the lower plot the same data, but normalized through
division by n lnn. Both plot contain error bars that indicate one standard
deviation. For interpretive mode, only 100 inputs per size were used.
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The overall results are astonishing: Except for the highly tuned runtime library
versions, dual-pivot Quicksort with Yaroslavskiy’s partitioning is the fastest by
far of all considered Quicksort variants in both the Java and C++ implementation!
This observation clearly conflicts with the result in Table 12 on page 155, where
we found that classic Quicksort incurs by far less costs in both machine cost
measures TMMIX

n and T JVM
n . The implication is that even the detailed instruction

counting model from Chapter 7 seems to miss some relevant aspect regarding
the runtime behavior of Algorithm 8.

Furthermore, we notice that the plain version and the runtime library imple-
mentation of Algorithm 8 perform almost equally well. This suggests that the
modifications Algorithm 8 has undergone while becoming part of the runtime
library have hardly measurable influence on the efficiency for sorting random
permutations.

In light of the ongoing disput whether Java can be as efficient as C++, it is
interesting to compare the absolute runtimes of the algorithms. The C++ versions
of Algorithms 8 and 1 are 6 % respectively 10 % faster than the corresponding
Java implementations, which is a rather small difference. For Algorithms 7

and 9, the Java versions need 50 % more time. One might suspect that the C++
compiler found a good optimization, which the just-in-time compiler of the JVM
missed.

Finally, I included Java -Xint in the hope that its runtimes resemble the
results for T JVM

n from Chapter 7. Indeed, Algorithm 1 — which needs by far
the least number of Bytecode instructions — is the fastest of the considered
algorithms on this runtime platform. For the other algorithms, the results
are somewhat peculiar: Algorithm 8 is the worst of all, whereas Algorithm 7

surprisingly comes second place. It seems that the model of counting executed
Bytecode instructions is too coarse even for Java in interpretive mode.

For the C++ implementations, the high accuracy timer allows to measure single
sorting runs. Hence, the noise in measurement gets reduced as n grows. This is
clearly visible in the normalized plot of Figure 6. For the Java implementations,
the low accuracy of available timers forced me to repeat sorting of a single list
anyway. As I used more repetitions for short lists there, noise is equally low for
all n.

Tables 13, 14 and 15 (starting on page 170) show the raw data underlying
Figures 5, 6 and 7.
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8.3 Discussion

8.3 Discussion
In this chapter, I conducted a runtime study of all Quicksort variants consid-
ered in this thesis. Despite incurring higher cost than classic Quicksort in
the primitive instruction cost model of Chapter 7, dual-pivot Quicksort with
Yaroslavskiy’s partitioning method was the fastest sorting method. This con-
firms the results of earlier runtime tests for tuned variants of the algorithms.

Even though I studied rather detailed cost models in this thesis, the analysis
seems still to be too coarse to explain the success of Yaroslavskiy’s algorithm.
This calls for further investigation. Maybe one has to include some more aspects
of modern processors, like caching or pipelining.
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9 Pivot Sampling

“ See first, think later, then test. But always see first. Otherwise you
will only see what you were expecting. — Douglas Adams

”
In the preceding chapters, we have analyzed several dual-pivot Quicksorts in
great detail. The goal there was to understand the differences in performance
of the basic partitioning methods — not to come up with an “ultimate Quicksort”.
However, one might object that it is somewhat quixotic to ignore tricks that
have been successfully used to speed up the basic algorithm for decades. As we
will see in this chapter, it pays to first analyze the basic methods, though: Well-
understood improvements of classic Quicksort need not apply in the same way
to dual-pivot variants and only a separate study reveals such interdependencies.

In this chapter, we consider the arguably most successful variation of
Quicksort: pivot sampling. Section 3.4.1 gave an overview of proposed se-
lection strategies and cited analyses thereof. It is particularly noteworthy that
even with the simplest of those, median of three, classic Quicksort needs only
1.714285n lnn+O(n) comparisons to sort a random permutation of size n [SF96,
Theorem 3.5]. This is significantly less than the corresponding expected numbers
for both Algorithms 8 and 9, so it will be interesting to see whether dual-pivot
Quicksort can compete with that.

For dual-pivot Quicksort, we have to choose two pivots — big surprise. The
natural generalization of choosing the single median of k is then to choose the
two tertiles of k, i. e. the two elements such that there is the same number of
elements smaller, between and larger than the pivots. However in this chapter,
I consider a more general pivot selection scheme, which allows arbitrary order
statistics of a fixed size sample. It contains the “tertiles of k” as special case.

The pivot selection scheme is characterized by the non-negative integer
constants k, t1, t2 and t3 with k = t1+ t2+ t3+ 2.25 In each partitioning step, we
choose a sample of k elements from the list. Let s1 < s2 < · · · < sk be the sample
25Of course, we can always express one of the parameter via the other, e. g. once k, t1 and
t2 are chosen, t3 = k− 2− t1 − t2 is fully determined. For concise notation, though, it is
convenient to have all of them defined.
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9 Pivot Sampling

elements in ascending order. Then, we pick st1+1 and st1+t2+2 as pivots such
that t1 elements are smaller than both pivot, t2 lie in between and t3 elements
are larger than both:

s1 · · · st1︸      ︷︷      ︸
t1 elements

st1+1 st1+2 · · · st1+t2+1︸                 ︷︷                 ︸
t2 elements

st1+t2+2 st1+t2+3 · · · sk︸             ︷︷             ︸
t3 elements

.

If k = 3t+ 2, then t1 = t2 = t3 yields the exact tertiles of the sample as pivots.

9.1 Approach of Analysis
Let us start with the probability Pt1,t2,t3

p,q of selecting pivots p and q out of a
random permutation of [n]:

P
t1,t2,t3
p,q :=

(
p−1
t1

)(
q−p−1
t2

)(
n−q
t3

)(
n
k

) . (9.1)

The proof is a simple combinatorial argument: In total, there are
(
n
k

)
different

samples. A sample induces pivots p and q iff there are t1 elements smaller than
p, t2 ones between the pivots and t3 elements larger than q in the sample. In
total, there are p− 1, q− p− 1 and n− q small, medium and large elements,
respectively. So, a ‘good’ sample chooses t1 of the p− 1 small elements, t2 of
the q− p− 1 medium elements and t3 from the set of n− q large elements.
Counting the number of choices for such a good sample, divided by the number
of all samples, gives eq. (9.1).

The recurrence relation for costs of dual-pivot Quicksort derived in Sec-
tion 4.2 becomes

Cn = pcn +
∑

16p<q6n

P
t1,t2,t3
p,q

(
Cp−1 +Cq−p−1 +Cn−q

)
. (9.2)

The solution techniques used in Section 4.2.1 are not directly applicable. There,
we used symmetry between the three recursive cost contributions Cp−1, Cq−p−1
and Cn−q. With ti , tj, this symmetry is gone.

However, Hennequin’s generating function approach can be generalized
to asymmetric probabilities Pt1,t2,t3

p,q . The symbolic description of the weighted
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9.1 Approach of Analysis

class C(S) given as eq. (3.7) on page 56 simply becomes

C(S) = TM

[
◦k
(
∆t1
(
C(S)

)
?∆t2(S) ?∆t3(S)

)]
+ TM

[
◦k
(
∆t1(S) ?∆t2

(
C(S)

)
?∆t3(S)

)]
+ TM

[
◦k
(
∆t1(S) ?∆t2(S) ?∆t3

(
C(S)

))]
+ TM

[
PC(S)

]
+ RM

[
CSLS(S)

]
.

The probability Pt1,t2,t3
p,q enters C(S) implicitly via ∆ti and ◦k and the sizes of

the corresponding subpermutations. The symbolic description translates to a
differential equation for C(z):

C(k)(z) = TM−k

[
k!
C(t1)(z)

t1!
S(t2)(z)

t2!
S(t3)(z)

t3!

]
+ TM−k

[
k!
S(t1)(z)

t1!
C(t2)(z)

t2!
S(t3)(z)

t3!

]
+ TM−k

[
k!
S(t1)(z)

t1!
S(t2)(z)

t2!
C(t3)(z)

t3!

]
+ TM−k

[
PC(k)(z)

]
+ RM−k

[
CSLS

(k)(z)
]

with CSLS(z) =
∑
σ∈S

CSLS(σ)
z|σ|

|σ|!
.

For given fixed parameters k and ti, this equation can be explicitly solved
using essentially the same approach as in Section 4.2.2. To obtain a general
closed solution, Hennequin pursues the more implicit method outlined in
Section 3.5.3. In [Hen91, Proposition III.9], he gives the coefficient of the leading
n lnn term for the total costs Cn if the partitioning costs pcn are linear: For
pcn = a ·n+O(1), the solution to eq. (9.2) satisfies

Cn = a · g(k, t1, t2, t3) ·n lnn+O(n) , (9.3)

where g(k, t1, t2, t3) is a constant only depending on the parameters k and ti:

g(k, t1, t2, t3) =
(
Hk+1 −

3∑
i=1

ti + 1

k+ 1
Hti+1

)−1

.

Thanks to Hennequin’s foresighted analysis, we only need to determine the
constant a for the costs we are interested in. The expected number of elementary
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operations needed in the first partitioning step of Algorithms 8 and 9 depends
on the pivot probabilities. Nevertheless, we can reuse much of the analyses
done in Chapters 4 and 5. There, we derived E

[
pcn | p,q

]
as an intermediary

step and then computed the total expectation as

E pcn = 2
n(n−1)

∑
16p<q6n

E
[
pcn | p,q

]
.

For the pivot selection with parameters k and ti this changes to

E pcn =
∑

16p<q6n

P
t1,t2,t3
p,q ·E

[
pcn | p,q

]
=
(
n
k

)−1 ∑
16p<q6n

(
p−1
t1

)(
q−p−1
t2

)(
n−q
t3

)
E
[
pcn | p,q

]
,

so we only have to do the summation step anew. Trivially, if E
[
pcn | p,q

]
=

f1(n,p,q) + f2(n,p,q), we can split the sum and evaluate it for f1 and f2 sepa-
rately. By fully expanding the terms, we can reduce the whole computation for
Algorithm 8 to computing∑

16p<q6n

(
p−1
t1

)(
q−p−1
t2

)(
n−q
t3

)
f(n,p,q) (9.4)

for f(n,p,q) ∈
{
1,p,q,p2,q2,pq

}
.

For Algorithm 9, we have some more complicated terms — we also need

f(n,p,q) ∈
{
(q−p−1)p
p+n−q , (p−1)2

p−1+n−q , (n−q)2

p−1+n−q

}
. (9.5)

Of course, the latter can be further decomposed by expanding the numerator,
what I omitted for conciseness.

These double sums are far from trivial and I could not come up with general
closed form. However, for given small values of k and the ti, Mathematica
is able to find a closed form of them. All these closed forms have the form
a ·n+O(1) required for Hennequin’s proposition, so we can indeed give the
precise leading term of the costs for small sample sizes.

From a theoretical point of view, these results are unsatisfactorily incomplete.
From a practical point of view, only moderate sample sizes will be interesting26:
We somehow have to determine the order statistics of a sample in each parti-
tioning step. This only contributes to the linear term of the costs as there are
26These practical considerations serve as nice apologies for my inability to find closed forms of

the sums above, don’t they?
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Θ(n) partitioning steps and the sample size is assumed constant, k = Θ(1) as
n → ∞. Therefore, dealing with the sample is asymptotically dominated by
swaps and comparisons during the partitioning process. For moderately sized
inputs, however, it is far from negligible, so we should keep k fairly small, as
well.

Having settled for computer algebra anyway, we can just as well do things
in a big way. Therefore, for every tractable k, I compute (the leading term of) the
expected number of swaps and comparisons for every possible triple (t1, t2, t3).
While we’re at it, I also compute the leading term of the number of executed
Bytecodes for the corresponding implementations from Section 7.2.

9.2 Results

9.2.1 Algorithm 1 with Pivot Sampling
Of course, for classic Quicksort, we are not restricted to selecting the median,
as well. The trivial adaption of the pivot selection scheme described above
for dual-pivot Quicksort says: For sample size k, we fix t1 and t2 such that
k = t1 + t2 + 1 and then select the (t1 + 1)-st element as pivot.

It has been well-known that for classic Quicksort, pivot sampling can greatly
reduce the number of needed comparisons. The optimum w. r. t. to the number of
comparisons among the possible order statistics of a fixed sample size is always
to choose the sample median. In fact, a much stronger result holds. Assume that
we choose a random t1 according to some fixed distribution in every partitioning
step and then choose the (t1 + 1)-st element from the k-sample. Then, my
restricted pivot sampling strategy corresponds to the probability distribution
that puts all mass on one value for t1. In [Sed75, Theorem 8.1], Sedgewick

shows that among all those random pivot selection schemes, deterministically
selecting the median minimizes the overall number of comparisons. Hennequin

generalizes this result to Algorithm 5 in [Hen91, Proposition III.10].
At the same time, the median constitutes the worst case among all order

statistics when it comes to swaps! Figure 8 shows this situation graphically.
Intuitively, the influence of t1 on the number of swaps can be explained as
follows: Any exchanges in Algorithm 1 are done for pairs of elements which are
both not located in the correct partition. If now the pivot is near the smallest or
largest values, there are much less candidates of such “both-out-of-order pairs”.
Hence, we get less swaps than for a pivot near the median.

This obvious conflict has not received much attention in the literature. One
exception is the nice paper [MR01]. Therein, Martínez and Roura determine
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Figure 8: The coefficient of the leadingn lnn term of the number of swaps (left) and
comparison (right) for Algorithm 1 with pivot sampling. The parameters
k and t1 are shown on the axes, t2 is determined as t2 = k− 1− t1.
The fat line shows the median selection t1 = t2 = 1

2(k− 1). It is clearly
visible that for each fixed k the median line corresponds to the minimum
in t1-direction for comparisons, but to the maximum for swaps.

the optimal sample size and order statistic for the overall cost of Quicksort
defined as C + ξ · S. They find that for ξ < 10.35, the optimal order statistic is the
median, independent of the sample size k. For my implementations of classic
Quicksort, Section 7.4.1 determined the relative runtime contributions of swaps
to be ξ 6 3. Given that classic Quicksort needs 6 times as many comparisons as
swaps, the tradeoff between minimizing the number of comparisons respectively
swaps is totally dominated by comparisons in practical implementations. This
justifies the lack of interest in the influence of pivot selection on swaps.

9.2.2 Algorithm 8 with Pivot Sampling
As described in Section 9.1, I let Mathematica simplify eq. (9.4) to obtain the ex-
pected partitioning costs and then, use Hennequin’s result eq. (9.3) to compute
the leading term of the overall expected costs. I do this for some small values
for k, all possible triples (t1, t2, t3) and the three cost measures: total number of
comparisons C, swaps S and executed Bytecode instructions T JVM

n .
This amounts to quite a bunch of numbers. Therefore I present them in

graphical form — as a series of three-dimensional plots (Figures 9, 10 and 11).
Each figure shows three plots, one for each of the three considered cost measures.
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used by Algorithm 8 with pivot sampling for k = 5. The red dot shows the
minima in the plots, they are located at (t1, t2, t3) = (0, 3, 0) for swaps,
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at (t1, t2, t3) = (0, 9, 0) for swaps, (4, 2, 3) for comparisons and (1, 4, 4)
for Bytecode instructions.

180



9.2.2 Algorithm 8 with Pivot Sampling

In such a group of three plots, the sample size k is kept constant. I chose k = 5,
k = 8 and k = 11 for Figures 9, 10 and 11, respectively.

On two axes, t1 and t2 are given. Note that only values for t1 and t2
with t1 + t2 6 k− 2 make sense, therefore the plotted surface has a triangular
projection on the t1-t2-plane. The third dimension directly gives the leading
term coefficient. Onto the surface, three types of lines are drawn. The solid
line mesh indicates integer values of t1 respectively t2. Their projection onto
the “ground floor” is a regular grid. These lines allow to easily determine the
coordinates of a given point on the surface.

The dashed lines are contour lines of the underlying function, therefore they
convey information on the slope of the surface. Finally, the thin dotted lines are
contour lines for the distance from the ‘middle’ point (t1, t2) = (k−23 , k−23 ). This
point corresponds to choosing the exact tertiles of the sample and it is marked
with a black blob. The dotted lines can give a feeling of how asymmetric the
pivot selection scheme is, which corresponds to a given point. Finally, in every
plot I show the global minimum of the function as a red dot.

Note that in most cases, the minimum is not located in the middle. For
the number of swaps this does not come as a surprise — see Section 9.2.1 for a
discussion. However it is quite uncommon that also for the comparisons, the
middle is not optimal — especially as Hennequin showed that equidistantly
selected pivots are optimal for Algorithm 5. To understand why Algorithm 8

behaves differently, recall the trick Algorithm 8 uses to save comparisons. In
Section 4.4.1 on page 105, we learned that comparison locations that are reached
more often when, say, the second pivot is very large — as line 6 in Algorithm 8 —
should first check for small elements, as this comparison is reached often exactly
when many small elements exist. Then, chances are better than on average that
we do not need a second comparison for this element.

The savings due to this trick are maximal, if the pivots attain their extreme
values — and they are minimal for the expected value of the pivots: the tertiles
of the whole list. But now, choosing the pivots as tertiles of a sample pushes
the pivots further towards this trick’s worst case! On the other hand, extreme
values for the pivots induce bad recursion trees and therefore greater overall
cost. Together, we observe a tradeoff between myopically reducing the costs
of the current partitioning step and future savings from lower recursive costs.
The result we observe e. g. in the middle plot of Figure 10 is then a compromise
between the two extreme interests.

From the arguments adduced up to now one might expect a “ring” of
minima around the middle. However, we do not observe such a ring, but
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9 Pivot Sampling

rather a very distinct trend in one direction. The detailed analysis of Chapter 4

explains why: m-type elements always cause the second comparison, whereas
s-type respectively l-type elements only need the second comparison if they
are located in position range G respectively K. For tertiles as pivots, we have
|K| ≈ 2|G|. So, the ranges where s-, m- and l-type elements hurt us roughly have
sizes with relative ratio 1 : 3 : 2. If we only look at minimizing immediate costs
of the first partitioning step, we should thus maximize the number of s-type
elements — which induces the global worst case!

For a minimal total number of comparisons, we cannot go that far. However,
this reasoning explains the direction into which we deviate from the middle:
The ratio |S| : |M| : |L| of the numbers of small, medium and large elements
should be like 3 : 1 : 2— reciprocal to the sizes of hurting ranges. This nicely
matches the minima for comparisons we find: (t1, t2, t3) = (3, 1, 2) for k = 8 and
(t1, t2, t3) = (4, 2, 3) for k = 11.

Looking at the number of swaps a little closer, there is a remarkable asym-
metry, as well: Generally, extreme pivot positions are favorable, because then,
there are less elements out of order in expectation. However for s-type elements,
things are different in Algorithm 8 — those are always swapped, even if they
already were in the correct part of the array. To be specific, line 7 can be executed
many times with k = l, ‘swapping’ an element with itself.

To minimize the expected number of executed Bytecodes, we can neither
afford excessive numbers of comparisons, nor doing too many swaps. This adds
another tradeoff facet to our analysis: comparisons favor many s-type elements,
for swaps, exactly those are the most problematic ones. Considering the last
plots of Figures 9, 10 and 11, it is evident that the swaps dominate this tradeoff.
When minimizing the number of Bytecodes, we end up with a small value of t1,
which corresponds to less s-type elements than in the uniform case.

Remembering that we have to compute the order statistics in every partitioning
step, the smallest values of k are of particular practical interest. Therefore,
Table 17 on page 187 contains the optimal choices and their costs also for k = 3

and k = 4.
For k = 3, we get a reduction in the number of executed Bytecodes of

6.3 % — with only two additional comparisons to find and exclude the largest
element of the sample. Hence, this might be a quite useful variant in practice.
This simple pivot sampling strategy suffices to get rid of 10 % of all swaps and
at the same time save 2 % of all comparisons. A reduction in the number of
both elementary operations is noteworthy, as for Algorithm 1 the optimal pivot
selection lead to an increase in the number of swaps.
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9.2.3 Algorithm 9 with Pivot Sampling

Selecting the smallest and third smallest elements from a sample of size
k = 4 requires more effort: By first removing the smallest and then taking the
median of the remaining three elements, we already consume 6 comparisons.
The reward is an asymptotic reduction of 13.8 % in the number of Bytecodes by
saving almost every third swap.

Finally, the case k = 5 deserves special attention. For Oracle’s Java 7 runtime
library, an implementation of Algorithm 8 with tertiles of five was chosen.
However, Table 17 shows that for random permutations, it would have been
better to take the smallest and third largest elements of a sample of five elements
as pivots! To quantitatively assess the difference, here are the leading term
coefficients of the costs of Algorithm 8 for pivot sampling with k = 5 and
(t1, t2, t3) = (1, 1, 1) respectively (t1, t2, t3) = (0, 1, 2):

T
JVM
n C S

(1, 1, 1) 21.3033 1.7043 0.5514

(0, 1, 2) 20.5769 1.8681 0.4396

The result is remarkable: In the average for large random permutations, we
achieve a speedup by 3.5 % over tertiles of five without any additional cost!

It must be noted however, that the effect of asymmetric pivot sampling
on the efficiency for other input distributions, most notably with non-distinct
elements, might be different.

9.2.3 Algorithm 9 with Pivot Sampling
We can compute the leading term coefficients of costs for Algorithm 9, as we did
for Algorithm 8 in Section 9.2.2. However, the additional sums needed for this
algorithm are more complicated, see eq. (9.5) on page 176. In fact, Mathematica
was unable to find closed forms of them when one of the ti was > 6. For those
parameter choices, I cannot offer the corresponding results.

Nevertheless, I prepared the same series of three-dimensional plots as in
Section 9.2.2 including all points that could be computed. For k = 8, only the
corners of the triangle are missing, whereas for k = 11, the triangular shape
is hardly recognizable and some interesting points are missing, unfortunately.
For the detailed description of the features of the plots, I refer the reader to
Section 9.2.2.

We observe contrary behavior for swaps and comparisons. For the number
of comparisons, it is helpful to have as few m-type elements as possible, as
those always induce a second comparison. Regarding swaps, however, m-type
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Figure 12: The coefficient of the leading n lnn term of the total number of swaps
(left), comparisons (middle) and executed Bytecode instructions (right)
used by Algorithm 9 with pivot sampling for k = 5. The red dot shows
the minima in the plots, they are located at (t1, t2, t3) = (0, 3, 0) for
swaps, (1, 1, 1) for comparisons and (1, 1, 1) for Bytecode instructions.
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Figure 13: The coefficients of the leading n lnn terms for Algorithm 9 with pivot
sampling with k = 8. Notice that some points are missing, namely
the extreme points (t1, t2) ∈

{
(0, 0), (0, 6), (6, 0)

}
. Therefore, the

minima need not be global. It seems plausible to assume a monotonic
continuation, so that the two minima for swaps are in fact surpassed
by (0, 6, 0). The minima for comparisons are located at (2, 1, 3) and
(3, 1, 2). For the Bytecode instructions, we have (1, 3, 2) and (2, 3, 1).
As those minima lie in the interior of the surface and the edges point
upwards, those minima seem safe even without knowing the missing
points.
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Figure 14: The coefficients of the leading n lnn terms for Algorithm 9 with pivot
sampling with k = 11. Notice that quite some points are missing. So,
we should not trust the found minima on the rim of the surface. The
minima found for the number of comparisons lie in the interior, so they
might be the correct optimum. They lie at (t1, t2, t3) = (3, 2, 4) and
(4, 2, 3).

elements are the only ones that possibly remain untouched if they are already
in the correct range. Small and large elements are always swapped either in
line 11 or line 18 in one of the inner loops, or in line 23 of Algorithm 8.

For minimizing the number of executed Bytecode instructions, this difference
becomes a tradeoff. As for Algorithm 8, swaps dominate the decision: For all
considered k, the minima induce more m-type elements than in the uniform
case.

9.3 Discussion
It has been known that pivot sampling can greatly improve Quicksort’s perfor-
mance. For classic Quicksort, many comparisons face rather few comparisons,
therefore pivot sampling is best used to reduce the number of comparisons —
even at the price of additional swaps. This is achieved by taking the median
of the sample. The situation only changes, when swaps become much more
expensive than comparisons, as shown in [MR01].

Note that the number of comparisons per partitioning is independent of the
pivot for Algorithm 1. Hence, the savings in classic Quicksort are only due to
the more balanced recursion tree.

For dual-pivot Quicksort, the picture diversifies. First of all, pivot selection
affects the recursion tree just as in classic Quicksort. Secondly, Algorithms 8
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Algorithm 5 with s = 3 2 1.754 1.6740 1.6342 1.6105 1.5947

Algorithm 8 tertiles
1.9 1.7043 1.6405 1.6090 1.5903 1.5779

Algorithm 8 best tertiles 1.6227 1.5849 1.5662 1.5554

Algorithm 9 tertiles
1.8667

1.6842 1.6262 1.5979 1.5812 1.5702

Algorithm 9 best tertiles 1.6227 1.5849 ? ?

Table 16: This table shows the leading term coefficients for the expected number
of comparisons for different algorithms with pivot sampling for different
sample sizes k = 3t+ 2.
Algorithm 5 always uses the tertiles of k as pivots. For Algorithms 8
and 9, I give two variants each: The first one chooses the tertiles of the
sample, as well. The second variant uses the order statistics, for which
the overall number of comparisons is minimized.

and 9 need much more swaps than Algorithm 1 — and at the same time save
some comparisons. Therefore, it is no longer the utmost goal to save comparisons
at any cost. Rather we need to balance the reduction in both comparisons and swaps,
with some tendency to prefer less swaps.

Thirdly, the algorithms behave asymmetric w. r. t. to the three types of el-
ements — smaller than both pivots, between them or larger than both. For
example, medium elements always need two comparisons to determine their
class, whereas for small or large elements, one comparison can suffice. There-
fore, part of this asymmetry is inherent to dual-pivot Quicksort, not only to
my specific implementations. As a consequence, the number of swaps and
comparisons of one partitioning step is not independent of the pivots.

It is especially interesting to compare the number of comparisons required
by asymmetric Algorithms 8 and 9 to what symmetric Algorithm 5 needs. This
is done in Table 16. For tertiles of k selection, the asymmetry which helps
Algorithms 8 and 9 is reduced. Yet, the asymmetric algorithms still consume
less key comparisons than the symmetric one. If we then even allow them to
boost asymmetry by asymmetric order statistics, they can increase their lead
even more.

Summarizing, pivot sampling influences the efficiency of dual-pivot Quicksorts
in three competing ways:

I Symmetric pivot selection tends to produce more favorable recursion trees.
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k (t1, t2) T
JVM
n C S

A
lg

or
it

hm
1

s− 1 = 1 — 18 2 0.3333

3 (1, 1) (median) 16.4571 1.7143 0.3429

4 (1, 2) or (2, 1) 16.4571 1.7143 0.3429

5 (2, 2) (median) 15.9846 1.6216 0.3475

8 (3, 4) or (4, 3) 15.7598 1.5760 0.3502

11 (5, 5) (median) 15.5445 1.5309 0.3533

k (t1, t2, t3) T
JVM
n C S

A
lg

or
it

hm
8

s− 1 = 2 — 23.8 1.9 0.6
3 (0, 0, 1) 22.38 1.86 0.54

4 (0, 1, 1) 20.9057 1.8868 0.4528

5 (0, 1, 2) 20.5769 1.8681 0.4396

8 (1, 2, 3) 19.7279 1.7155 0.4636

11 (1, 4, 4) 19.3299 1.7941 0.4114

k (t1, t2, t3) T
JVM
n C S

A
lg

or
it

hm
9

s− 1 = 2 — 26 1.8667 0.8
3 (0, 1, 0) 24 2 0.6
4 (0, 1, 1) or (1, 1, 0) 23.7736 1.8113 0.6792

5 (1, 1, 1) (tertiles) 22.9474 1.6842 0.7018

8 (1, 3, 2) or (2, 3, 1) 21.5593 1.7387 0.5796

11 (2, 5, 2)a
20.9485 1.7829 0.5200

aThis is potentially not the global minimum, but only the best value that Mathematica was
able to compute. In fact, the plot in Figure 14 suggests that t2 might be even larger at the
global minimum.

Table 17: Comparison of the effects of pivot sampling on classic Quicksort and dual-
pivot Quicksort with Yaroslavskiy’s respectively Kciwegdes partitioning.
The table shows the leading term coefficients of the expected number of
executed Bytecodes, comparisons and swaps for different sample sizes
k. The ti are chosen, such that T JVM

n is minimized. The sample size
k = s− 1 corresponds to random selection, i. e. no sampling at all.
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9 Pivot Sampling

I Comparisons generally prefer equidistant pivots, whereas swaps profit
from extreme pivot values.

I The inherent asymmetry of dual-pivot Quicksorts w. r. t. the equivalence
classes of small, medium and large elements invites to use asymmetric
pivot sampling to boost helpful asymmetry.

As we have seen for the small sample sizes — where explicit computation of the
leading term of the costs was feasible — all three effects have to be considered
to explain the optimal order statistics for pivot selection. Numeric results
optimizing overall runtime are shown in Table 17.
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10 Conclusion

“ I may not have gone where I intended to go, but I think I have ended
up where I needed to be. — Douglas Adams

”
In this thesis, I studied the new dual-pivot Quicksort variant by Yaroslavskiy

(Algorithm 8), which was adopted as default sorting method for Oracle’s Java 7

runtime library. I computed its exact expected costs for several cost measures on
different levels of abstractions and compared the results with a classic Quicksort
variant (Algorithm 1) and older implementations of dual-pivot Quicksort. The
intriguing result is that the new dual-pivot Quicksort can take advantage of
asymmetries in the outcomes of key comparisons to save every 20th comparisons.
As a byproduct, the analysis of an older dual-pivot Quicksort variant due to
Sedgewick (Algorithm 7) reveals that this algorithm fails to use asymmetry to
its profit. Moreover, the results suggest to reverse comparisons in the algorithm
to obtain Algorithm 9, which in fact saves every 15th comparison w. r. t. the ones
classic Quicksort uses. [Expected numbers of swaps and comparisons for the
different studied algorithms are found in Tables 1, 3, 4 and 5.]

However, the studied dual-pivot algorithms need much more swaps than
classic Quicksort, which rises the question what dominates in practice. This
question was approached by considering more detailed cost models — including
the one used by Knuth in “The Art of Computer Programming”. The expected
costs under those models invariably favor classic Quicksort over all other vari-
ants. In a nutshell, the dual-pivot Quicksorts cannot fully compensate for the
many extra swaps they need by saving some comparisons. [Expected costs for
the detailed models are given in Table 12.]

This result is surprising in that Yaroslavskiy’s algorithm has shown in
extensive empirical studies to be more efficient than previously used sorting
methods. To investigate this discrepency, I conducted a running time study.
To be able to directly compare runtime measurements with the results of my
analyses and in order to rule out the influence of additional optimizations of
Quicksort, I used direct implementations of my algorithms. The expected, but
nevertheless puzzling result was that I could (qualitatively) reproduce the results
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of older studies: Yaroslavskiy’s algorithm is significantly faster than classic
Quicksort and the other dual-pivot Quicksorts: The Java implementation of
Algorithm 8 saves about 18 of the time of the corresponding classic Quicksort im-
plementation. In C++ the savings amount to 1

11 of the time for classic Quicksort.
[Figures 5 and 6 show the running times.]

Even though I failed to find a conclusive explanation for this success of
Yaroslavskiy’s new dual-pivot Quicksort in this thesis, the precise analyses and
improvements to the algorithms are worth studying on their own. And after all,
the fact that classic analysis of algorithms does not fully explain what is going
on in Yaroslavskiy’s algorithm still tells us a lot: Its success in practice is likely
to be due to details of modern computer architectures.27

Asymmetry
There is one feature that runs like a golden thread through the study of dual-
pivot Quicksort: Asymmetry. It starts with the obvious asymmetry of Algo-
rithm 8. It does not come as a surprise then, that the different locations where
swaps and comparisons happen in Algorithm 8 are executed with different
frequencies and that they contribute different costs. However, asymmetry is also
found during the analysis of the frequencies: Large pivots contribute differently
than small pivots even if the set of sublist sizes agrees. [Frequencies are shown
in Table 3, costs contributions in Section 7.4.1.]

Finally, asymmetry reaches its climax in Chapter 9, where we add pivot
sampling to Algorithm 8. The optimal order statistics to choose pivots from a
sample are highly asymmetric. I showed that this optimum is the result of a
delicate tradeoff between several competing extremes. When such asymmetric
ingredients add up to a grand total, intuition typically fails. Lucky then, when
we are able to base our decisions on firm ground formed by mathematical
analysis. [Figures 9, 10 and 11 show examples of these results.]

Typically, humans have the unconditional tendency to prefer symmetry over
asymmetry, we consider symmetry æsthetically pleasing and harmonious. This
might be a reason why Yaroslavskiy’s algorithm has not been discovered earlier.
From a mathematical point of view, symmetries often simplify matters — many
short and elegant proofs rely on symmetry arguments. In contrast, many of
the arguments in this thesis still give me a feeling of inelegance, which is — I
guess — the price of asymmetry.

27Further evidence for this conjecture has been found since I wrote my master thesis; see the
remark to the first open problem below.

190



10.1 Open Questions

However, symmetries forming a stable state can also mean stagnation. Some-
times it becomes necessary to break symmetries to move forward. In the case
of dual-pivot Quicksort, breaking symmetry allowed to create sorting methods
that use less comparisons than we thought would be needed at first sight. [See
the “wrong lower bound” from Section 4.4.1.]

10.1 Open Questions

“ I refuse to answer that question on the grounds that I don’t know the
answer. — Douglas Adams

”
It is probably at the heart of science that trying to answer questions provokes
new questions.28 Here are some that I stumbled upon during my work on the
answers described in this thesis.

For some of the open questions listed below, progress has been made since I wrote my thesis.
I decided to nevertheless keep the original text unchanged, but add remarks (like this one)
describing the current state of knowledge with references to results published elsewhere.

I The first open problem is to identify the mechanisms that make
Yaroslavskiy’s algorithm so fast in practice. The results of this thesis
could not conclusively explain its success, but they might guide the search
for reasons in the future — and be it only by indicating where not to search.

While this problem is still not fully settled, I am convinced that one of the main factors
that make Yaroslavskiy’s algorithm fast in practice is its more efficient usage of the
memory hierarchy. As sorting algorithms are tuned so much for speed inside the
CPU, it seems plausible to me that the bandwidth to main memory becomes a bottle-
neck: We can sort so efficiently, that the CPU has to wait for the next parts of the array
to continue with sorting.

In order to quantify this, one counts the number of scanned elements, i. e. the num-
ber of memory references to an array location A[i] that has not been touched during
the current partitioning through this same pointer i. The latter condition makes
scanned elements simpler to handle in analysis. The number of element scans are thus
an approximation for the number of cache blocks that have to be transferred.

28I cannot shake off the the resemblance to the Hydra of Lerna, the monster from ancient Greek
mythology that grows two new heads for every one that you manage to cut off. On the other
hand, it would be an arguably bad heritage to leave our children a world without interesting
questions to have a tough time with.
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The number scanned elements in a single partitioning step is rather easy to determine,
for example in Yaroslavskiy’s partitioning method, we have

pcn = E
[
|K|+ |G|+ |L|

]
= 2
3n− 1 + 1

3n− 2
3 + 1

3n+ 1
3 (n > 3)

= 4
3n− 4

3

scanned elements. Inserting these partitioning costs into eq. (4.4) gives an overall
number of 1.6(n+ 1)Hn−

73
25n+ 1

75 scans on average to sort a random permutation
of sizenwithAlgorithm 8. For classic Quicksort, the number of scanned elements and
the number of comparisons coincide, so we have 2(n+ 1)Hn− 2n scanned elements,
which is 25% more for large n!

The reason that makes dual-pivot Quicksort superior is that it gets more of the sorting
task done in one partitioning step than a classic single-pivot Quicksort: It produces
three instead of just two subproblems at only slightly higher cost per partitioning.

This observation has first been made by Alejandro López-Ortiz, J. Ian Munro and
their two students Shrinu Kushagra and Aurick Qiao in [KLOQM14]. They also
extend the idea further and devise a three-pivot Quicksort that needs even less element
scans.

It is important to not confuse this effect with the cache misses that result from ran-
dom accesses scattered throughout an array—Quicksort does not use scattered ac-
cesses. Such access patterns have a much worse influence on running time, as a new
cache block has be loaded for almost every memory access. During partitioning in
Quicksort—no matter which algorithm presented in this thesis we use— the array
is scanned sequentially, which is the best case w. r. t. caching.

I I hardly mentioned input distributions other than random permutations,
which is the standard model if no additional information about real inputs
is available. Its uniformity and symmetry make analysis tractable. However,
for a library sorting method, it is not enough to be efficient on random
permutations, but it should also reasonably cope with other inputs. Most
notably, the presence of equal elements in the list appears frequently in
practice. I made some qualitative remarks on the algorithms’ behaviors in
that case, but a thorough treatment as in [Sed77a] for classic Quicksort is
in order.

I Except for Chapter 9 on pivot sampling, I confined my study to the most
basic implementations of Quicksort. However, many variations of Quick-
sort are known (see Section 3.4), which might be applied to dual-pivot
Quicksort. As the example of pivot sampling shows, not all properties
simple carry over from classic Quicksort. Hence, studying which of the
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optimizations of classic Quicksort can be used to improve dual-pivot Quick-
sorts might reveal interesting insights and lead to valuable algorithmic
improvements.

The use of Insertionsort for small subproblems is analyzed and discussed quite ex-
haustively in [WNN13]. As one might expect, switching to a procedure optimized
for performance on short arrays also helps Yaroslavskiy’s Quicksort; the optimal
cutoff thresholds, however, tend to be significantly smaller than for classic Quicksort
because the performance of Algorithm 8 on short lists is surprisingly good.

I In Chapter 6, I briefly considered the variance of costs of dual-pivot Quick-
sort. For classic Quicksort, variance and higher moments of cost distri-
bution are rather well understood and results for ‘symmetric’ multi-pivot
Quicksort are also available (e. g. [Hen91], [CH01] and [Tan93]). However,
the variance of the number of comparisons and swaps of Algorithms 8

and 9 are not yet known.

Together with Ralph Neininger, we computed leading term asymptotics for the vari-
ances of our main cost measures (number of comparisons, swaps and Bytecode in-
structions) in Yaroslavskiy’s algorithm using the contraction method (see e. g.
[RR01, Nei01]); in fact, one even derives ‘in passing’ a fixed-point equation for the
limiting distribution of the suitably normalized costs [WNN13].

I had the luck to be able to work with two experts of the field of limit distributions,
namely Ralph Neininger and Hosam M. Mahmoud, and came to like the con-
traction method as a very elegant tool. A key ingredient to apply the contraction
method to Yaroslavskiy’s algorithm is a technical lemma by Neininger (Lemma 4.1
in [WNN13]) about the stochastic convergence of mixed hypergeometric random vari-
ables, which result from the c@P terms in the partitioning costs (cf. Chapter 4). The
underlying stochastic model of partitioning also proved helpful in analyzing Quick-
sort with pivot sampling; see below.

I Already in the first publication on Quicksort, Hoare noticed that a variation
of Quicksort where only one recursive call is executed can be used to select
an element by rank [Hoa61b]. This has become known under the name
Quickselect. Of course, every method to improve Quicksort can also be used
to potentially make Quickselect more efficient. It is natural to ask, whether
the dual-pivot approaches studied in this thesis can be put to a good use
in Quickselect, as well.

For Quickselect, the sought rank m is a second parameter besides the input size n,
which makes analysis and interpretation of results a little harder. However, one can
rather easily compute the cost of searching an element of uniformly chosen random
rank [MMS95]. Asm is part of the input, I think it is indeed the most natural model
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to also average over all possible ranksm. For some reason however, this quantity is not
widely used in the literature and in fact, I only came to know it when Hosam Mah-
moud proposed to me to compare Yaroslavskiy’s partitioning with classic Quickse-
lect using this measure.

The result was quite surprising to us: Quickselect with Yaroslavskiy’s partitioning
needs 3.16n+O(logn) comparisons on average to select an element of random rank
from a random permutation of size n [WNM14], whereas classic Quickselect needs
only 3n+O(logn)—so the advantage in sorting of using two pivots is not retained
in selecting. For swaps, Yaroslavskiy’s algorithm was already worse in sorting and
it remains worse in Quickselect: we have 1n + O(logn) against 0.5n + O(logn)
swaps.

I Even though I was able to embellish Chapter 9 with these nice three-
dimensional plots, it remains unsatisfactorily that no closed form in k, t1
and t2 could be obtained for the costs with pivot sampling. For classic
Quicksort, [MR01] derives such closed forms, so this might serve as a
starting point.

We could derive the precise leading term asymptotics of comparisons, swaps and Byte-
codes of Yaroslavskiy’s Quicksort with generalized pivot sampling in [NW14]—
with all results symbolical in k, t1 and t2. By considering the limit of large sample
sizes k→∞, we also determined optimal continuous ranks for the pivots p and q for
each cost measure.

Our paper [NW14] actually gives more information about the partitioning costs than
needed for the leading term of overall expected costs. Using an alternative, but equiv-
alent random model of the input, namely n i. i. d. uniformly from (0, 1) chosen num-
bers, one can characterize the full distribution of the partitioning costs (based on
Dirichlet-distributed random variables) and derive the exact expectation without ex-
plicitly computing the sums over three binomials that occurred in Chapter 9.

∗ ∗ ∗

This is in fact the work I am most proud of because it nicely combines several inde-
pendent techniques that I have learned since I finished my master thesis and these
techniques have— to the best of my knowledge—not been combined that way before.

So I am delighted that—by coincidence— this is the last one of the open problems that
I formulated two years ago, and that I can now close this book with my favorite settled
problem. Of course, there are still open problems left and new ones have appeared
and will keep appearing as we continue working on Yaroslavskiy’s algorithm. I am
looking forward to exploring more of the mysteries of Java’s new dual-pivot Quicksort.
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