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Abstract

The structure of RNA has been the subject of intense research over the last decades
due to its importance for the correct functioning of RNA molecules in biological pro-
cesses. Hence, a large number of models for RNA folding and corresponding algorithms
for structure prediction have been developed. However, previous models often only con-
sider base pairs, although every base is capable of up to three edge-to-edge interactions
with other bases. Recently, Höner zu Siederdissen et al. presented an extended model
of RNA secondary structure including base triples together with a folding algorithm
– the first thermodynamics-based algorithm that allows the prediction of secondary
structures with base triples. In this paper, we investigate the search space processed
by this new algorithm, i.e. the combinatorics of extended RNA secondary structures
with base triples. We present generalized definitions for structural motifs like hairpins,
stems, bulges or interior loops occurring in structures with base triples. Furthermore,
we prove precise asymptotic results for the number of different structures (size of search
space) and expectations for various parameters associated with structural motifs (typ-
ical shape of folding). Our analysis shows that the asymptotic number of secondary
structures of size n increases exponentially to Θ(4.10125n

n3/2
) compared to the classic model

by Stein and Waterman for which Θ(2.61803n

n3/2
) structures exist. A comparison with the

classic model reveals large deviations in the expected structural appearance, too. The
inclusion of base triples constitutes a significant refinement of the combinatorial model
of RNA secondary structure which by our findings is quantitatively characterized. Our
results are of special theoretical interest, because a closer look at the numbers involved
suggests that extended RNA secondary structures constitute a new combinatorial class
not bijective with any other combinatorial objects studied so far.

1 Introduction and Basic Definitions

Ribonucleic acids (RNA) belong to the most abundant and important biological molecules
involved in various functions ranging from catalyzing reactions to gene expression. An RNA
molecule consists of a sequence of nucleotides connected via phosphodiester bonds. Every nu-
cleotide comprises a nitrogenous base, a phosphate group and the pentose sugar ribose. There
are four different bases: adenine (A), cytosine (C), guanine (G) and uracil (U), whereby A
and U (respectively, C and G) are complementary. The sequence of bases in an RNA molecule
is specific for it and thus represents its ‘primary structure’.
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Figure 1: The three edges of possible base-to-base interactions of nucleotides containing a
purine (left, adenine) or pyrimidine (right, cytosine). Based on Leontis and Westhof (2001,
p. 501).

Non-neighboring nucleotides can interact via hydrogen bonds (‘H bonds’) between their bases.
These base pairs are responsible for the folding of the RNA sequence into its three-dimensional
conformation (‘tertiary structure’), which is essential for its function. Traditionally, only com-
plementary bases were known to pair up. Later, weaker forms of base pairing (so-called wob-
ble pairs) have been discovered and today, 12 families of base pairs are characterized (Leontis
and Westhof, 2001). The diversity of interactions stems from the possibility to form H bonds
along three different edges (see Figure 1). Thus, a single base can interact with up to three
other bases simultaneously. It has been discovered that about 40 % of all bases in struc-
tured RNA take part in edge-to-edge interactions other than canonical Watson-Crick base
pairs (Leontis and Westhof, 2001). Base triples are a commonly found non-canonical in-
teraction. They occur in RNA motifs such as sarcin-ricin loops and support tertiary RNA
interactions (Abu Almakarem et al., 2012). Base triples are even part of a highly conserved,
thus universal packaging mode of RNA helices (Doherty et al., 2001). Accordingly, the in-
troduction of base triples into existing RNA models has the potential to bring them closer
to nature. Especially the computational prediction of RNA structure which – for efficiency
reasons – often considers a simplified, planar version of the tertiary conformation called sec-
ondary structure (we assume the reader familiar to the concept of secondary structures and
refer to (Waterman, 1978; Hofacker et al., 1998; Nebel, 2002a) for details) can be expected
to benefit from introducing base triples to the model. Figure 2 shows two examples of base
triples occurring in real RNAs and illustrates that they can occur locally as well as between
non-adjacent areas of the secondary structure. The arc diagrams shown in parts (a) and (c)
of the figure assume the nucleotides to be represented by circles on a horizontal line (accord-
ing to their ordering given by the sequence) while an arc in the upper half plane represents
a hydrogen bond between the two incident nucleotides.

Predicting the secondary structure has been an ongoing topic of research for several decades
resulting in a variety of models and algorithms (see e.g. Knudsen and Hein, 1999; Nussinov
et al., 1978; Pipas and McMahon, 1975; Waterman, 1978; Zuker and Stiegler, 1981; Ho-
facker, 2003). However, they often do not consider base triples, but more recent research
has started incorporating them. Höner zu Siederdissen et al. (2011) presented an extended
model and introduced an accompanying dynamic programming version of the folding al-
gorithm MC-Fold (Parisien and Major, 2008), called RNAwolf. Like the original version of
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Figure 2: (a) Fragment of the 23S rRNA of E. coli showing a base triple connecting a
stem and a non-adjacent hairpin loop and creating a pseudoknot (Conn et al., 1998). (b)
Stem-loop representation of the 23S rRNA fragment shown in (a). (c) Fragment of the PDB
structure 1dul, which contains two combined base triples (red) as well as other non-canonical
base pairs (blue) extending the secondary structure (Höner zu Siederdissen et al., 2011). (d)
Stem-loop representation of PDB structure 1dul shown in (c).

MC-Fold, RNAwolf considers non-canonical base pairings. In contrast to MC-Fold it is not able
to handle pseudoknots but allows triple interactions, reducing the runtime from exponential
to polynomial O(n3). This elevates the model of extended RNA secondary structures from
theoretically interesting to practically feasible through its applicability to RNAs of biological
interest. However, only little is known about the changes implied by the incorporation of
base triples to the combinatorics of RNA secondary structures. How many different extended
structures for size n exist? What is their typical appearance, i.e. how do structural features
like hairpin loops, bulges or interior loops behave in expectation? How many nucleotides do
form a single, resp. two hydrogen bonds? Similar questions have been intensively studied for
RNA secondary structures and it is the aim of this paper to start a similar line of research
for extended structures providing a deeper understanding of their structural behavior.
Therefore, in this paper, we take up the model by Höner zu Siederdissen et al. (2011) and
provide a large number of precise asymptotics related to the number of extended RNA sec-
ondary structures and the quantitative behavior of their various structural motifs. In accor-
dance with the model, bases are allowed to link up with two other bases and we do not allow
pseudoknots to occur. However, we do not distinguish between the different types of base-
to-base interactions. Furthermore, as usual, we abstract from the actual primary structure
of the RNA molecule assuming each possible folding to be equally likely. This is achieved
by introducing an appropriate generalization of the well-known dot-bracket representation of
secondary structures (see (Hofacker et al., 1998)).

1.1 Definitions

For alphabet Σ, we will write Σ⋆ (resp. Σ+) to denote the set of all strings constructed from
symbols in Σ including (resp. excluding) the empty word ε. The length of a string w ∈ Σ⋆
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Figure 3: (a) The different base types in our model: unpaired bases (black, symbol *),
bases with exactly one H bond (blue, symbols (, )) and bases with two H bonds connected to
two bases downstream (red, symbol ((), upstream (pink, symbol (() or one in each direction
(orange, symbol )(). (b) H bonds can participate in simple pairs (blue) or in base triples.
The H bonds colored in green form a simple base triple, while the red-colored ones highlight
a so-called ‘bridge’. A combination of red and orange H bonds denote a motif called ‘cycle’.

is denoted by |w|, we write |w|a to count the number of occurrences of a ∈ Σ in w. For a
non-negative integer n, Σn represents all strings in Σ⋆ of length n. Analogously, for a ∈ Σ
we write an for the string build of n symbols a. Given w ∈ Σ⋆ we represent the ith symbol
of w by wi. We assume the reader to be familiar with the concept of context-free grammars
(see (Harrison, 1978; Hopcroft et al., 1979) for details). We will interchangeably use the
terms nonterminal and intermediate symbol to address a symbol that can be replaced by a
production (or rule) of a grammar. We make use of the convention to use capital letters as
nonterminals. A production f will be written in the form f : A → α (omitting name f if
not needed), representing the possibility to replace A by α. We will call A the premise or
left-hand side and α the conclusion or right-hand side of f .

In order to represent nucleotides with more than one hydrogen bond we make use of the
following alphabet

Σ := {*, (, ), ((, ((, )(},

whose symbols will also be called nucleotides or bases for their use to represent RNA
molecules. The first three symbols in Σ are used in the same way as for classic dot-bracket
words for RNA secondary structures; a dot * represents an unpaired nucleotide while an
opening (resp. closing) bracket stands for a nucleotide being bond to another one more to
the right (resp. left) within the backbone. Accordingly, (( – consisting of two overlayed open-
ing brackets – represents a nucleotide having two hydrogen bonds each with a nucleotide
located to the right. In the same way (( (resp.)() represents a nucleotide with two hydrogen
bonds to the left (resp. with one to the left and one to the right). Figure 3 (a) shows the
corresponding base types using arc diagrams.
Having this interpretation in mind, we are now ready to provide a formal definition of ex-
tended RNA secondary structures. As in (Kemp, 1996) we make use of a congruence relation
to define the structural properties shared by all words of the language to be defined – a
generalized Dyck-language in case of (Kemp, 1996) with obvious ties to dot-bracket words.

Definition 1 (Extended secondary structures) Let Σ = {*, (, ), (( , ((, )(} and denote by
δ the congruence defined by the following set of equations: {* ≡δ ε, ( ) ≡δ ε, (( ) ≡δ (, (( )( ≡δ

((, ( (( ≡δ ), )( (( ≡δ )), )( )( ≡δ )(, ()( ≡δ (, )() ≡δ )} for ε the empty string. Then the set
of extended RNA secondary structures is defined by language L ⊆ Σ⋆ with w ∈ L if and only
if w is equivalent to ε under congruence δ and furthermore w is only congruent to itself if we
are not allowed to apply equation * ≡δ ε, i.e., w ≡δ\{*≡δε} ρ =⇒ ρ = w.
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We can think of equation * ≡δ ε to allow the deletion of all the unpaired nucleotides (sym-
bols *) from our representation. Afterwards, using any of the other congruence equations
corresponds to the deletion of an arc within the associated arc diagram. Here symbols are
changed, not deleted, if base triples are involved, reflecting the idea of a step-by-step deletion
of any bond. For example, applying equation )( )( ≡δ )( is assumed to delete the bond be-
tween two nucleotides with base triples, leaving them both with a single bond. In the sequel,
we will call the respective remaining symbol (i.e., those one right-hand side of the equation
applied) the residue of the original one. For example, in connection with the application of
(( )( ≡δ ((, the first ( (resp. second )) is the residue of (( (resp. )(). Accordingly, we call two
bracket symbols of an extended secondary structure w corresponding with respect to w, if a
congruence equation is applied to themselves or to their residues of a former application in
order to derive w ≡δ ε (i.e. if the equivalent arc diagram has an arc connecting the two related
vertices). While deriving w ≡δ ε, in order to be allowed to apply a congruence equation it is
required that the bracket symbols on the left-hand side of the equation are neighbored. This
is equivalent to the assumption that an arc cannot be deleted before all arcs (and nucleotides
*) below it have been erased. As a consequence, arc diagrams equivalent to w with w ≡δ ε
cannot have crossing arcs; this way our definition excludes pseudoknots. Demanding w to be
only congruent to itself in case * cannot be deleted implies a minimal (hairpin) loop length of
one; a * in between any hairpin closing pair of (generalized) brackets prevents any arc from
being erased (for ≡δ\{*≡δε}). Note that (( ((does not contribute an equation to the congruence
for we do not allow two nucleotides to have two hydrogen bonds with each other.

Example 1 The strings ((()*)) and (*)(*)(*)()) represent no extended secondary structure
for the first is congruent ((*)) even if equation * ≡ ε is not applied and the second is congruent
) but not congruent ε. However, w = ((*)(((*) (()** represents a valid extended secondary
structure which by the steps ((*)(((*) (()** ≡δ (()((() (() ≡δ (()(( (() ≡δ ((( (() ≡δ (()) ≡δ

() ≡δ ε can be reduced to ε. Thus, the first ( and the last ) of w are corresponding with
respect to w since we applied () ≡δ ε in the last step. As a second example consider the arc
diagram of Figure 6 which corresponds to the extended secondary structure (((((***) (( ((.

In order to prevent confusion, we will call a secondary structure without base triples classic
structure in the sequel. We then assume standard dot-bracket words to be used for their
representation.
As we will see in the next section, allowing base triples implies a huge growth in the number
of different structures of given size. But not only the number of structures is changed, also
the set of possible structural features is enriched and motives like stems and hairpin loops
need to be redefined. However, it will be possible to formally reduce the new motifs to the
corresponding traditional ones (for background information on different structural motifs in
the classic model without base triples, we refer the reader to Sankoff and Kruskal (1999,
Chapter 3)), thus putting the definition of the new motifs down to that for classic structures.
To this end we will make use of the expansion of an extended secondary structure defined as
follows:

Definition 2 Let w ∈ Σ⋆ an extended secondary structure and let e denote the morphism
defined by e((() = ((, e( (() = )), e()() = )(, and e(x) = x for x ∈ {(, ), *}. Then e(w) is
called the expansion of w.

In order to make use of expansions to define structural motifs, we will need to determine the
preimage of a substring of an expansion. Here we stick to the convention, that every symbol
of an extended secondary structure w belongs to the preimage of a substring u of e(w) that
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Figure 4: All types of novel hairpin loops, i.e. hairpin loops not nested directly inside a
simple base pair. Every unbroken sequence of bright bullets represents a hairpin loop.

contributes at least one symbol to u under morphism e. For example, with w = ((*)*) we
have e(w) = ((*)*) and accordingly ((*) is the preimage of substring (*).
Note that not every string w over Σ = {*, (, ), (( , ((, )(} with e(w) a classic structure represents
an extended secondary structure. The reason is simple: for extended structures we do not
allow nucleotides (( and ((to represent two hydrogen bonds joining both the same nucleotides
– thus no equation (( ((≡ ε – but based on the expansion we cannot prevent (( ((to be assumed
corresponding.
Now we are ready to define generalized structural motifs: according to (Nebel, 2004), a classic
structure w = w1 · · · wn, wi ∈ {( ), *}, 1 ≤ i ≤ n, has a hairpin loop chl v iff v = wi+1 . . . wj−1

with v = *j−i−1 and wiwj = ( ) hold. We will identify hairpin loops for an extended structure
with those chl found in its expansion.

Definition 3 (Hairpin loops) Let w ∈ Σ⋆ an extended secondary structure. A substring
v = wi+1 . . . wj−1 of w with v ∈ {*}+ is called hairpin loop (of length |v|) iff there exists
substring u of e(w) which is a chl (for e(w)) and v is the preimage of u. If e(wivwj) = wiuwj

we call the hairpin loop classic, otherwise novel.

Thus, a hairpin loop is classic if any only if it is enclosed in a pair of brackets () (lies inside
a simple base pair). If base triples are involved, new kinds of hairpins result. Figure 4 shows
the resulting different types of novel hairpin loops.
A classic structure w has a left (resp. right) bulge cb iff it contains a non-empty subword
v = wi+1 . . . wj−1 with v = *j−i−1 and wiwj = (( (resp. wiwj = ))) and there exists k with
wkwk+1 = )) (resp. wkwk+1 = (() such that wj, wk and wi, wk+1 are corresponding. A similar
motif is given by interior loops which essentially consist of a left and a right bulge which are
located face to face with each other. Precisely, two non-empty subwords v1 = wi+1 . . . wj−1,
v2 = wk+1 . . . wl−1 of a classic structure w form an interior loop cil iff v1 = *j−i−1, v2 = *l−k−1

and wiwj = ((, wkwl = )) such that wi, wl and wj, wk are corresponding.

Definition 4 (Bulges and Interior loops) Let w ∈ Σ⋆ an extended secondary structure.
Two substring v1, v2 of w form an interior loop (of length |v1| + |v2|) iff there exist substrings
u1, u2 of e(w), u1, u2 a cil (for e(w)), where vi is the preimage of ui, i ∈ {1, 2}. A substring
v of w is a bulge (of length |v|) iff there exists a substring u of e(w) being a cb (for e(w))
for which v is the preimage.

According to this definition, bulges and interior loops (Figure 5 shows an example for both)
are counted independently, i.e. an interior loop does not contribute two bulges. Note, that
hairpin loops, bulges and interior loops are not sufficient to cover all occurrences of unpaired
nucleotides. For example, tails, i.e., runs of symbol * at the beginning or ending of a secondary
structure do not fall into any of those categories.
Last but not least, a classic stem cs consists of two non-empty maximal subwords y, z such
that y = wi . . . wi+c and z = wj . . . wj+c and wi+kwj+c−k is a pair of corresponding brackets,
0 ≤ k ≤ c (see (Nebel, 2004)).
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(a) (b)

Figure 5: (a) Extended RNA secondary structure containing both a bulge (blue) and an
interior loop (red). (b) Stem-loop representation of the extended secondary structure in (a).

Definition 5 (Stems) Let w ∈ Σ⋆ an extended secondary structure. Two substrings v1, v2

of w form a stem iff there exist a cs u1 = (
c+1, u2 = )

c+1 in e(w) such that the preimage of
u1 (resp. u2) is v1 (resp. v2). If vi = ui, i ∈ {1, 2}, the stem is called classic, otherwise novel.

Note that a symbol b ∈ {(( , ((, )(} can contribute to two stems in cases where the two brackets
of e(b) are part of two different classic stems (for e(w)). In the example w = ((*)*) from
above, we have e(w) = ((*)*) and (( is part of the preimage of two cs for e(w) (the inner and
the out corresponding pair for brackets); the corresponding nucleotide is part of two stems,
contributing one hydrogen bond to each.

Example 2 Consider w = (((*)* ((. This extended secondary structure contains two stems.
We find for the expansion e(w) = (((*)*)) containing two stems highlighted by under- resp.
overlined symbols. The respective preimages v1 and v2 for the underlined stem are given by
v1 = ((( and v2 = ((, that for the overlined one by v1 = (( and v2 = ). Thus symbol ((

contributes to both stems.

Before definition nicely relates stems in extended secondary structures to those in classic
structures. However, it sheds no light on the appearance of novel stems. To this end, we
need to introduce a novel structural motif called bond chain. For its definition we will not
make use of the concept of expansions for not to hide the true structural appearance.

Definition 6 (Bond chains) Let w ∈ Σ⋆ an extended secondary structure and let v a sub-
string of w with v ≡δ ε such that there exist bi ∈ {(, ), (( , ((, )(}, 1 ≤ i ≤ k, k ≥ 2, and
uj ∈ Σ⋆, 1 ≤ j < k, with v = b1u1b2u2 · · · uk−1bk. We call the subsequence1 of w identified
with b := b1b2 · · · bk a (hydrogen) bond chain, iff uj ≡δ ε, 1 ≤ j < k, and b ≡δ ε applying
congruence () ≡δ ε exactly once. Any subsequence of b consisting only of symbols that are
corresponding w.r.t. w is considered a partial bond chain.

In the sequel we will speak of a segment to address an unpaired base or a bond chain.
Accordingly, any extended secondary structure can be decomposed into its segments. Please
note that the assumption v ≡δ ε of before definition implies the maximality of any bond chain
b in the sense that we cannot extend the considered substring to the left or right in order
to obtain a bond chain b′ for which b is a substring. With respect to arc diagrams, bond
chains correspond to the non-singleton connected components (disregarding the backbone
with respect to adjacency). The length of a bond chain is given by the number of arcs in
the corresponding connected component. According to before definition, the simplest bond

1Note the usage of a subsequence which allows symbols of w to be left out.
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Figure 6: Exemplary H bond chain with a typical, but not necessary zigzag pattern.

chain consists of a single pair, i.e., in terms of arc diagrams, of two vertices connected by an
arc. In general, it is possible to draw all the arcs of a bond chain “without lifting the pen”
(thus its name). We call a bond chain zigzag if our drawing direction (left/right) changes
during that task; an example is shown in Figure 6. For partial bond chains only those arcs
are considered with respect to zigzags whose open and closing bracket both are part of the
corresponding substring. There are two special kinds of bond chains we need to distinguish
in connection with stems of extended secondary structures:

Definition 7 (Bridges and Cycles) Let w ∈ Σ⋆ an extended secondary structure and let
b a potentially partial bond chain of w. We call a (not necessarily proper) subsequence v of b
a bridge (of length l) iff v ∈ {(, ((} · {)(}l−1 · {), ((}, l ≥ 2, v ≡δ ρ, ρ ∈ {ε, (, ), ()}, applying
δ only to symbols that are corresponding w.r.t. w and no residue of symbol )( shows up in ρ.
We call b cycle (of length l + 1) iff b = (( · {)(}l−1 · ((, l ≥ 2, and b ≡δ ε, appyling δ only to
symbols that are corresponding w.r.t. w (which prevents b from being partial).

Note that a cycle is a special kind of a bridge and thus contributes to both motifs for count-
ing. Examples for bridges are given by the subsequences ()()() (with ρ = ε) or (()()() (with
ρ = (, being a substring of the bond chain (()()())), an example for a cycle is (()()()( ((.

With those terms we are able to express the appearance of novel stems in a descriptive
manner: A stem consists of directly nested bond chains which are not interrupted by unpaired
bases. If a bond chain is interrupted by an unpaired nucleotide so are the runs of opening or
closing brackets in its expansion thus giving rise to several stems. Furthermore, bridges (and
thus also cycles) containing symbol )( are only allowed to show up at the inner or outermost
position of a stem. The reason is obvious: symbol )( corresponds to sort of a branching of
a stem into two which should be considered the starting point of new stems. Accordingly, a
nucleotide represented by )( within a limiting bridges is part of two stems and contributes a
hydrogen bond to each of them. Figures 7 and 8 show novel stems containing bridges and
cycles.
The rest of the paper is structured as follows. In Section 2, we present the results of our
asymptotic analysis and reason about their importance. First, the number of extended RNA
secondary structures is considered. Subsequently, we investigated the structural motifs just
defined and present results for their averages, proportions and lengths. Section 3 offers more
details on the used methodology. In Section 4, we conclude with summarizing our main
findings and suggesting future extensions of our work.

2 Results

In this section, we present our results without describing the technical details of their proofs
– those are presented in Section 3.
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(a) (b)

Figure 7: (a) One kind of novel stem consisting mainly of simple base triples causing a
bent appearance of the stem. (b) Stem-loop representation of the bent stem in (a).

(a) (b)

(c) (d)

Figure 8: Novel stems starting from (a) bridge structures and (c) cycles and their corre-
sponding stem-loop representations (b) resp. (d) where the hydrogen bonds of each stem are
colored differently.
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Table 1: Comparison of asymptotic and exact coefficients for different lengths of RNA
sequences.

Length Asymptotic coefficient Exact coefficient Quotient
10 10667 9402 1.13455
25 4215604519670 4007586822784 1.05191
50 3.1348324558 × 1027 3.0562890692 × 1057 1.02570
100 4.9030720370 × 1057 4.8411551219 × 1057 1.01279
250 1.0738782841 × 10149 1.0684271986 × 10149 1.00510
500 6.4328693628 × 10301 6.4165155710 × 10301 1.00255
750 5.9328382569 × 10454 5.9227776464 × 10454 1.00170
1000 6.5290360859 × 10607 6.5207300849 × 10607 1.00127

2.1 Counting extended RNA secondary structures

First of all, we investigated the number of different extended secondary structures of size
n according to the model presented in (Höner zu Siederdissen et al., 2011). Initially we
determined the exact numbers up to length 1000. The corresponding counting sequence
starts as follows:

1, 1, 2, 6, 20, 66, 221, 757, 2647, 9402, 33813, 122876, 450543, 1664835,
6193553, 23178525, 87199503, 329592705, 1251029482, 4766563155, 18223733493,
69892469057, 268824143700, 1036690445777, 4007586822784, . . .

A lookup in the ‘On-Line Encyclopedia of Integer Sequences’2 did not result in a match. This
suggests that pseudoknot-free RNA secondary structures with base triples are a new com-
binatorial object and even not bijective with any other combinatorial objects studied before3.

Subsequently, we computed the precise asymptotic number of extended secondary structures:

0.25053615497618946335 × 4.10124749999982084857n

√
n3

(2.1)

Table 1 shows the result of a comparison between exact and asymptotic numbers for selected
sizes up to 1000 bases. Even for small n like those appropriate for RNA families such as
tRNAs (about 75 bases), the relative error is only between 1 and 2 %. Larger values of n
convenient for, e.g., ribozymes such as RNase P face deviations of clearly less than 1 %.

Compared to the seminal result by Stein and Waterman (1979) one sees a massive gain in
the number of secondary structures. The precise asymptotic number of classic structures of
size n is given by 1.10437 n−3/2 × 2.61803n. This shows that the introduction of base triples
leads to an exponential increase by a factor of 0.22686 × 1.56654n.

Qin and Reidys (2007) examined another extension of RNA secondary structures including
both base triples and pseudoknots. Using bijections and the theory of Birkhoff-Trjitzinksy,
they obtained an asymptotic formula with exponential growth 8n for the number of differ-
ent conformations in their model. An example for a corresponding structure is shown in
Figure 2(a). Compared to our approach their model includes only a subset of possible base

2See http://oeis.org/.
3Note that the same holds when considering extended secondary structures with a minimal hairpin loop

length of 0, which might be assumed a more natural structure from a pure combinatorial point of view.
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triples interactions: When reducing their model to not allowing pseudoknots, the number of
remaining structures of size n corresponds to the nth Motzkin number4 (Chen et al., 2008;
Bousquet-Mélou and Xin, 2006). Thus, it is significantly reduced to a size with exponential
rate of growth 3n proving our model to provide a much richer (pseudoknot-free) extension of
classic RNA secondary structures.

2.2 The expected quantitative behavior of structural motifs

We examined the structural motifs defined above in terms of their number of occurrences
and, if applicable, their length. Here the length could either be measured in the number of
bases or the number of hydrogen (H) bonds that contribute to a motif – sometimes both.
Finally, we derived three types of expectations: averages per extended secondary structure,
proportions and lengths.

Table 2 shows the results of counting the motifs and determining their averages per extended
secondary structure. As can be seen from this table, all means grow linearly with the length
of the RNA sequence. However, there is a rather wide range of coefficients. They vary from
0.00564 for the number of interior loops up to 0.64496 for the number of bases in all stems.

In Table 3 proportions of various kinds for the different parameters are presented. It is no-
ticeable that there is a relatively even distribution of bases with zero, one and two H bonds.
In contrast, the subtypes show much more variation in their distributions. Take, for exam-
ple, the case of bases with a single H bond. These are much more often connected to a base
triple than to another simple base (70 % and 30 %, respectively). Stems dominate the RNA
sequences in our model and account for nearly two out of three bases. Hairpin loops on the
other hand make up only 20 % of all bases. However, they represent more than half of all
unpaired bases. The main contributor to the number of H bonds are those occurring in base
triples with a proportion of almost 90 %. While cycles only account for 5 % of all H bonds,
bridge structures contain almost 30 % of all H bonds.

Table 4 displays expected lengths of different examined motifs. A comparison between the
minimum and expected lengths reveals that the motifs on average barely exceed the minimum.
Unsurprisingly, all motifs consisting of a sequence of unpaired bases share their expected
length, because they – as will become obvious during our proofs – are all based on the
same structural decomposition. The only exception is the expected length of interior loops,
which results from the existence of two unpaired sequence per interior loop. Contrary to
our expectations, the novel stems are only slightly longer than the classic stems (2.67691
bases vs. 2.12642 bases). Although novel stems result from base triples, they do not have a
minimum length of two. Some novel stems, e.g. one arc inside a bridge structure, comprise
only a single H bond.

A comparison between our model and corresponding results for classic structures reveals
some notable differences (Table 5). In our model, there are on average less unpaired bases
per secondary structure and we have less bulges and more hairpins, while both decrease sim-
ilarly in length. In contrast, we have on average more H bonds in general as well as more

4The nth Motzkin number mn is given by the number of strings w ∈ {*, (, )}n with |w|( = |w|) and for

which any factorization w = u · v implies |u|( ≥ |u|) (Nebel, 2004); we have mn ∼ 3
√

3

2

√

πn
3
3n, n → ∞.
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Table 2: Precise asymptotics for the average value per extended secondary structure for
various parameters together with the native behavior derived from PDB data. Variable n
represents the size of the extended secondary structures considered.

Parameter Expectation
(combinatorics)

Expectation
(database)

Number of unpaired bases 0.35504n 0.159068n
Number of bases (1 H bond, total) 0.33020n 0.834236n
Number of bases (1 H bond, within simple pairs) 0.09852n 0.824703n
Number of bases (1 H bond, outside simple pairs) 0.23168n 0.009534n
Number of bases (2 H bonds, total) 0.31476n 0.006696n
Number of bases (2 H bonds, center position) 0.07509n 0.000857n
Number of bases within bridges 0.20444n 0.002551n
Number of runs of unpaired bases 0.26847n 0.090800n
Number of cycles 0.00794n −0.000011n
Number of bridges 0.06467n 0.000850n
Number of bond chains 0.17304n 0.413517n
Number of segments 0.52808n 0.572585n
Number of H bonds in cycles 0.02509n −0.000033n
Number of H bonds in bridges 0.13977n 0.001700n
Number of H bonds in triples 0.43060n 0.011463n
Number of H bonds in simple pairs 0.04926n 0.412351n
Number of H bonds 0.47986n 0.414673n
Number of classic hairpin loops 0.02791n 0.002802n
Number of novel hairpin loops 0.11916n 0.000318n
Number of all hairpin loops 0.14707n 0.003120n
Number of bases in classic hairpin loops 0.03692n −0.000950n
Number of bases in novel hairpin loops 0.15758n 0.000306n
Number of bases in all hairpin loops 0.19450n −0.000644n
Number of classic stems 0.02957n 0.067407n
Number of novel stems 0.29382n 0.004948n
Number of all stems 0.32339n 0.072355n
Number of bases in classic stems 0.06288n 0.768499n
Number of H bonds in classic stems 0.03144n 0.384250n
Number of bases in novel stems 0.58208n 0.072283n
Number of H bonds in novel stems 0.44842n 0.039565n
Number of bases in all stems 0.64496n 0.840782n
Number of H bonds in all stems 0.47986n 0.423814n
Number of bulges 0.07626n 0.021935n
Number of interior loops 0.00564n 0.028501n
Number of bases in bulges 0.10085n 0.038567n
Number of bases in interior loops 0.01491n 0.094708n
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Table 3: Expected proportions for different parameters.

Parameter Expectation
Unpaired bases of all bases 0.35504
Simple base pairs of all bases 0.33020
Simple base pairs inside simple pairs of all simple base pairs 0.29837
Simple base pairs outside simple pairs of all simple base pairs 0.70163
Base triples of all bases 0.31476
Centered base triples of all base triples 0.23858
Bases within bridges of all bases 0.20444
H bonds in simple pairs of all H bonds 0.10266
H bonds in triples of all H bonds 0.89734
H bonds in cycles of all H bonds 0.05228
H bonds in bridges of all H bonds 0.29127
Bases in classic hairpin loops of all bases 0.03692
Bases in classic hairpin loops of all unpaired bases 0.10397
Bases in novel hairpin loops of all bases 0.15758
Bases in novel hairpin loops of all unpaired bases 0.44384
Bases in all hairpin loops of all bases 0.19450
Bases in all hairpin loops of all unpaired bases 0.54782
Bases in classic stems of all bases 0.06288
Bases in novel stems of all bases 0.58208
Bases in all stems of all bases 0.64496
H bonds in classic stems of all H bonds 0.06552
H bonds in novel stems of all H bonds 0.93448
H bonds in all stems of all H bonds 1.00000
Bases in bulges of all bases 0.10085
Bases in bulges of all unpaired bases 0.28404
Bases in interior loops of all bases 0.01491
Bases in interior loops of all unpaired bases 0.04198
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Table 4: Expected lengths for different structural motifs.

Parameter Expectation
Length of bridges 2.16110
Length of bond chains 2.77319
Length of cycles 3.16110
Length of runs of unpaired bases 1.32245
Length of segments in bases 1.89366
Length of classic hairpin loops 1.32245
Length of novel hairpin loops 1.32245
Length of all hairpin loops 1.32245
Length of classic stems in bases 2.12642
Length of novel stems in bases 2.67691
Length of all stems in bases 2.62657
Length of classic stems in H bonds 1.06321
Length of novel stems in H bonds 1.52618
Length of all stems in H bonds 1.48385
Length of bulges 1.32245
Length of interior loops 2.64490

Table 5: Comparison between expectations in the combinatorial model with and without
base triples. Results for hairpin loops and bulges in classic structures are reproduced from
Nebel (2002a), while those for stems, unpaired bases and H bonds are obtained from Hofacker
et al. (1998).

Parameter Quotient
Mean number of (all) hairpin loops 1.39311
Expected length of hairpin loops 0.81732
Mean number of (all) stems 1.36997
Expected length of stems in H bonds 1.26732
Mean number of bulges 0.44641
Expected length of bulges 0.81732
Mean number of unpaired bases 0.79387
Mean number of H bonds 1.73619

and longer stems – which might have been expected.

Our model is purely combinatorial, i.e. different structural motifs evolve uniformly and in-
dependent of any energy constraints. Thus, we do not expect it to behave realistically, i.e.,
to reflect the expected structural appearance of native RNA structures with base triples.
Further theoretical research may use non-uniform stochastic models to narrow the gap. Nev-
ertheless, in order to see if there are at least some parameters which agree and to provide
the reader an insight into the real world behavior of the structural motifs studied here,
we performed the following experiments. We downloaded structural data from the Protein
Data Bank (PDB)5 yielding 990 records. Each of the structures6 has been analyzed using

5Found at http://www.rcsb.org/pdb/home/home.do, data downloaded June 6th 2013, search criteria
Everything selecting polymertyp RNA.

6For our final statistical analysis, 3R1C has been erased for it showed a (presumably) flawed behavior,
distorting the computed regressions.
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RNAVIEW and a handmade program was used to count appearances of the various motifs.
We had to omit 405 records since their structures contained pseudo-knots. For the resulting
data on motif appearances, linear regressions were computed. The last column of Table 2
lists the obtained fittings (as a function of sequence length n), omitting constant additive
terms. Details will be reported in the Supplement (link can be found in appendix).

3 Method and proofs

In this section, we explain how the asymptotics for the number of extended secondary struc-
tures and the diverse parameters were derived. We used the methodology which – in con-
nection with RNA structure – has been introduced in Nebel (2002b). We will show detailed
steps of the analysis for the number of extended secondary structures as well as for the num-
ber of hairpins. Since our other results are obtained in a very similar way, details on their
derivation will be made available in the Appendix and a Supplement only.
We assume the reader to be familiar with generating functions and the O-transfer method
as well as with implicit algebraic functions and the Newton polygon method. For elaborate
information on those, we refer the reader to Flajolet and Sedgewick (2009) and Hille (1962).
Background information on these topics can also be found in Flajolet and Sedgewick (1993a,b,
2001).

3.1 Asymptotic number of extended secondary structures

We start with the unambiguous, pictorial grammar G for all extended secondary structures
presented in (Höner zu Siederdissen et al., 2011, Fig. 3), translating it to a context-free gram-
mar for the language of extended secondary structures as follows: Any pictorial intermediate
symbol on the left-hand side of an equation in G is assigned a different intermediate symbol
of our grammar. For example, we identify the axiom S with ◦—◦ from the first (leftmost)
equation in G. An isolated • for G is identified with *, a • connected by an arc either with
( or ) depending on the direction of the arc. Thus, the equation ◦—◦ = •◦—◦ for example
becomes production S → *S and the equation ◦—◦ = •⌢

−
• is translated into S → B, B the

intermediate introduced for pictogram •⌢
−

•. It gets only slightly more complicated to handle
pictograms using symbols ⊳, ⊲ and ⊳⊲. A symbol ⊳⊲ in G corresponds to a triple base, its kind
depending on the arcs which are connected to the triangles. If an arc to the right (resp. left)
is connected to the left (resp. right) triangle in ⊳⊲, then ⊳⊲ corresponds to (( (resp. ((), other-
wise ⊳⊲ stands for )(. The symbol at the other end of such an arc is translated accordingly,
e.g. a • becomes an ordinary bracket. A single triangle ⊳ or ⊲ corresponds to no bracket but
represents a still missing corresponding bracket for an already produced symbol. In this way,
the pictorial equation ◦–◦ = • ⌢

◦−⊳⊲◦—◦ of G contributes the production S → (L ((S where L
is the intermediate associated with ◦–⊳ representing a substructure which must contribute
a symbol corresponding to the so far unmatched bond of ((. Using three more nonterminal
symbols R, C and D to identified with ⊲−◦, ⊲−⊳ and ⊲×⊳ we finally arrive at the following
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context-free grammar (using | to separate alternatives for the same nonterminal) :

S → *S | * | BS | B | (L ((S | (L (( | ((R)S | ((R) | ((D ((S | ((D (( | (S)(R | ((R)(R

L → *L | BL | (L ((L | ((R)L | ((D ((L | (S)(C | (S | ((R)(C | ((R

R → S)S | S) | L ((S | L (( | S)(R (3.1)

C → D | S

D → S)L | S)(C | L ((L

B → (S)

It is easy to see that this grammar is also in agreement with our definition for extended
secondary structures: either pairs of corresponding brackets are produced in a single step
(like, e.g., for B → (S)) or an unbalanced pair of brackets is generated where a partner
corresponding to a base triple still is missing (e.g., S → (L ((). For the latter the used
nonterminal (L in case of S → (L (() signals a still missing bracket of appropriate type (left
for nonterminal L). In case of ((D (( nonterminal D ensures that the two base triples will not
be paired to each other twice.
In order to use this grammar to determine the total number of extended secondary struc-
tures of size n we translate it into a counting generating function. For S the class of all
extended secondary structures we set S(z) =

∑

s∈S z|s|, |s| the size (number of symbols resp.
nucleotides) of structure s. In general, we assign every nonterminal symbol X the function
X(z), X ∈ {S, L, R, C, D, B}. Now it is well-known (see, e.g., (Flajolet and Sedgewick,
2001), (Flajolet and Sedgewick, 2009, I.5.4)) how to translate a context-free grammar into
a system of equations for those functions; its solution for the function associated with the
axiom (S in our case) provides the counting generating function for the language generated7.
To derive that system, we make every rule with left-hand side X an additive term for the
equation for X(z), replacing terminal symbols by z (each terminal contributes to the size of
a string generated thus must contribute to the exponent of z) and each nonterminal by its
generating function; concatenation is replaced by multiplication. This way we arrive at

S(z) = zS(z) + z + B(z)S(z) + B(z) + z2L(z)S(z) + z2L(z) + z2R(z)S(z) + z2R(z)

+z2D(z)S(z) + z2D(z) + z2S(z)R(z) + z2R(z)2,

L(z) = zL(z) + B(z)L(z) + z2L(z)2 + z2R(z)L(z) + z2D(z)L(z) + z2S(z)C(z) + zS(z)

+z2R(z)C(z) + zR(z),

R(z) = zS(z)2 + zS(z) + zL(z)S(z) + zL(z) + zS(z)R(z),

C(z) = D(z) + S(z),

D(z) = zS(z)L(z) + zS(z)C(z) + zL(z)2,

B(z) = z2S(z).

The next step is to reduce the system of equations to a single equation for S(z). This can
be done by means of resultants or Groebner8 bases and we find the (for the following steps

7Note that for an ambiguous grammar the resulting generating functions counts the number of strings
together with their degree of ambiguity, i.e., together with the number of different ways a string can be
derived.

8We used Wolfram Mathemematica’s commands GroebnerBasis and Resultant to solve this task; for
most of the subsequent steps we used Mathemematica, too. A corresponding notebook is available in the
Supplement.
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necessarily) irreducible equation9 (abbreviating S(z) by S)

S = (4z5)S5 + (4z3 − 7z4 + 9z5)S4 + (−8z2 + 11z3 − 14z4 + 7z5)S3

+(5z − 10z2 + 14z3 − 9z4 + 2z5)S2 + (3z − 7z2 + 7z3 − 2z4)S (3.2)

z − 2z2 + z3.

Please note that at this point the connection of grammar and equation got lost. However,
this is an inevitable consequence of the need for a single equation for our generating function.
Connecting grammar and function at this point of the analysis asks for a grammar with a
single nonterminal only. Obviously we cannot hope to easily find such a grammar. In the do-
main of generating functions however things become commutative (the order of terminals and
intermediates on the right-hand side of a production is no longer of importance). Therefore
it is possible to compute a corresponding single equation.
We are not able to solve this equation for S in order to get a closed form representation of
S(z). However, this is not a big problem as we can proceed along the following lines: Our final
goal is to apply techniques from analytic combinatorics (the O-transfer method, see (Flajolet
and Sedgewick, 2009, VI.2)) to derive an exact asymptotic for the coefficient at zn of S(z)
denoted [zn]S(z). To this end we need an expansion of S(z) around its dominant singularity,
i.e., its singularity of smallest modulus. This singularity and the corresponding expansion
can be determined from the implicit representation of S(z) given by (3.2) alone. For any
algebraic function S(z) implicitly given by a polynomial equation F (z, S) = 0 of degree k (in
S) we normally have k distinct finite roots – the branches of the algebraic function S. There
are values of z were this statement about the number of roots is not valid; the first being those
for which the degree in S changes, i.e., for which the coefficient pk(z) of Sk in the polynomial
equation becomes 0. There, at least one branch of the function disappears (at infinity) –
thus being called a point at infinity – implying a pole (singularity) for one or more of the
branches. In our cases the corresponding pole z = 0 cannot belong to the branch of interest
to us for it would imply an infinite grows (of order 0−n) for [zn]S(z). Furthermore, values of
z where F (z, S) has multiple roots coincide with the branch points of the algebraic function,
i.e., points where two or more branches meet, and thus the function ceases to be analytic.
According to (Hille, 1962, Theorem 12.2.1.) and (Flajolet and Sedgewick, 2009, Lemma

VII.4) those can be determined by solving D(z) = 0, D(z) := (−1)
1

2
k(k−1)[pk(z)]−1R[F, Fw, w],

R[F, Fw, w] the resultant for F and the first derivative of F with respect to w; the roots of
the equation D(z) = 0 provide a superset of the finite branch points. For our equation (3.2)
we find

D(z) = (1 − z)2z13(1 + z)8(64 − 560z + 1292z2 + 1060z3 − 8384z4 + 13744z5 − 7936z6

−5135z7 + 5850z8 + 5279z9 − 4984z10 − 1417z11 + 1342z12 + 205z13 − 200z14

+112z15)

with the smallest – we seek the dominant singularity – non-zero solution of D(z) = 0 being

z0 := 0.243828249819120568114852586022 . . . (3.3)

A close inspection of (3.2) shows that this is a branch point indeed (see Figure 9 for a
graphical representation).
The next step is to compute the expansion of S(z) around z0. Since no closed form represen-
tation for S(z) is available, we use the Newton polygon method for that task. We follow the

9We typically speak of irreducible polynomials however subtracting S from both sides of the equation
yields a polynomial in variables z and S equated 0.
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Figure 9: The implicit plot of our generating function S(z) showing a branch point at
z = 0.243828 . . .
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Figure 10: Newton diagram of F̂ (Z, Y ). The bold line depicts the least convex polygon of
the Newton diagram.

approach discussed in (Hille, 1962, 12.3), shifting the branch point to the origin by means of
the translations z = z0 −Z and S = s0 +Y , s0 the solution of (3.2) at z0; we call the resulting
polynomial equation F̂ (Z, Y ) (implicitly defining a function Y (Z)). We know a priori the
existence of rational number α and complex number c such that limZ→0 Z−αY (Z) = c which
provides the leading term of the needed expansion Y (Z) ∼ cZα. Now the Newton diagram
allows to determine α. It has for each term Z iY j with a non-zero coefficient in polyno-
mial F̂ (Z, Y ) a point (i, j) in the (Z, Y ) plane and we construct the least convex polygon
containing these points. Figure 10 shows the diagram for F̂ .
The negative inverse slope of the (in our case unbroken) line connecting the points of smallest
modulus on the two axes equals α, thus α = 1

2
holds in our case10. Knowing α, we obtain c

by solving F̂ (Z, cZ1/2) and subsequently setting Z = 0. This way we arrive at the following

10In general, each line segment composing the connection of the two axes constitutes a possible exponent
α, see (Flajolet and Sedgewick, 2009, Sec. VII.7.1.).

18



leading term of the expansion

c := −1.798594782661093295257373939812 . . .

In order to compute more terms, the whole process could be repeated after eliminating the
main term from Y . However, for our purposes there is no need to compute additional terms
and we continue our analysis based on

Y (Z) ∼ c
√

Z + O(Z).

In a third and last step, we apply the O-transfer method (see (Flajolet and Sedgewick, 2009,
VI.2)) in order to determine an asymptotic for the nth coefficients from the series expansion
just computed. Keeping in mind the substitution Z = z0 − z, we arrive at

− c
√

z0

2
√

πn3
z−n

0 + O(a−nn−5/2).

Equation (2.1) shows a rounded version of this result.

3.2 Asymptotic number of hairpins

The general methodology to analyze the number and length of the various structural motifs
present in extended secondary structures is always the same. Starting with an unambiguous
context-free grammar for the language of extended structures we derive a generating function
and compute its coefficient. Different from what we did in the last section we now need a
secondary variable y to mark the occurrence of a motif or all its parts in case we want to
analyze lengths (see (Flajolet and Sedgewick, 2009, Chap. III) for details). Even if this task
appears rather mechanic, one detail needs to be considered. Any structural motif resp. the
symbols contributing to its length need to be uniquely associated to one or several of the
productions of the grammar used such that the application of the rule(s) is in one-to-one
correspondence to the motif showing up in the structure resp. a symbol contributing to the
motif in question.
The grammar of before section is not well-designed to this end and we will make use of the
grammar shown in Table 6 – denoted G in the sequel – and variants thereof to analyze the
various motifs. Grammar G uses nonterminal S to generate any extended secondary (sub-
)structure as a sequence of segments (bond chain or unpaired nucleotide). Any bond chain is
produced from intermediate H . Here some H rules generate brackets that are corresponding
(e.g. H → (S) or H → ((RTL (( where the outer brackets are corresponding), some rules
just possess a nonterminal that will produce a corresponding bracket in a later step (e.g.
H → ((RTWTL (( where the outer bracket of (( will correspond with a )( resulting from W
and the inner bracket of (( will find its partner in the string derived from R). Accordingly,
nonterminal L (resp. R) is used to produce left (resp. right) brackets that are needed to
correspond with symbols already generated. Intermediate W is used to produce the run of
symbols )( within bridges. We could prove G’s equivalence to grammar (3.1) by providing
a sequence of rule transformations which step by step changes the set of productions from
one to the other – and this indeed was the way we constructed G. On this way one can
easily check that each modification does not change the language generated by simulation
arguments, ambiguity issues could be addressed using generating functions (details on this
way of reasoning can be found later in this section and in the Appendix, where similar
arguments are used for variants of G). However, we decided to provide a more elegant proof
here: First we proof by induction that every string generated by G encodes an extended
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Table 6: Production rules of an unambiguous, context-free grammar G for extended RNA
secondary structures with base triples. Capital letters are used for non-terminal symbol, while
unpaired (*), pair (‘(’, ‘)’) and triple bases (‘(( ’, ‘)(’, ‘ ((’) constitute the terminal symbols.

S → * |*S | H | HS
H → ((RTWTL ((| ((RTL ((

| ((SWS ((| (S) | (SWS)

| ((RTWS) | (SWTL ((

| ((RT) | (TL ((

L → ((RTWS | (SWS | (S | ((RT
R → SWTL ((| SWS) | S) | TL ((

T → ǫ | S
W → )(SW | )(

secondary structure according to Definition 1, i.e., is an element of S. Second, we show
that the grammar is unambiguous. By observing that (3.1) and G have the same counting
generating functions we conclude that G is equivalent to grammar (3.1).
For nonterminal X define LN

X to be the language that could be derived from X using at most
N steps in a leftmost derivation and LX := limN→∞ LN

X , X ∈ {S, H, L, R, T, W }. First we
observe that )( and )( can be assume equivalent with respect to δ from Definition 1 and thus
we will identify the two in the proof to prevent unnecessary case distinctions. We show by
induction on the number of steps in a leftmost derivation that

LS ≡δ ε, LH ≡δ ε, LL ≡δ (, LR ≡δ ), LT ≡δ ε, LW ≡δ )(,

writing LX ≡δ ρ as a short form for (∀w ∈ LX)(w ≡δ ρ).
We start with considering derivations of at most 2 steps. For S we can generate * and **

but no other word since H needs at least two steps to generate a terminal string; obviously,
{*, **} ≡δ ε holds. For the other nonterminals we find L2

H = {(*)} ≡δ ε, L2
L = {(*} ≡δ (,

L2
R = {*)} ≡δ ), LT = {ε, *} ≡δ ε and11 L2

W = {)(} ≡δ )( and the anchor follows. Now
assume the claim holds for derivations of at most N steps and consider derivations of length
at most N + 1. For S we have 4 alternatives, and we can apply the claim to any symbol
showing up on the right-hand side after a rule was used. Since any string derived from S or
H in at most N steps is equivalent ε we conclude LN+1

S ≡δ ε. Regard H → ((RTWTL (( as
a first step. By the induction hypothesis everything which might be derived from R (resp.
T , W , L) can be reduce to ) (resp. ε, )(, (). Thus after the corresponding reductions have
been performed inside-out we are left with (())(( ((which obviously reduces to ε applying the
equations from δ. It is an easy exercise to show that the same holds when applying one of
the other alternatives for H as a first derivation step, such that LN+1

H ≡δ ε follows. Consider
L → ((RTWS as the first derivation step. Again, we can make use of the hypothesis to
reduce R, T , W and S getting (())( which obviously reduces to (. At this point it should be
obvious how to proceed until the induction step is entirely proven. We remark while passing
that by inspection of the rules for nonterminal H it is easy to show that G cannot generate
any pair of corresponding brackets without at least one symbol in between (thus honoring
condition w ≡δ\{*≡δε} ρ =⇒ ρ = w of Definition 1).
To show that G is unambiguous, note that we can decompose any word derived from S
into a run of * followed by a pair of brackets (generated from H) and potentially a suffix
generated from S again. The leading symbols * cannot imply ambiguities for their number

11Here we make use of before mention equivalence )( ≡ )(.
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Table 7: Grammar Gch used for counting number and total length of classic hairpin loops.

S → * |*S | H | HS
H → ((RTWTL ((| ((RTL ((

| ((SWS ((| (V ) | (SWS)

| ((RTWS) | (SWTL ((

| ((RT) | (TL ((

L → ((RTWS | (SWS | (S | ((RT
R → SWTL ((| SWS) | S) | TL ((

T → ǫ | S
W → )(SW | )(

V → P | Q
P → * |*P
Q → *Q | H | HS

uniquely determines which rules to apply. For any combination of the outermost brackets in
{(, ((} × {), ((} G has several alternatives to generate them. However, we can easily decide
which has to be applied by considering the respective corresponding brackets. For example,
the outermost pair (( ((may not be corresponding at all; then ((RTWTL ((must be used such
that (( (resp. (() becomes corresponding with the residue of the string produced from R (resp.
L) and a symbol )( introduced by W . If (( ((are corresponding with each other as well as with
the residues of the string produced from R resp. L, rule H → ((RTL ((must be used. Finally,
if the two are corresponding with each other and with an interior )(, H → (SWS) is the
choice. It is now an easy exercise, to use the same kind of reasoning to see that the outside-in
decomposition of any terminal string generated by G always allows the unique identification
of the next production to use. Finally please note that after translating G into a system of
generating functions and reducing this to a single equation in S and z, we rediscover (3.2).
This proves G to unambiguously12 generate S.
Now let us try to count the number of hairpins in the extended secondary structures of
size n. We first observe that any hairpin loop uniquely corresponds to a hairpin such that
counting hairpin loops is sufficient. Here we want to distinguish classic from novel loops.
According to Definition 3 a classic hairpin loop of length l is given by a substring (*l),
l ≥ 1. Within G, a pair of corresponding brackets () is generated by production H → (S).
Unfortunately, S now can either generate a hairpin loop or a structure with further H bonds
and accordingly we cannot identify the number of rule applications of H → (S) and the
number of classic hairpins. However, introducing a new nonterminal V which either can
generate {*}+ (production V → P , P a second new nonterminal with P → * | *P ) or
LS \ {*}+ (production V → Q, Q a third new nonterminal with Q → *Q | H | HS) and
replacing H → (S) by H → (V ) makes it possible to identify a classic hairpin with the
application of rule V → P and to count their length by taking13 P → *P into account,
too. Obviously this modification does not change the generated language and no ambiguities
are introduced. Table 7 shows the complete resulting grammar Gch. To determine the total
number of all classic hairpins in all extended secondary structures of size n we translate
the productions of Gch in the same way into a system of equations as before with the only
difference that now a second variable y is used to mark the application of V → P , assuming

12To show that G only produces strings in S and that the generating functions coincide is not sufficient
because missing extended secondary structures in general could have been balanced in number by ambiguities.

13After production f : V → P has been used, P → * is applied exactly one. Thus counting the number of
applications of rule f is quantitatively equivalent to count applications of rule P → *.
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all generating functions to be bivariate (depending on variables z and y). Accordingly,
V → P is translated into V (z, y) = yP (z, y) giving rise to an increment of the exponent of
y every time this rule is applied. Afterwards, the resulting system of equations is reduced
into a single one in S, z and y using standard techniques. Then, we take the implicit partial
derivative with respect to y and set y = 1 afterwards (see (Flajolet and Sedgewick, 2009,
Chap. III)). This way, we get any implicit equation for the resulting generating function
S ′(z, 1) whose coefficient at zn is the total number of classic hairpins in all structures of size
n. This equation is in two symbols, the derivative S ′(z, 1) with respect to y at y = 1 and
S(z, 1) = S(z), i.e., the generating function counting all extended secondary structures. For
the latter we use our equation from the analysis before and reduce the resulting system of two
equations to get an implicit equation in two symbols S ′ and z for the generating function in
question. At this point we can compute the corresponding coefficient asymptotic (by Newton
polygon method and O-transfer as before) which then is divide by the asymptotic number
of extended secondary structures of size n to compute the average number of hairpin loops
in an extended structures of size n. Since the number of hairpins in a structure of size n is
upper bounded by n, the coefficient of generating function S ′(z, 1) can at most be a factor
n larger than that of generating function S(z). Therefore, the dominant singularity must be
the same since the exponential rate of growth cannot change – an observation which holds
for all the parameters considered. We only provide the key results of the remaining analysis.
The implicit representation of S ′(z, 1) =: T is given by

T 5(112z18 − 536z17 + 1141z16 + 15z15 − 4628z14 + 3088z13 + 14638z12 − 23522z11 − 1864z10

+19740z9 + 16297z8 − 68289z7 + 75380z6 − 40784z5 + 7128z4 + 4560z3 − 3164z2 + 752z − 64) +

T 4(112z18 − 424z17 + 717z16 + 732z15 − 3896z14 − 808z13 + 13830z12 − 9692z11 − 11556z10 + 8184z9

+24481z8 − 43808z7 + 31572z6 − 9212z5 − 2084z4 + 2476z3 − 688z2 + 64z) + T 3(50z18 − 122z17

+162z16 + 604z15 − 1225z14 − 2013z13 + 4203z12 + 2069z11 − 4943z10 − 3621z9 + 9134z8 − 5546z7 +

1367z6 − 119z5) + T 2(11z18 − 8z17 + 34z16 + 172z15 − 101z14 − 526z13 + 139z12 + 730z11 − 6z10

−758z9 + 442z8 − 64z7 − z6) + T (z18 + z17 + 10z16 + 34z15 + 23z14 − 27z13 − 36z12 − 8z11 + 2z10) +

z16 + 4z15 + 6z14 + 4z13 + z12.

Note that for T our dominant singularity is a point at infinity, making the coefficient of T 5 to
become zero. However, we still can apply the Newton polygon method substituting T by 1/U ,
multiplying with U5 afterwards. This way, the point at infinity is translated into a branch
point at z0 for the resulting implicit equation for U(z). Proceeding as before, i.e., shifting
the branch point to the origin (substitution Z = z0 − z), deriving the Newton diagram etc.
finally yields the following leading term of the expansion

U(z) ∼ 163.375126468432414746 . . .
√

Z.

We have to first undo the substitution Z = z0 − z and then make use of T = 1/U . This way
we find

T (z) ∼ 0.006120882790522102453083746995 . . .
√

z0

√

1 − z
z0

and the O-transfer implies

[zn]T (z) ∼ 0.006120882790522102453083746995 . . .√
z0

√
πn

z−n
0 .

Computing the quotient of before asymptotic and the asymptotic number of extended struc-
tures of size n yields an average number of 0.027914 . . . n classic hairpin loops in an extended
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Table 8: Grammar Gnh used for counting the number and total length of novel hairpin
loops.

S → * |*S | H | HS
H → ((RTWTL ((| ((RTL ((

| ((V WV ((| (S) | (V WV )

| ((RTWV ) | (V WTL ((

| ((RT) | (TL ((

L → ((RTWV | (V WV | (V | ((RT
R → V WTL ((| V WV ) | V ) | TL ((

T → ǫ | S
W → )(V W | )(

V → P | Q
P → * |*P
Q → *Q | H | HS

structure of size n (see Table 2). We already explained above, how to label productions of
Gch by y in order to count the total length of all classic hairpins. Dividing the resulting
asymptotic number – its computation follows exactly the same lines and is detailed in the
Supplement – by the number of hairpin loops just computed yields the expected length of a
single classic hairpin loop of 1.32245 . . . as reported in Table 4. Dividing the total length of all
classic hairpin loops by the number of extended secondary structures provides the Number of
bases in classic hairpin loops 0.03692 . . . n as given in Table 2. Finally, dividing this number
by n (resp. by the expected number of unpaired bases 0.35504 . . . n) yields the corresponding
proportion Bases in classic hairpin loops of all bases (resp. Bases in classic hairpin loops of
all unpaired bases) as reported in Table 3. Again, details on the corresponding analysis can
be found in the Supplement.
To count the novel hairpins, we need to apply similar changes to grammar G at different places
(rules). In detail, we have to identify those positions in the right-hand sides of productions
with premise H that might produce a pair of corresponding brackets different from (). Here,
we will have the possibility to either generate a run of symbols * or a structure with additional
paired bases, the first alternative implying a novel hairpin loop. Table 8 shows the resulting
rule set where nonterminals V , P and Q are used in the same way as before. We will not
discuss all the changes applied in detail but demonstrate the way of reasoning using the
example of production H → (V WTL ((. This rule results from f : H → (SWTL (( for G. We
first observe that the bracket ( produced by f will be in correspondence with )( generated
from W since S (as proven above) can only produce strings that reduce to ε. Accordingly,
( together with )( will imply a hairpin loop iff S generates a run of *. Thus, replacing S
by V allows to keep track of those loops. Furthermore, (( might contribute a second novel
hairpin loop. However, we need to consult the rule applied for L to handle this one. If for
instance L → (S is applied, this might yield a hairpin, thus we replace S by V for this
production. Analogously, g : L → (SWS might give rise of two novel hairpin loops, one
between ( produced by g and )( resulting from W and one between )( and (( stemming from
f . As a consequence, both occurrences of S in g are replaced by V . Considering all the other
possibilities in the very same way finally yields grammar Gnh as shown in Table 8.
From this point on, the analysis follows the very same lines: we translate the grammar into
a system of generating function, marking terminal symbols by z and the application of rule
V → P by y thus counting the total number of novel hairpins by taking the derivative
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with respect y, setting y = 1 afterwards. If we additionally mark P → *P by y we keep
track of the total length of all novel hairpin loops. Computing an expansion of the resulting
generating function(s) at our dominant singularity finally provides a precise asymptotic for
the number(s) in question. It should be obvious how to derive the related averages and
proportions reported in Tables 2, 3 and 4.
We close this section my noting that the analysis of all hairpin loops can either be performed
by adding up the results obtained for classic and novel hairpin loops or by modifying grammar
Gnh, replacing H → (S) by H → (V ).

4 Conclusion

In this paper, we examined an extended combinatorial model of RNA secondary structures
considering base triples. Given the fact that the sequence of the first exact numbers of
structures is not contained in the The On-Line Encyclopedia of Integer Sequences database,
extended RNA secondary structures with base triples can be considered a new combinatorial
object not in direct bijection to any combinatorial class studied before.
After providing precise definitions for the structures themselves as well as for various struc-
tural motifs capable of describing their overall appearance, we have presented a precise
asymptotic for the number of extended RNA secondary structures as a function of their
size n. This way we proved that introducing base triples increases the number of possible
foldings exponentially. This gain has considerable effects on practical applications such as
folding algorithms in terms of search space size and runtime. Second, we have shown aver-
ages, proportions and lengths of various structural motifs including both classic and novel
ones. Also, we have pointed out differences in expectations compared to both classic models
and nature. For the latter, we used data from the Protein Data Bank to derive statistics on
structural parameters of native RNA molecules with base triples.

Future research based on our model could make use of stochastic context-free grammars in
order to bring the model closer to nature. A further extension of the model by introducing
pseudoknots might be another worthwhile effort.
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Höner zu Siederdissen, C., Bernhart, S. H., Stadler, P. F., and Hofacker, I. L. (2011). A folding
algorithm for extended RNA secondary structures. Bioinformatics, 27(13):129–136.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages, and Computation, volume 2. Addison-wesley Reading, MA.

Kemp, R. (1996). On the Average Minimal Prefix-Length of the Generalized Semi-
Dycklanguage. RAIRO Theoretical Informatics and Applications, 30(6):545–561.

Knudsen, B. and Hein, J. (1999). RNA secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics, 15(6):446–454.

Leontis, N. B. and Westhof, E. (2001). Geometric nomenclature and classification of RNA
base pairs. RNA, 7(4):499–512.

Nebel, M. E. (2002a). Combinatorial Properties of RNA Secondary Structures. Journal of
Computational Biology, 9:541–573.

Nebel, M. E. (2002b). On a Statistical Filter for RNA Secondary Structures. Frankfurter
Informatik-Berichte 5/02 (technical report), Johann Wolfgang Goethe-Universitaet.

25



Nebel, M. E. (2004). Investigation of the Bernoulli-Model of RNA Secondary Structures.
Bulletinof Mathematical Biology, 66:925–964.

Nussinov, R., Pieczenik, G., Griggs, J. R., and Kleitman, D. J. (1978). Algorithms for Loop
Matchings. SIAM Journal on Applied Mathematics, 35(1):pp. 68–82.

Parisien, M. and Major, F. (2008). The MC-Fold and MC-Sym pipeline infers RNA structure
from sequence data. Nature, 452(5):51–5.

Pipas, J. M. and McMahon, J. E. (1975). Method for Predicting RNA Secondary Struc-
ture. Proceedings of the National Academy of Sciences of the United States of America,
72(6):2017–2021.

Qin, J. and Reidys, C. M. (2007). A combinatorial framework for RNA tertiary interaction.
Technical Report 0710.3523, arXiv.

Sankoff, D. and Kruskal, J. B. (1999). Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison]. CSLI Publ.

Stein, P. R. and Waterman, M. S. (1979). On some new sequences generalizing the Catalan
and Motzkin numbers. Discrete Mathematics, 26(3):261 – 272.

Waterman, M. S. (1978). Secondary Structure of Single-Stranded Nucleic Acids. In Studies on
foundations and combinatorics, Advances in mathematics supplementary studies, Academic
Press N.Y., 1:167 – 212, pages 167–212.

Zuker, M. and Stiegler, P. (1981). Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148.

5 Appendix

In this appendix, we discuss in detail the modifications to grammar G needed to analyze
the parameters not discussed in Section 3. The corresponding computations are presented in
the Supplement (http://wwwagak.cs.uni-kl.de/downloads/papers/BaseTriplesSupplement.pdf –
PDF version – or http://wwwagak.cs.uni-kl.de/downloads/papers/BaseTriplesSupplement.nb –
Mathematica notebook).
Most of the parameters could be examined without altering grammar G (see Table 6). Nev-
ertheless, some parameters (e.g. novel stems) require extensive modifications in order to
distinguish them from other parts of the extended secondary structures. These modifications
include doubling or restructuring parts of the rule set, but were done without introducing
unambiguity and keeping equivalence to the original grammar in mind. The restructuring of
grammar G in the analysis of hairpin loops is a representative example.
The following table lists the various structural motifs together with the name of the grammar
and rule(s) used for their analysis. If not stated otherwise, number and length of the motifs
are considered on basis of the same grammar and thus are not distinguished. The listed
productions must be marked by y or y2, depending on their contribution to the parameter. In
cases where this distinction is complicated, the marking is provided, too. The corresponding
grammars and their construction are detailed afterwards.
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Parameter CFG rule(s) used to access parameter (marking by y)

unpaired bases G S → *, S → *S

runs of unpaired bases Gru D → *

H bonds, total G any rule producing a bracket symbol excluding H →
((RT W T L ((, H → (SW S), H → ((RT W S), H →
(SW T L ((, L → ((RT W S, L → (SW S and the anal-
ogous R-productions since for all those rules H bonds
for the produced bracket symbols are already counted
elsewhere (e.g. H bonds for (SW S) are counted by W

production)
H bonds in simple pairs G H → (S)

H bonds in base triples G same as for total number H bonds excluding H → (S)

paired bases with 1 H bond,
total

G every rule producing ( and/or )

paired bases with 1 H bond in
simple pairs

G H → (S)

paired bases with 1 H bond
outside simple pairs

G every rule produce ( and/or ) except H → (S)

paired bases with 2 H bond,
total

G any rule producing (( , (( or )(

paired bases with 2 H bond,
center position

G any rule producing )(

number cycles G H → ((SW S ((

length of cycles Glc both V productions
bridges G W → )( for number, both W rules for length (in H

bonds)
bond chains G any H production
segments G any S production
classic hairpin loop Gch P → * for number, both P rules for length
novel hairpin loops Gnh P → * for number, both P rules for length
classic stems Gs H → (H3) for number, H → (H3), H3 → (H3) for

size
novel stems Gs H → H2, H → (H4), L1 → (V , L1 → ((R2, L1 →

((R1S, R1 → V ), R1 → L2 ((, R1 → SL1 ((, W →
)(V W , W → )( for number, all H productions but
H → (H3), H3 → H1, all H4 productions, V → (V ),
V → H1, V → H2, all L1, L2, R1 and R2 productions,
all W productions and (only when counting multiple
affiliations) H2 → ((V W (( for length

bulges Gb any rule having D2 in its conclusion for number, both
D2 productions for length

interior loops Gil V → D2HD2 for number, both D2 productions for
length

Runs of unpaired nucleotides

Starting with G we cannot decide whether the application of S → * or S → *S can uniquely
be identified with a run of unpaired bases. The first rule could be used to identify runs
longer than 1 symbol since then it must be applied to terminate a growing sequence of *.
However, if the run consists only of a single symbol then the applications of the second rule
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Table 10: Grammar Gru used for counting the number of runs of unpaired bases.

S → D | DH | DHS | H | HS
H → ((RTWTL ((| ((RTL ((

| ((SWS ((| (S) | (SWS)

| ((RTWS) | (SWTL ((

| ((RT) | (TL ((

L → ((RTWS | (SWS | (S | ((RT
R → SWTL ((| SWS) | S) | TL ((

D → * |*D
T → ǫ | S
W → )(SW | )(

need to be counted for the produced S might be replace by H in the next step, implying
the run to be terminated. Unfortunately, counting both would yield the length and not the
number of runs. Therefore we introduce a new nonterminal D to stand for a non-empty
run for unpaired nucleotides * to be generated. Thus we have productions D → * | *D.
Furthermore, the set of rules for S is replace by S → D (the structure generated is entirely
unpaired), S → DH (the structure starts with a run of * which is followed by an outermost
pair of brackets its closing bracket being the last symbol of the structure), S → DHS (the
structure starts with a run of * which is followed by an outermost pair of brackets and at
least one more symbol), S → H (the structure consists of an outermost pair of brackets
which constitute the first and last symbol of the generated encoding) and S → HS (the
structure starts with an outermost pair of brackets followed by at least one more symbol).
By “the structure” in before discussion we mean the encoding generated from intermediate
S which is not necessarily the entire encoding of an extended secondary structure but might
be a substring of one. It is obvious that the different cases for the productions introduced for
S are disjoint and complete, thus the language generated is not changed and the grammar
remains unambiguous. Table 10 shows the resulting complete grammar.

Length of cycles

It is easy to analyze the number and length of bridges, since the application of rule W → )(

is in one-to-one correspondence with the generation of a run of corresponding )( while such
a run always belongs to exactly one bridge. Furthermore, each application of W → )(SW
contributes to a bridge’s length. The same holds for the number of cylces where production
H → ((SWS (( is the only one to initiate one. However, the length of cycles cannot be
analyzed without modifying grammar G since we cannot distinguish whether the application
of rule W → )(SW increases an arbitrary bridge or a bridge being a cycle. For this reason,
we introduce nonterminal V , assumed to be a copy of W (thus having the productions
V → )(SV | )() and replace W in the right-hand side of H → ((SWS (( by V . Obviously the
language generated has not been changed and no ambiguities have been introduced; the V
productions can be used to count the length of cycles. The resulting grammar Glc is shown
in Table 11.
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Table 11: Grammar Glc used for counting the total length of cycles.

S → • | • S | H | HS
H → ((RTWTL ((| ((RTL ((

| ((SV S ((| (S) | (SWS)
| ((RTWS) | (SWTL ((

| ((RT ) | (TL ((

L → ((RTWS | (SWS | (S | ((RT
R → SWTL ((| SWS) | S) | TL ((

T → ǫ | S
V → )(SV | )(

W → )(SW | )(

Table 12: Grammar Gs used for counting the number and total length of classic, novel and
all stems.

S → * |*S | H | HS
H → H1 | H2 | (H3) | (H4)

H1 → (V WV ) | (V WSL1 ((| (V WL2 ((| ((R1SWV ) | ((R2WV )

((R1SWSL1 ((| ((R2WL2 ((| ((R2WSL1 ((| ((R1SWL2 ((

H2 → (SL1 ((| (L2 ((| ((R1S) | ((R2) | ((V WV ((| ((R1SL1 ((| ((R1L1 ((

H3 → (H3) | H1 | DHS | HS | DH | D
H4 → (H4) | H2

V → (V ) | H1 | H2 | DHS | HS | DH | D
L1 → (V | ((R2 | ((R1S | ((R1SWV | ((R2WV | (V WV
L2 → (V | ((R2 | ((R1S | ((R1SWV | ((R2WV | (V WV
R1 → V ) | L2 ((| SL1 ((| V WSL1 ((| V WL2 ((| V WV )

R2 → V ) | L2 ((| SL1 ((| V WSL1 ((| V WL2 ((| V WV )

D → * |*D
W → )(V W | )(
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Stems

To count the number and length of stems, we modify G to make the production of unpaired
nucleotides explicit by introducing intermediate D with rule D → * | *D (see discussion of
Gru). However, instead of modifying the rules for S to incorporate D (as done for Gru) we
introduce another nonterminal V with V → D | DH | DHS | H | HS. Note that according
to above discussion, V and S are equivalent and thus can be interchanged arbitrarily without
altering the generated language or introducing ambiguities. However, having a second means
to generate a complete extended secondary structure will help with marking stems (at some
places we will use S, at other V depending on whether we need a production to contribute
to our marking or not). Now we take a look at all the conclusions of H in G. We aim at
distinguishing 4 cases: First, productions that whenever applied introduce new novel stems
(by initiating a new bond chain that cannot extend an existing stem due to ramifications).
Second, productions that give only rise to a new novel stem if the pair of brackets generated
is not directly nested in the last base pair of another stem, third, purely classic stems and
forth those stems of classic base pairs which change into a novel stem by the production of
a base triple. The following table shows all the right-hand sides of H-productions and the
resulting variants that follow from

• translating each occurrence of T into two alternatives, one where T → ε is used, i.e.,
T is erased and one for T → S, and

• replacing S by V if appropriate.

Furthermore, we specify, in which cases that productions imply a contribution to the number
of novel stems.

Conclusion from G Derived variants for Gs Contribution to novel stem(s)

((RT W T L (( ((RSW SL ((, ((RW L ((, ((RW SL ((, ((RSW L (( always
((RT L (( ((RL ((, ((RSL (( only if not directly nested
((SW S (( ((V W V (( only if not directly nested
(S) (V ) eventually if base triple follows
(SW S) (V W V ) always
((RT W S) ((RW V ), ((RSW V ) always
(SW T L (( (V W L ((, (V W SL (( always
((RT ) ((R), ((RS) only if not directly nested
(T L (( (SL ((, (L (( only if not directly nested

The same way, we modify the L, R and W productions, incorporating the rule used for T
into their right-hand sides. Now we separate H into three nonterminals H1 (always), H2 (if
not directly nested) and H3 (eventually) together with the productions H → H1 | H2 | H3

in order to distinguish the three cases in above table for a former H-production to con-
tribute a novel stem. This introduces only a single production for H3, namely H3 →
(V ). We thus can replace H3 by (V ) and change the set of productions for V into
V → (V ) | D | DH | DHS | H1 | H2 | HS, substituting H in V → H by the three possible
conclusions for H . Now we are almost done. When aiming for a marking of the production
rules that give rise to a new novel stem while setting up generating functions, we observe
that we must distinguish two “kinds” of usages of nonterminal V , one where we have to mark
the use of production V → H2 and one where we have not. Therefore we reuse H3, copying
the set of productions for V and replacing H → H3 by H → (H3) which obviously is without
effect to language and ambiguity. Furthermore, we observe that an L- resp. R-production
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might initiate a new novel stem (this is the case if neighbored by S resp. V in the sentential
form, i.e., in the right-hand side of the Hi-rule producing L resp. R) or just might extended
an existing stem. Thus we have to double both intermediates. Introducing symbols L1, L2, R1

and R2 assumed to be distinguished copies of L and R (i.e. assumed to have the same set of
production) allows to take care of before observation while counting. To this end, we replace
L (resp. R) in the right-hand sides of Hi-productions by L1 (resp. R1) if neighbored by S
and by L2 (resp. R2) otherwise. The same is done for the conclusions of Li resp. Ri rules
themselves. This way, marking any application of an L1 or R1 rule by y (or by y2) counts the
corresponding newly initiated novel stems. Last but not least we need to distinguish between
two kind of substrings emerging from (H3): those which show up in a novel stem and those
which are part of a classic stem (according to before discussion, both is possible for strings
derived from H3). Accordingly, we introduce another intermediate H4 which takes care of
such base pairs within novel stems and use H3 only in connection with classic stems (note
that the intermediates Hi now correspond to the 4 cases for H rules distinguished above).
Thus production H → (H3) becomes H → (H3) | (H4) and the rule set for H3 is divided
into H3 → (H3) | H1 | DHS | HS | DH | D (a classic stem initiated by H → (H3) is either
extended, or terminated by a ramification or a bulge, or terminated by a hairpin loop) and
H4 → (H4) | H2 (a stem initiated by H → (H4) is extended but eventually becomes a novel
stem by switching to nonterminal H2 which produce at least one base triple belonging to the
stem considered). At the end of the process we arrive at the grammar Gs shown in Table 12
which by construction generates the same language as G. By comparing the corresponding
enumerator generating functions it is an easy exercise to conclude that no ambiguities have
been introduced. Here it is possible to consider all stems just by adding up what is observed
for classic and novel stems. However, for the number of bases in stems, in order to obtain
feasible results for mean and proportion as well as for the expected length we counted the
contribution of bases in two different ways. As we have observed above, a base triple can
participate in two stems. However, counting its contribution only once (which e.g. is needed
for the proportion of Bases in novel stems of all bases) is simple since the number of bases
in all stems corresponds exactly to the sum of the number of pair bases and the number of
base triples. Counting a symbol {(( , ((, )(} once or twice depending on the number of stems
it participates becomes possible by marking the corresponding productions in Gs by y or y2

respectively.

Bulges and interior loops

The process to derive a grammar for counting number and length of bulges is similar to
what we did for stems. Starting from G, we first make the derivation of unpaired nucleotides
explicit by introducing intermediate D and the productions D → * | *D. Then we intro-
duce nonterminal V with V → D | DH | DHS | H | HS noting that this way V becomes
equivalent to S. Thus we can replace S by V whenever needed. We replace H → ((RTL ((by
H → ((RL (( | ((RSL (( observing that for the latter production S – even if generating a run
of * – will not give rise to a bulge. All other occurrences of S in the right-hand sides of H , L,
R, T and W productions are replaced by V . Now we have three different origins of a bulge:
A symbol T in the right-hand side of a H , L or R rule produces a run of symbols * (if this is
the case we always have a bulge which can easily be checked by inspecting the corresponding
rules), or a symbol V in the right-hand side of a H , L, R or W rule producing a nested
stem together with a run of symbols * to its left or right. To identify the two last cases, we
introduce a copy of symbol V , using names V1 and V2 to denote the two different replica; V1

and V2 have – so far – the same rules (those of former V ). We replace V for T → V by V1,
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Table 13: Grammar Gb used for counting the number and total length of bulges.

S → * |*S | H | HS
H → ((RTWTL ((| ((RL ((| ((RSL ((| ((V2WV2 ((| (V2) | (V2WV2)

| ((RTWV2) | (V2WTL ((| ((RT) | (TL ((

L → ((RTWV2 | (V2WV2 | (V2 | ((RT
R → V2WTL ((| V2WV2) | V2) | TL ((

T → ǫ | V1

W → )(V2W | )(

V1 → D2 | D1H | D1HS | H | HS
V2 → D1 | D2H | D1HS | H | HH | HD2 | HHS | HD1H | HD1HS
D1 → * |*D1

D2 → * |*D2

Table 14: Grammar Gil used for counting the number and total length of interior loops.

S → * |*S | H | HS
H → ((RTWTL ((| ((RTL ((| ((V WV ((| (V ) | (V WV )

| ((RTWV ) | (V WTL ((| ((RT) | (TL ((

L → ((RTWV | (V WV | (V | ((RT
R → V WTL ((| V WV ) | V ) | TL ((

T → ǫ | S
W → )(V W | )(

V → H | HS | D1 | D1H | D2HD2 | D1HH | D1HHS | D1HD1H | D1HD1HS
D1 → * |*D1

D2 → * |*D2

counting a bulge whenever V1 generates a run of symbols * only. At all other places V is
replaced by V2. However, we still cannot uniquely identify the generation of a bulge according
to the two other possibilities, since V2 → HS might either contribute a bulge (S ⇒⋆ *+) or
not (S produces something different from *+). Therefore we expand the productions of S in
V2 → HS one step further. To this end we replace S within the conclusion by V1 and then V1

by the conclusions of all V1 productions, getting V2 → HH | HD2 | HHS | HDH | HDHS
together with the other V2 productions which have not been changed. Finally, we introduce
a copy of D – using intermediates D1, D2 – using D2 for D whenever a bulge is generated,
D1 otherwise. In detail, for V1 → D, V2 → DH and V2 → HD we replace D by D2 (those
are the three cases giving rise to a new bulge distinguished above), all the other occurrences
are replaced by D1. This way we arrive at grammar Gb shown in Table 13. By before dis-
cussion it should be obvious that the language generated has not been altered. To see that
no ambiguities have been introduced we compare G’s and Gb’s counting generating functions.

Grammar Gil used to consider interior loops is constructed in an analogous way. The pro-
duction of symbols * is made explicit introducing D and V together with D → * | *D and
V → D | DH | DHS | H | HS noting again that this way V becomes equivalent to S. Af-
terwards, S is replaced by V in the right-hand sides of any H , L, R and W production. To
uniquely identify interior loops, V → DHS must be extended one step further by replacing
S by any possible V conclusion. This way we arrive at V → H | HS | D | DH | DHD |
DHH | DHHS | DHDH | DHDHS. Now an interior loop is generated if and only if
V → DHD is applied. To be able to count the length of the loop generated we introduce a
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copy of D, using D2 for V → D2HD2 and D1 of any other occurrence of D. Table 14 shows
the obtained grammar Gil at full detail. For the same reasons as stressed before, Gil can be
used for counting number and length of interior loops.
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