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Abstract

The Horton-Strahler number naturally arose from problems in various fields,
e.g. geology, molecular biology and computer science. Consequently, detailed
investigations of related parameters for different classes of binary tree struc-
tures are of interest. This paper shows one possibility of how to perform a
mathematical analysis for parameters related to the Horton-Strahler number
in a unified way such that only a single analysis is needed to obtain results
for many different classes of trees. The method is explained by the examples
of the expected Horton-Strahler number and the related r-th moments, the
average number of critical nodes and the expected distance between critical
nodes.
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1 Introduction

For a binary tree 7', i.e. a tree where each node has at most two descendants, the
Horton-Strahler number hs(T) is defined recursively in the following way:

0 : if T is either a leaf or empty
hs(T) := ¢ hs(T.1) +1 : if hs(T.1) = hs(T.r)
max(hs(T.l), hs(T.r)) : otherwise

Here, T.l (resp. T.r) denotes the left (resp. right) subtree of T. One example for a
binary tree and its marking by the Horton-Strahler number can be found in Fig. 1.
Originally this parameter was used in [16] and [28] to study the morphological
structure of river networks. It is also of interest to numerous other subjects like
botany or anatomy in which branching patterns appear. There are several links
of the Horton-Strahler number of a binary tree to computer science. For instance,
Ershov [6] has shown that the minimal number of registers needed to evaluate an
arithmetic expression £& with unary or binary operators, which is represented as
a binary tree T(€) (the syntax-tree), is given by 1 + hs(T'(£)). In [7], [10] and
[17] the average number of registers needed for the evaluation of syntax-trees of
different, types has been investigated. Furthermore, the minimum recursion-depth
required for a certain traversal of a binary tree T is also given by 1 + hs(T') (e.g.



Figure 1: A binary tree marked recursively by the Horton-Strahler number.

see [14]). Meir, Moon and Pounder [21] investigated the Horton-Strahler number
of channel networks with a fixed number of inputs. Prodinger has investigated
parameters like the average number of critical nodes [26] or the register path length
of binary trees where only critical nodes and not all nodes contribute to the path
length [27]. Here, a node is called critical if its two subtrees possess the same
value of hs, i.e. if it is responsible for a growth of the Horton-Strahler number.
Recently, the author determined the average Horton-Strahler number of a class
of trees (called C-tries) which model the trie data structure in a combinatorial
way [23]; the Horton-Strahler number of tries in the Bernoulli model has been
investigated in [5]. The combinatorics of the Horton-Strahler analysis has been
used in computer graphics for the creation of faithful synthetic images of natural
trees (see [31]) and for information visualization [15]. The Horton-Strahler number
also appears in molecular biology in connection with some theoretical considerations
about secondary structures of single-stranded nucleic acids [30]. With respect to this
application we usually speak about the order of a secondary structure instead of its
Horton-Strahler number. In [25] it is shown how the generating functions which will
be derived here can be used to asymptotically enumerate the number of secondary
structures of order p built from n bases. This solves a problem established by
Waterman [29] in 1978. A survey on the application of Horton-Strahler parameters
in different scientific areas has been presented in [32].

All the previously cited studies presenting a mathematical analysis of a Horton-
Strahler parameter (e.g. average value, variance, etc.) have in common that they
choose a fixed family of trees and a fixed parameter and then perform a dedicated
analysis for that setting. In the sequel a unified approach will be presented allowing
the investigation of a Horton-Strahler parameter for various families of trees by just
one analysis. The key for this approach is using multivariate generating functions
in such a way that appropriate substitutions for the variables can be finally used
to switch over to the different families of trees. The amount of work that will have
to be done after this substitution depends on the number of parameters that are
required in the final result. If the result possesses only a single parameter (e.g. the
total number of nodes of the tree), then no additional work is necessary, if multiple
parameters appear (e.g. the number of internal nodes and the number of leaves),
then an additional coefficient of our generating functions has to be determined. In
this way we will derive results for the following families of binary trees:

e Extended binary trees;
e Motzkin trees;

e unary/binary trees with ¢; different types of unary nodes and ¢, different
types of binary nodes;

e (C-tries.



We will consider two notions of size, namely trees with n nodes and trees with n
nodes and ¢ (non-empty) leaves. The results are derived assuming that all trees of
the same size are equally likely.

The approach presented makes it possible to perform unified computations for dif-
ferent parameters like the expected Horton-Strahler number (and higher moments),
the average number of critical nodes and the expected distance between critical
nodes. In the sequel we will use () to represent an internal node of a tree; O will
be used for the representation of a leaf. The distinction between different kinds
of leaves (e.g. leaves which really exist and leaves which represent an empty po-
sition of the tree) will be done by coloring. For example, the black leaf in Fig.
1 could be considered as a NIL-pointer. The notation [z} --- 2} *]f(z1,...,zy) is
used to represent the coefficient at 7" ---2;* in the expansion of f(z1,...,z;) at
(z1,...,2,) = (0,...,0), k > 1.

2 A Unified Analysis of Horton-Strahler Parame-
ters

In this section we will present a unified approach to the analysis of Horton-Strahler
parameters of binary tree structures. The method will be explained using the ex-
pected Horton-Strahler number and the related higher moments, the average num-
ber of critical nodes and the average distance between critical nodes as examples.
We will proceed in two steps. First, the idea of our approach will be discussed, then
the mathematical details will be given.

For any extended binary tree structure we can distinguish three types of internal
nodes. First, there are nodes where both successors are leaves (type 0); second,
there are internal nodes where one successor is a leaf but the other one is not (type
1) and third, there are internal nodes where none of the successors are leaves (type
2). Note that for extended trees an internal node always possesses two non-empty
successors. However, it will also be possible to consider families of trees in which
an internal node may have empty successors by appropriate substitutions. We can
generate different families of binary tree structures by weighting the internal nodes
of each type in different ways. For example, if the nodes of type 0 and 2 are weighted
by one and those of type 1 by two, then we find the class of C-tries introduced in
[22]. This can be seen very easily by using symbolic equations as proposed in [§].
We start with the binary tree structure I/ characterized by the equation

RL AL AL A
U= + + + . (1)
[
ou uUuo UuUu
type 0 type 1 type 2

By assigning the weights mentioned above, equation (1) reads now

A 2 Aoe A

I o . .

U=g4ht?2 O u’+2 u' D+Z/I’ u

We may now assume that the factor 2 for a node belonging to type 1 results from
two different possibilites for the leaf attached to it. Then we end up with

O O O O
c= /\ /\ /\ /\

co” comome T @)

where {O, B} is used to represent the two different possibilities for that leaf. But
this is exactly the symbolic equation for the familiy of C-tries, where B is used to



represent a NIL pointer and O pictures a leaf which stores a key.

In some sense this concept is related to the notion of simply generated families of
trees introduced in [20] and ideas used in [10]. The mathematical treatment using
generating functions is almost straightforward. We introduce a variable for each
type of node. Let v (resp. w, ) mark an internal node of type 0 (resp. 1, 2)
and translate the symbolic equation (1) into the corresponding equation for the
enumerator generating function T'(x, u,v). We find

T(z,u,v) = v+ 2uT(z,u,v) + 2T (z, u,v)>
and thus

1—2u— 1 —4u+ 4u? — 4zv

2z '
According to our previous considerations, the enumerator generating function for
C-tries, where each internal node is marked by z, is given by T'(z,2z,2) and is
therefore equal to 1=42=v 12;8“'1222.
In order to derive results for Horton-Strahler parameters we need a representation
of the generating function R,(x,u,v) which counts those trees that have a Horton-
Strahler number equal to p. From the definition of hs(T') we can conclude that for
p=>2

T(z,u,v) =

Rp(z,u,v) = 2uRp(z,u,v) + TR _; (x,u,v) + 22Rp(z, u,v) Z R;(z,u,v)
1<j<p

holds. Furthermore, it is obvious that R(z,u,v) = =% As in the specific case

of extended binary trees [7] or combinatorial tries [23] it is possible to solve this
recursion by a trigonometric change of variables. In that way it is possible to prove
that

Ry(zu0) = —— % p>1 (3)

e Uze—1(§) Vv’ = = 7

where Uy, (z) is the n-th Chebyshev polynomial of the second kind [1, 22.2.5] and
£ = ;‘\L/;—i By the application of the closed form representation of U,(z) given in
[18, B74] and some obvious simplifications we finally find a much more appropriate
form, namely

v (1-ww? ™
R = >1 4
p(ZL',’U,,'U) \/ﬁ\/&(l—w2p)’p_ ) ( )
where w = %f, €= ,/1- 4%. Furthermore we will need the generating

function S,(x,u,v) of trees with a Horton-Strahler number of at least p. It turns
out that

1-2u+VIi-dutd® —dav v Upa(§)
2x vV U U2p—171(€)

Pl

Sp(z,u,v) =

_ v 1—w w (5)
VI Jw 1w
holds. Based on these representations for R,(x,u,v) and S,(z,u,v) it becomes
possible to investigate different Horton-Strahler parameters of binary trees in a
unified way.

2.1 The Expected Horton Strahler Number

In order to determine the expected Horton-Strahler number of a binary tree we
have to consider the generating function

M(z,u,v) := ZpRp(a:, u,v).
p>1



By definition of S, we have ) -, pRy(z,u,v) = 3 5, Sp(z,u,v) and thus by (5)

v 1—w w?’ v 1—w »
M — — (A+1)2 6
(xyuav) /l_v \/a I;) 1 _w2p ,_l"U \/5 pZ;w ( )
= x>0
—_——

S

holds. We will first consider the series ¢(w) appearing in (6). The analysis of
harmonic summations like ¢(w) is performed by means of the Mellin transform
which is by now a fairly well understood methodology in analytic combinatorics
and analysis of algorithms (see for instance the excellent survey by Flajolet et al.
[13]) going back to the seminal paper of De Bruijn et al. [3]. We determine the
Mellin transform of ¢(e™*) which proves to be given in closed form by

n(s) = T(8)¢(s) —

1—2-s’

where I'(s) is the complete gamma function and ((s) is the Riemann zeta function.
Then, according to the methodology, an expansion of ¢(e~*) around ¢ = 0 is given by
the sum of residues of t°n(s). We have a pole for s = 1 because of the zeta function,
poles at s = —k, k € Ny, due to the gamma function and poles at s = x,, := i’lr(’ggl,
m € Z, introduced by —5=. It is well-known that the poles at x,, for m # 0 will
only introduce an oscillation of very small amplitude in the final result. For the
sake of simplicity we will not consider them, although it is not difficult to extend
the approach presented here to deal with them. The poles at s = —k, k > 1, are
responsible for lower order terms only, therefore we will not consider them either.
The sum of the remaining residues is given by

2y — 2In(7) — 31In(2)
41n(2)

R(s) > 1,

1
2t + 3 log, (t) +

At this point we have to make a fundamental decision, namely to choose the nodes
(the types of nodes) which we want to contribute to the size in our final result. Here
we will assume that each internal node contributes and thus we set x to zz, u to
uz and v to vz. Furthermore, we assume that =, u and v are fixed real parameters
greater than 0. Then we have the following trivial bounds for [2"|M (zz,uz,vz):

[2MT (zz,uz,vz) < [2"]|M(zz,uz,vz) <logy(n + 1)[z"|T(xz,uz,vz).

Since the Cauchy-Hadarmard theorem tells us that the minorant and the majorant
have the same radius of convergence r = |m|, we conclude that r is the radius

of convergence of M (xz,uz,vz) as a function in z. Furthermore, the theorem of
Pringsheim implies that M (zz,uz,vz) has a singularity at z = m The O-
tranfer method [9] approximates the coefficient [2"] of a generating function with
dominant singularity z; by means of Cauchy’s formula together with the contour C
depicted in Fig. 2. Therefore, in order to apply the method we need an analytic
continuation of M (xzz,uz,vz) outside its radius of convergence. It is obvious that
this continuation exists since, with respect to the w-plane, M (zz,uz,vz) has the
radius of convergence 1 and the contour C,, in the w-plane which is equivalent to the
contour C in the z-plane lies completely inside the unit circle. Thus we can use an

expansion of our generating function at z = z4 := m to derive an asymptotic
for the coefficient [2"]. To get this expansion we have to resubstitute ¢ within the
sum of residue given above. Since t = —In((1 —¢)/(1+¢)) and € = 0 for z = z4 we

expand —In((1 —¢)/(1 + ¢€)) around € = 0 yielding

t~21/2+2\/%\/1—2z(u+\/a7_v). (7)




Figure 2: The contour C used by the O-transfer method.

Furthermore, we have to take care of the factor \/’;ﬁ 1’75 which expands to

2u/2u + 2 m}\/l—Qz\/ar_v+u) (8)

(zv)3/4

Thus the most significant terms of the expansion of M (zz,uz,vz) at z = z4 are
given by

Q(M?W\/Q“ + 2\/@\/1 —2z2(Vav + u)log, (1 — 2z(vVav + u))

+m\/m<ln<(\/%+“) >+4 >\/1—2z VT + u).

By means of the O-transfer this expansion can be translated into an asymptotic for
the coefficient [2"|M (zz,uz,vz). We find

Theorem 1 Let M(w,u,v) =3 -, pRy(z,u,v) for Ry(z,u,v) the ordinary gen-
erating function of extended binary trees with Horton-Strahler number p and each
internal node of type 0 (resp. type 1, type 2) marked by v (resp. u, x). Then

[2" M (xz,uz,vz) ~

for fixed real x, u, v > 0 and n — oo. m|

We will use this asymptotic formula to derive results for explict families of binary
trees in the next section.

Before we will consider the critical nodes we have a quick look at higher moments
of the expected Horton-Strahler number. For that purpose we regard

v 1— p—1 .
M (z,u,v) := "Ry 2T (425)
I;p (z,u,v) \/ﬁ \/_ X;pw

- J;O

~

-~

:;g(T‘) (w)

Again, we use the Mellin summation technique to find an expansion of the harmonic
sum around the dominant singularity. The Mellin transform of ¢<(") (e~?) is given by

M) = HIEAEENL),




where A, (z) denotes the n-th Eulerian polynomial for which [4, p. 245]
(1 —u)ntt
1>0

holds. There is a pole at s = 0 of order r+1 which is responsible for the most signif-
icant contribution to the asymptotic of the coefficient. Therefore we are interested
in the residue of t=*M(")(s) at s = 0. Since for s — 0

A (27%) =rl, see [19,5.1.3(4)],

(s) = 3,
[(s)=s"'—v+0(s),
1 1

_ -7 —r+1
o IHT(2)S +O(s ), and

7% = Z In‘(t) (=1 s',

1!
i>0

we can conclude that the residue of t=* M (") (s) at s = 0 is given by

(-1 G + 0w (1) ©)

By resubstituting ¢ by (7) and multiplying the resulting expression by the expansion
(8), we get the most significant term of the expansion of M (") (zz,uz,vz) around
its dominant singularity z4

—2*TW\/QU+2\/E\/1 — 22(v/zv + u) log} (1 — 22(u1+ \/ﬁ)> .

Finally the application of the O-transfer method yields

Theorem 2 Let M) (z,u,v) = ZPleTRp(:U,u,v) for Ry(z,u,v) the ordinary
generating function of extended binary trees with Horton-Strahler number p and
each internal node of type 0 (resp. type 1, type 2) marked by v (resp. u, x). Then

2—7"—1 2 2 n
I oz, 02) ~ T2 g ) o+ 2/

™

for fixed real x, u, v > 0 and n — oo. m|

2.2 The Average Number of Critical Nodes

In order to get an expression for the average number of critical nodes we have to
derive from R,(z,u,v) a representation of K(z,u,v) := szl Kp(z,u,v), where
K, (z,u,v) denotes the ordinary generating function for the total number of critical
nodes with a Horton-Strahler number p. A formula for K,(z,u,v) can be derived
by following the idea presented in Fig. 3. If we have an arbitrary tree with a subtree
A then we can introduce an additional critical node with mark p by substituting a

o)
leaf of A by R _1/ ‘2 I Each tree T with k different critical nodes with mark p will

be generated by this procedure in k different ways. Thus the resulting generating
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Figure 3: How to construct an arbitrary tree with a critical node () with mark p
in a specific position.

function will give us the total number of critical nodes with mark p. The procedure
just described translates into generating functions in the following way:

Ky(z,u,v) = ——T(x,u,va?) |o=1 %szl(w,u,v)

Oa

v

ca;;a)
3} 2, )
+ %T(a:,ub,v) lp=1 ;Rp_l(a?,u,v) +zR,_(z,u,v)

J

casgb)
= i R >1
V1 —du+ 4 — 4w p-1(@,0), p 2 1

The term 2R (x,u,v) is needed because by construction T'(z, u, v) does not count

the empty tree 0. Please note that at the first sight this derivation seems to be
o

N

valid only for p > 2 since for p = 1 the internal node of R is of type 0 and

p—1 Rpfl
thus should be marked by v instead of . Fortunately, for both representations (3)
and (4) of R,(z,u,v) we find that xR3(x,u,v) = v holds. Thus there is no need for
a separated discussion on the case p = 1. Therefore, by (4), we find the following

representation of the generating function in question:

v (1 —w)? \2P
K(z,u,v) = Aw™ . 10
( ) \\/1—4u+4u2—4xv w JZ; (10)
:‘:r¢ &,_/
=:0(w)

We will first consider the summation o(w) of (10). We determine the Mellin trans-
form of o(e~*) which proves to be given in closed form by

1

n(s) :=T(s)¢(s — 1)m, R(s) > 2.

The transform 7(s) has a pole for s = 2 because of the zeta function, poles at
s = —k, k € Ny, due to the gamma function and poles at s = X, := ?:(’2”)1, m € Z,
introduced by # Again, the poles at y,, for m # 0 will only introduce an
oscillation of very small amplitude in the final result. The poles at s = —k, k > 1,
are responsible for lower order terms only, therefore we will not consider them. The

sum of the remaining residues is given by

4, 1
3t 15 loga(t).



In accordance with the analysis of the expected Horton-Strahler number we will
assume that each internal node contributes and thus we set = to xz, u to uz and
v to vz. Again we assume that x, u and v are fixed real parameters > 0. By the
same reasoning as before

[2MT (zz,uz,vz) < [2"]K (2z,uz,vz) < n[z"|T(xz,uz,vz),

implies that K (zz,uz,vz) possesses the dominant singularity z4 = We

1
2u+2/zv "
use (7) in order to resubstitute ¢ which yields

1 1
t 27

for the expansion of o(w) around z4. Now we can consider the factor ¢ in (10)
which has to be expanded around z4 also. We find the expansion

%\/m + 2u\/ﬁ\/1 —2z(u + /2v).

Finally we recombine our results according to (10) in order to get the expansion of
K(zz,uz,vz) around the dominant singularity. This expansion can be translated
into an asymptotic for [2"]|K (zz,uz,vz) by means of the O-transfer method which
proves the subsequent theorem.

2410g2(1—-22(U-%\ﬁ55X

Theorem 3 Let K(x,u,v) be the ordinary generating function of the total number
of critical nodes in all extended binary trees with each internal node of type 0 (resp.
type 1, type 2) marked by v (resp. u, x). Then

n 220 + 2u\/TV n
[2"K(xz,uz,vz) ~ 3\/7%\/7\/ L (2u + 2v/zv)

+ W (2u + 2v/zv) " log, (n),

for fixed real x, u, v > 0 and n — oo. m|

We can also consider the critical nodes with a fixed Horton-Strahler number p. For
that purpose we regard K,(zz,uz,vz). Using the representation (3) of R, together

with [1, 22.16.5]
U, (cos( mr )) =0,1<m<n,
n+1

we find that the dominant singularity of K,(zz, uz,vz) with respect to z is not deter-
mined by the poles introduced by the Chebyshev polynomial but by the branching-
point z = zg = m of the factor (1 —4uz+4u?z? —4zvz?)~ /2. The expansion

of K,(xz,uz,vz) at zq is given by

91/2—2p v?/4

Vu + yJrozl/4

such that we find the following theorem.

(1= 22(u+ v/aw)) /2

Theorem 4 Let K,(z,u,v) be the ordinary generating function of the total number
of critical nodes with Horton-Strahler number p in all extended binary trees with each
internal node of type 0 (resp. type 1, type 2) marked by v (resp. u, x). Then

p3/4
[2" K, (22, uz, vz) ~ 21/272P (2u + 2y/zv)",
Vana/u + Jzvzl/4
for fixed real x, u, v > 0 and n — oo. m|

An asymptotic of increased precision would result from additional terms of the
expansion of K,(zz,uz,vz) at zq which can easily be determined if required.
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Figure 4: A tree with a critical root marked by p. Each critical node is represented
by O, A is used to represent an entire subtree with a root-mark as given below it.

2.3 The Length of Critical Paths

Let a path from a critical node with Horton-Strahler number p to one of its critical
successors with Horton-Strahler number p — 1 be called critical path of order p.
The next parameter that we want to study is the total length of all critical paths
of order p. For that purpose we derive a generating function which marks each
corresponding edge by variable w. We first restrict ourselves to the case of a tree
T with critical root marked by p as shown in Fig. 4. For that tree exactly the
edges on the paths from the two critical nodes () and mark p — 1 to the root of
the tree contribute to the length and thus have to be marked by w. In the general
case, each subtree of a critical root marked by p consists of a list of zero or more
non critical nodes and a succeeding critical node all marked by p — 1. Thus, for
Py(z,u,v) :==T(z,u,v) — Sp(z,u,v) and p > 2 all possible subtrees are enumerated

by
xr

1 —2wz(% 4+ Py (z,u,v))

Tp—1 = 32—2(957 u,v)

The entire tree 7 then is given by zw?7?2

»—1- Since critical nodes with a Horton-
Strahler number p may not only appear as root of a tree, 7 must be embedded into
a larger tree as a substructure. This can be done by the same ideas used for the
derivation of K (z,u,v). We find

xw?

V1 —4du + 4u? — 4zv

2
) T
(RP_Q(-/I:)U)/U) 1 _ me(% + Pp_l(w,u,v))>

for the resulting generating function. We take the first partial derivative with re-
spect to w and afterwards set w := 1 to find a representation of the generating
function K Dp(z,u,v) enumerating all edges on critical paths of order p. Appropri-
ate simplifications lead to

2$RI2)_1($,’U,,’U) 1
V1 —du + 4u? —dav 1 — 2u — 22P, 1 (z,u,v)

KD,(z,u,v) =

10



2R13)71('T7U7U) 1
Rf)—Q(CU:UaU) V1—4u + 4u? — dzv

For both equations we used the identity R,(z, u,v) = Tp|w=1. By the same reasoning
as used for K, we find that z = 25 = m is the dominant singularity of
KD,(zz,uz,vz) implied by the branching-point of /1 — 4uz + 4u?22 — 4zvz2. The
leading term of the expansion of KD,(zz,uz,vz) at zq4 proves to be given by

1/4 ./ /
2*1’*1/21} u+ xv(1—22(u+\/ﬁ))71/2

23/4

such that the O-transfer method leads to

Theorem 5 Let K D,(z,u,v) be the ordinary generating function counting the total
distance (measured in the number of edges) between all critical nodes with Horton-
Strahler number p and their critical successors with Horton-Strahler number p — 1
in all extended binary trees with each internal node of type 0 (resp. type 1, type 2)
marked by v (resp. u, x). Then

O
[2"|KDy(zz,uz,vz) ~ 2*”*1/2#(211 + 2y/zv)",

for fixed real x, u, v > 0 and n — oo. m|

3 Results for Specific Families of Trees

In this section we will use our general results obtained in the previous section
in order to determine the average Horton-Strahler number and the related higher
moments, the average number of critical nodes with respect to the Horton-Strahler
number, and the expected distance between critical nodes, for certain families of
binary trees. In this way it will be possible to prove new results, for many old result
our technique will lead to a new proof. Since we will be assuming the uniform
distribution in each family of trees, the expected Horton-Strahler number h,, of
trees of size n is given by

L MG 2,2)
" [T (2,2,2)

Similarly, the expected Horton-Strahler number h,, ¢ of trees of size n with £ leaves
would be given by

b [z"ul]M (z, zu, zu?)
T T (2, zu, 2u?)

In this case we must pay attention since now u cannot be assumed to be a kind
of fixed parameter. Obviously, formula of the same pattern exist for the other
parameters considered in the second section. However, we will have to make minor
adjustments to this general procedure for Motzkin trees, unary-binary trees and
C-tries as we have derived our generating functions only for families of binary trees
with non-empty leaves.

As mentioned above, the singularities y,, and the resulting residues would imply an
oscillation of very small amplitude. In the case of [z"]|M(z, z, z) this oscillation is
of order O(4"n~3/?) and thus of order O(1) for the expectation. The same remark
also holds for the other families of trees that will be considered in this paper. The
presence of the oscillation will be pointed out by a term A(n) within the corollaries
without giving any representation for A (even though our method is general enough
to compute one). Therefore the constant term of the expected Horton-Strahler
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number given in the succeeding corollaries is not precise in a rigorous sense. Note
that A is not necessarily the same function for all corollaries. Note also that the
same remarks would be true for the constant term of the expected number of critical
nodes, if we would use our method to determine it.

Before we can derive results for specific families of trees we need an asymptotical
representation of the number of trees of size n. This number can be determined by
the same methods starting at T'(zz,uz,vz). The expansion of T'(zz,uz,vz) around
its dominant singularity z, translates into

v 2zv + 2uy/xv n
~ T (2u+ 2y/zv) .
2z mnd ( )

Now we are ready to consider specific families of binary trees.

[2MT (zz,uz,vz) ~

3.1 Extended Binary Trees

In order to get results for the familiy of extended binary trees with n internal nodes
we have to set z := 1, u := 1 and v := 1 in our asymptotics of the Theorems 1, 2,
3, 4 and 5 and divide the corresponding expression by [2"]|T(z, 2, z). In this way we
find:

Corollary 1 On the assumption that all extended binary trees of the same size
(number of internal nodes) are equally likely, the average Horton-Strahler number
of a tree of size n is asymptotically given by [7], [17]

2+~
21n(2)

log, (27°n) — + A(n), n — oo.

The corresponding r-th moments are given by
27" logh(n), n — oo.

The average number of critical nodes is asymptotically given by [26]

L +1l (n), n —
3n 120g2n,n 00.

On the average, there are
47Pn

critical nodes with fized Horton-Strahler number p in an extended binary tree of size
n, n — oo, which have an expected distance of

op
to their critical successors. O

Note, that all terms depending on x, u and v in the second-order term of the total
number of critical nodes vanish in the expression giving the expected value. This
implies that the average number of critical nodes possesses the same term of second
order for all families of binary trees that can be investigated by our approach.

3.2 Motzkin Trees

In this section we will consider Motzkin trees, i.e. ordered trees for which an internal
node may have one or two successors. We can obtain results for that familiy of trees

12



by setting z := 1, u := % and v := 1. By this substitution the structure of the trees
counted by our generating functions becomes

R AL A
I
“M_DD+Mm+AWM“

while the Motzkin trees are described by

e N
+ .

M M M

The non-empty leaves O in the trees enumerated by the generating functions of

section 2 introduce two problems we have to cope with: First, the Horton-Strahler

number of a Motzkin tree and all its nodes is shifted by one, since the presence of

the leaves O implies that the leaves of the corresponding Motzkin tree are labeled by

1. Second, the number of critical nodes is overestimated by the number of leaves of

M=g@+

o
the Motzkin trees, since each leaf & in a Motzkin tree is represented by 4\, in our
computation and thus is counted as critical. Fig. 5 shows a Motzkin tree together
with the extended binary tree which is considered to be equivalent in our generating

functions (after setting z := 1, u := £ and v := 1). However, we can work around

Figure 5: A Motzkin tree (left image) together with an extended binary tree
image) which are assumed to be equivalent by the substitution z = 1, u =
v=1

right
and

D=~

these problems very easily. For the expected Horton-Strahler number we just have
to subtract 1 from our result, since the Horton-Strahler number of every tree is over-
estimated by 1. For the r-th moments we need to consider >_ -, p"Rpt1(z,u,v)
instead of 3 -, p"Ry(x,u,v). Obviously, the Mellin-transform of this new har-
monic sum differs from the one considered in Theorem 2 just by the factor 2%
and thus, since the asymptotic of Theorem 2 results from the pole at s = 0, our
leading term remains unaffected. For the total number of critical nodes we con-
sider K (z,u,v) 1=}, Kp(@,u,v) instead of K(z,u,v) =3, Kp(z,u,v). This
modification implies just a small change for our computations. The Mellin trans-
form of the resulting sum (e~ ?) is T'(s)((s — 1)% with the sum of residues
%t‘” + % log,(t). Thus we only have to multiply. the leading term of our result. by
7 in order to get the correct result for the Motzkin trees. For K, and KD, we just
have to set p to p + 1 to take care of the shift. We find in this way:

Corollary 2 On the assumption that all Motzkin trees of the same size (total num-
ber of nodes) are equally likely, the average Horton-Strahler number of a Motzkin

13



tree of size n is asymptotically given by [10]

2 247
1 “n’n ) — A .
08, <37r n) 2(2) +A(n), n = o0

The corresponding r-th moments are given by
27" logs(n), n — 0.

The average number of critical nodes of a Motzkin tree of size n is asymptotically
given by
! + 1 log,(n), n —
— —lo .
T g, (n), n — 00

On the average, there are
1

—47Pp

3
critical nodes with fized Horton-Strahler number p in a Motzkin tree of size n, n —
00, which have an expected distance of

32r1
to their critical successors. O

Note that we assumed here that the critical successors of a critical node with Horton-
Strahler number 1 are the corresponding leaves of the Motzkin tree. From the fact
that the total number of critical nodes changed from %n to %n by disregarding the
leaves of a Motzkin tree we can conclude that a Motzkin tree with n nodes has %n
leaves on the average.

Beside the adjustments which lead to Corollary 2, we also have another possibility
to determine the behavior of Motzkin trees without changing our computation a lot.

If we turn to a setting where we use the number of leaves E of the Motzkin tree as
a second parameter within our result, then we are able to solve the problem of the
overestimated number of critical nodes very easily. For that purpose, we consider
K(z, %z, vz), now assuming that it is a bivariate function i.e. v is no longer assumed
to be a fixed parameter. Then it is possible to adjust the number of critical nodes
by subtracting ¢ from the coefficient at z"vf. The determination of [z"v] can be

done be means of the following theorem due to Bender and Richmond [2].

Theorem 6 Let ¢, (z1,...,24) = >, an(ki,..., kd)mlfl .. .a:fld and let R be a com-

pact subset of (0,00)¢. Suppose ¢n(x1,...,74) converges in an £ neighborhood
N(R,¢) of R and

n

On(1,. ., 2q) ~ f(n)g(z1, .. .,z)Nx1, ..., 2q)

uniformly in N(R,¢), where g(x1,...,xq) is uniformly continuous and \(x1, ..., 2q)
has uniformly continuous third-order partials. Suppose that the matriz

62
B(zy,... = z——5—InA(e’,...,e°)|esi=a;, 1<i
(z1,...,74) ((%iagj nA(e™,...,e%) 1,1<<d>”1___d
is nonsingular for (z1,...,24) € R and dp(z1,. .., 20)/Onl(|z1],- . ., |Ta]) = o(n=?)
if (|Jz1),--.,|za]) € N(R,e) and (z1,...,24) & N(R,e). Then, if (k1,...,kq)/n =

m(ty, ..., tq) for m(zy,...,xq) = VinA(e,..., e)
(t1,...,tq) € R we have

esi=a;,1<i<d, has a solution

an(ki,. .. ka) ~ dn(ty,... ta)ty - -t;kd/\/(Qﬂ'n)ddet(B(lntl, .., Inty))

uniformly for all such (ki,...,kq). O
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We consider the £ neighborhood |v — 1] < €. In that case, by setting = := 1 and
u := %, the asymptotic formulee for [2"] given in the Theorems 1 to 5 provide the
asymptotic expansion f(n)g(v)A(v)"™ for the different generating functions consid-
ered. This can be concluded in the following way. Obviously, for v = 1 the dominant
singularity z4(v) of the bivariate generating functions is equal to the dominant singu-
larity zq = % of the univariate generating functions which result from setting v to 1.
Thus, for v = 1, the theorems apply and provide the asymptotics. For v sufficiently
close to 1, the dominant singularity z4(v) lies in a neighborhood of z4 and depends
analytically on v. Therefore, by general properties of the O-transfer method, the
asymptotics given in the theorems provide the desired expansions. The reader is
refered to [12] and [11] for details on this sort of reasoning. For all generating func-
tions involved, A(v) = 5 = 1 + 2,/v holds. Furthermore, m(t) = vt/(1 + 2v%)
with the solution t = ¢2/(2¢ — n)?, 2¢ < n, for the equation ¢/n = m(t). Thus the
expected number of critical nodes in Motzkin trees with n nodes and ¢ leaves is
asymptotically given by

[")K (2, 1 2,02) st —

’2

[Zn]T(Za %Za vz)|v=t

This procedure applied to the different parameters yields the following corollary:

Corollary 3 On the assumption that all Motzkin trees of the same size (n,l) (total
number of nodes n, £ leaves) are equally likely, the average Horton-Strahler number
of a Motzkin tree of size (n, ) is asymptotically given by

2+~ 4

1
3 () + A(n),p:= - < 3 fix, n — oo.

log, (27r2pn) —

For a fized ratio p := % < % the corresponding r-th moments are given by
27" logh(n), n — oo.

The average number of critical nodes is asymptotically given by

1 1 ¢ 1
gpn+ ElogQ(n), pi= <3 fix, n — oo.

On the average, there are
4777

critical nodes with fized Horton-Strahler number p in a Motzkin tree of size (n,{),
% < %, n — 0o which have an expected distance of

or11

14

to their critical successors. O

The results for the average Horton-Strahler number and the average number of

critical nodes are only valid for p fix. This is a consequence of regarding w as a

single variable while determining the Mellin-transform which implies a coupling of

the variables z, u, v and z. The observation that a Motzkin tree with n nodes has

%n leaves on the average provides a link between Corollary 2 and Corollary 3 since
n

the application of the equality £ = 3 makes it possible to transform the result of

one Corollary into the corresponding result of the other.
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3.3 General Unary-Binary Trees

We can generalize the ideas used to investigate the Motzkin trees in order to consider
unary/binary trees with ¢; different types of unary nodes and ¢, different types
of binary nodes. The average Horton-Strahler number of those trees has been
determined in [10]. As an example, those trees can be considered as arithmetic
expressions where we have ¢; > 0 different unary and ¢y > 0 different binary
operators from which the expression can be constructed. By setting x := ¢z, u 1=
1

z¢1 and v := 1 (resp. v := v) we find:

Corollary 4 Let c¢; (resp. c2) be the number of different types of unary (resp.
binary) nodes. On the assumption that all unary/binary trees of the same size n
(total number of nodes) (resp. (n,f) (total number of nodes n, ¢ leaves)) are equally
likely, the average Horton-Strahler number of a tree of size n (resp. size (n,f)) is
asymptotically given by

| 272, /can 24+
o _
&4 2/cs + 1 21n(2)

+ A(n), n —» oo,

2 12 1
<resp. log, (27r2pn) — 21:(;) + A(n),p:= - < 3 fix, n — oo.)
In both cases and for a fized ratio p := % < % the corresponding r-th moments are
given by

27" logh(n), n — oo.

The average number of critical nodes in a tree of size n (resp. in a tree of size
(n,?)) is asymptotically given by

J@n

L + 1 log,(n), n —
B ——— — 10 n n o0
3206+ | 12 82\ ’

1 1 / 1
resp. gpn+ Elog2(n), pi=- < 3 fiz, n — oo.

On the average, there are

P e + o) (resp. 4 Z)

critical nodes with fized Horton-Strahler number p in a tree of size n (resp. size
(n,?)), n — oo, which have an expected distance of

27=1(2. /c5 + ¢
B+ (1, i)
NG ‘
to their critical successors. O

Note that the influence of ¢5 and ¢; has cancelled out within our bivariate results
related to critical nodes. Note further that we rediscover the results for Motzkin
trees by setting ¢; := ¢5 := 1. Our results for the expected Horton-Strahler number
implies the conjecture that the average number of leaves in a general unary/binary

tree is asymptotically given by 2\‘//6_6_% This conjecture proves to be true by obvious

computations based on the generating function T'(x, u,v).
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3.4 Combinatorial Tries

The family of binary trees called C-tries has been introduced in [22] as a combinato-
rial model for the trie data structure. The family of C-tries is symbolically defined
in (2). If we consider a leaf O to store a key and a leaf B to represent a NIL pointer
then all possible tree structures of a digital trie are resembled. The motivation for
a combinatorial model of tries lies e.g. in the application of tries to the compression
of blockcodes (see [24] for details).

In order to derive results for C-tries we have to introduce a new variable y to mark
non-empty leaves (which are those storing the keys of the trie). According to (2)
leaves of an internal node of type 0 must both store a key, while the leaf of an in-
ternal node of type 1 may either store a key or may be a NIL pointer. Thus we have
toset z:=1, u:= 14y and v := y2. We use Theorem 6 to compute an asymptotic
for the coefficients at [2"y‘]. Again, considering the e-neighborhood |y — 1] < &
implies that the asymptotics given in the Theorems 1 to 5 provide the appropriate
expansions. We find that A(y) is given by 2 4+ 4y and thus m(t) = 2¢/(2t + 1) holds.
The solution of m(t) = £/n is given by ¢ = ﬁ, % < 1. The application of
Theorem 6 finally yields:

Corollary 5 On the assumption that all C-tries of size (n,f) (n internal nodes, ¢

keys) are equally likely the average Horton-Strahler number of a tree of size (n, ()
is asymptotically given by [23]

24«
21n(2)

log, (27°pn) — A(n), p:= g <1 fix, n — oo.

For a fized ratio p := % < 1 the corresponding r-th moments are given by
27" logs(n), n — oo.

The average number of critical nodes in a C-trie of size (n, £) is asymptotically given

by
L +11 (n) -—£<1ﬁ N
3pn B og2n,p.—n T, T — 00.

On the average there are
477

critical nodes with Horton-Strahler number p in a tree of size (n,f), n — oo, which
have an expected distance of

n
or
4

to their critical successors. O

Note that univariate results (i.e. results where only the number of internal nodes
determines the size) for C-tries cannot be concluded directly from our results for
general unary/binary trees by specific choices for ¢; and cq, since there is no shift
in the Horton-Strahler number and no overestimated number of critical nodes in
the case of C-tries.

4 Discussion of the Results

Obviously we could interpret all our results with respect to the different applications
of the Horton-Strahler number mentioned in the introduction. However, this is not
the aim of this section. Here we want to discuss conclusions that can be drawn with
respect to general properties of the parameters and to the different families of trees
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considered.
If we take a look at the results of the previous section we find the following simi-
larities:

e The average Horton-Strahler number is always given by log, (2m2L) — 221:&) +
A(n) for £ the expected asymptotical number of leaves in a tree of size n
or in the case of bivariate results £ the number of leaves specified by some

parameter.
e The r-th moment is given by 27" logs(n) in all cases.

e The average total number of critical nodes is given by +£ + 15 log,(n) for £
as given in the first item.

e The average number of critical nodes with Horton-Strahler number p is given
by 47PL for L as given in the first item.

e The expected distance between a critical node with Horton-Strahler number
p and its critical successors with mark p — 1 is either 2”*1% for families of
trees with a shifted Horton-Strahler number or 22 otherwise.

Some of these observations can be explained by means of our theorems. For ex-
ample, the quotient %# simplifies to 27" logh(n) for arbitrary choices
of z, v and v. Thus every family of trees which can be analyzed by our ap-
proach posseses this asymptoical representation of the r-th moments. Furthermore,
% = 1 holds which explains the factor 4 7 within the expected num-
ber of critical nodes with Horton-Strahler number p. Additionaly this constant ratio
implies that the number of critical nodes of any Horton-Strahler number and thus
the total number of critical nodes only depends on the number k; of critical nodes
with Horton-Strahler number 1. For all families of trees considered here, k; seems
to be given by § times the (expected) number of leaves of the tree. The fact that
the number of critical nodes is quatered each time we increase the Horton-Strahler
number by one also provides additional information on the internal structure of the
trees. Since each critical node with Horton-Strahler number p cannot have more
than 2 critical sucsessors with Horton-Strahler number p — 1 we can conclude that
one half of the critical nodes with Horton-Strahler number p — 1 are successors of
critical nodes with a Horton-Strahler number greater than p. This sort of self simi-
larity seems to start at the very beginning, i.e. for p = 1, since on the average only
one half of the leaves create a critical node with Horton-Strahler number 1. There
is a third invariant based on our general results. For each possible choice of z, u
and v we find that % is given by 27Pn. Therefore, on the average the
accumulated length of the critical paths for all critical nodes with Horton-Strahler
number p within a tree of size n is the same for all families of trees that can be
considered within our model.

It remains to mention that obviously not all substitutions are allowed. For example,
it is not possible to set one of the variables in {z,u,v} to zero since we assumed
that each internal node contributes to the size of the tree when computing the
asymptotics of the Theorems 1 to 5. Thus a value of zero for one of the variables
would lead to inconsistencies with respect to the size. However, it is possible to
derive corresponding results by considering [2"] for appropriate arguments of our
generating functions (e.g. R,(zz,u,vz) instead of R,(xz,uz,vz)). Furthermore,
since there is no recomputation of the Horton-Strahler number it is not possible
to apply substitutions which correspond to the insertion of binary tree structures
which would imply a change of the Horton-Strahler number of the original tree. For
1—v/1—4z

2z

example, to set x to corresponds to the substitution of an internal node
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of type 2 by any arbitrary binary tree and thus to a situation where the Horton-
Strahler number of the resulting tree might not fit with the Horton-Strahler number
of the initial tree considered by our generating functions. However, by properties
of the Horton-Strahler numbers, a substitution of a single node by a linear list is
possible.

5 Conclusions

In this paper we have introduced a method of how to analyze parameters related to
the Horton-Strahler number of binary trees in a unified way such that one detailed
computation for each parameter is sufficient to get results for different families
of trees. This is a slight improvement since so far it was standard to perform a
dedicated analysis of comparable complexity for each family of trees. The gener-
ating functions presented here proved to be useful to solve an old problem related
to the secondary structure of single stranded nucleic acids. In [25] it is shown how
Ry (z,u,v) can be used to asymptotically enumerate the number of secondary struc-
tures of order p built from n bases. Again, appropriate substitutions for xz, u and
v turned out to be the key to the solution. However, the future will show whether
the method presented can also be applied to other types of problems. Furthermore,
it was possible to conclude some invariants that are fulfilled by each family of trees
that can by analyzed by means of our approach. We want to conclude this paper by
remarking that the method presented is general enough to handle nodes of higher
degree. It was due to the generalized Horton-Strahler numbers that e.g. nodes with
three successors were not considered in our computations since in such a case there
is no closed form solution known for the resulting recursive representation of the
generating functions involved.
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