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ABSTRACT

Motivation: Several dynamic programming algorithms for predicting
RNA structures with pseudoknots have been proposed that differ
dramatically from one another in the classes of structures considered.
Results: Here we use the natural topological classification of RNA
structures in terms of irreducible components that are embedable
in surfaces of fixed genus. We add to the conventional secondary
structures four building blocks of genus one in order to construct
certain structures of arbitrarily high genus. A corresponding unam-
biguous multiple context free grammar provides an efficient dynamic
programming approach for energy minimization, partition function,
and stochastic sampling. It admits a topology-dependent parame-
trization of pseudoknot penalties that increases the sensitivity and
positive predictive value of predicted base pairs by 10-20% compa-
red to earlier approaches. More general models based on building
blocks of higher genus are also discussed.

Availability: The source code of gf ol d is freely available at ht t p:
/ / www. combi natori cs. cn/ cbpc/gfold.tar. gz

Contact: duck@santafe.edu

Supplementary information: Supplementary material containing a
complete presentation of the algorithms, full proofs of theorems, and
detailed performance data are available at Bioinformatics online.

1 INTRODUCTION

helices (Bailoret al, 2010). In this context, secondary structure is
understood in a wider sense that includes pseudoknots. Although the
vast majority of RNAs has simple, i.e., pseudoknot-free, secondary
structure,PseudoBase (Tauferet al, 2009) lists more thaR50
records of pseudoknots determined by a variety of experimental and
computational techniques including crystallography, NMR, muta-
tional experiments, and comparative sequence analysis. In many
cases, they are crucial for molecular function. Examples include
the catalytic cores of several ribozymes (Doudna and Cech, 2002),
programmed frameshifting (Nan@t al., 2006), and telomerase acti-
vity (Theimeret al,, 2005), reviewed in (Staple and Butcher, 2005;
Giedroc and Cornish, 2009).

Secondary structures can been interpreted as matchings in a graph
of permissible base pairs (Tabaskta al, 1998). The energy of
RNA folding is dominated by the stacking of adjacent base pairs,
not by the hydrogen bonds of the individual base pairs (Mathews
et al, 1999). In contrast to maximum weighted matching, the gene-
ral RNA folding problem with a stacking-based energy function
is NP-complete (Akutsu, 2000; Lyngsg and Pedersen, 2000). The
most commonly used RNA secondary structure prediction tools,
includingnf ol d (Zuker, 1989) and th¥i enna RNA Package
(Hofackeret al.,, 1994), therefore exclude pseudoknots.

Polynomial-time dynamic programming (DP) algorithms can be
devised, however, for certain restricted classes of pseudoknots. In
contrast to theD(N?) space and)(N®) time solution for sim-
ple secondary structures (Waterman, 1978; Nussetoal, 1978;

The global conformation of RNA molecules is to a large extentZuker and Stiegler, 1981), however, most of these approaches are
determined by topological constraints encoded at the level of secoreomputationally much more demanding. The design of pseudo-
dary structure, i.e., by the mutual arrangements of the base pairechot folding algorithms thus has been governed more by the need
to limit computational cost and achieve a manageable complexity
ng the recursion than the conscious choice of a particularly natu-
ral search space of RNA structures. As a case in point, the class
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of structures underlying the algorithm by Rivas and Eddy (1999) ?

(R&E-structurespknot - R&E) was characterized only in a subse-

quent publication (Rivas and Eddy, 2000). The following references 7}\

provide a certainly incomplete list of DP approaches to RNA struc- (J\

ture prediction using different structure classes characterized in -r -(;,

terms of recursion equations and/or stochastic grammars: Rivas and

Eddy (1999); Uemura Yet al. (1999); Akutsu (2000); Lyngsg and ,e\ T_‘r_ffrﬁrr‘rrﬂ

Pedersen (2000); Cai al. (2003); Dirks and Pierce (2003); Deo- _(“\ 70

gunet al. (2004); Reeder and Giegerich (2004); Li and Zhu (2005); <

Matsui et al. (2005); Katoet al. (2006); Cheret al. (2009). The

inter-relationships of some of these classes of RNA structures have

been clarified in part by Condcet al. (2004) and Rgdland (2006).

In addition to these exact algorithms, a plethora of heuristic approa-

ches to pseudoknot prediction have been proposed in the literature;

see e.g., (Metzler and Nebel, 2008; Chen, 2008) and the references

therein. >
At least three distinct classification schemes of RNA contact fr\\

structures have been proposed: Haslinger and Stadler (1999) sugge- 0 % “© *0 *0 7 oo

sted using book-embeddings, &nal.(2008) focused on the maxi- (b)

mal set of pairwise crossing base pairs, and Bbal. (2008) based

the classification on topological embeddings. While these classifi-

cations have in common that simple secondary structure forms th&ig- 1. RNA structure as planar grapfhydrogen bonds (resp. backbone)

most primitive class of structures, they differ already in the con-ePresented by red (resp. black) edgas)l diagram.

struction of the first non-trivial class of pseudoknots. Despite their

mathematical appeal, however, no efficient (polynomial-time) algo-

rithms are available for predicting pseudoknotted structures even in

the simplest case di-noncrossing RNA structures. A practically

workable approach t8-noncrossing structures requires the enume-

ration of an exponentially growing number of diagrams which are

then “filled in” by means of DP (Huangt al, 2009); a Monte-

Carlo approach utilizing the topological approach with a very simple

matching-like energy model was explored by (Vernizzi and Orland

2005).

60

(a)

and AU as well as the wobbl&U are admissible. These base pairs
determine the secondary structure. Note that we have neglected here
base triples and other types of more complex interactions. Secon-
'dary structures can thus be represented as grapbse nucleotides
In this contribution, we show that the topological classification of are represented by vertices, the backbone of the mOIGC.M@maS

' the hydrogen bonds are represented by edges; see Fig. 1¢e. M

RNA structures can be translated into efficient DP algorghfo
conveniently, we use the convention to represent the bzmkbbthe
this end, we introduce ~-structures and prove that they can be derlOolymer by a horizontally drawn chain. As before, this c

ved from a finite family of abstract shapes called shadows. In Theo- Sists of vertices and arcs respectively representing tkeoti des

rem 2.3, we enumerate these four shadowsyfer 1, which can be

cast as explicit construction rules for a unique multiolatest-free and covalent bonds. However, the edges representing tleepbars
rammarx?slelction 5 g) ICorrljes ondinu gg al grilt?\ms for@ne now are depicted as arcs in the upper half-plane; see Fig. Wb

9 g P 9 9 BN call this representation the diagram of the molecule.

?:;zgl.zea;'c::é Pn?rt;g%nerf]lt'j:gtl.znt'h:nsdoﬂBo;éma::é;;gIglcljm:;_ Thus, we shall identify a structure with a labelled graph dter
‘onaft 'mp ! ware p vertex sefN] = {1,2,..., N} represented by drawing the vertices

important feature is that ~-structures can be treated algorlthmlcalhi Nona horlzontal line in the natural order and the arcs
like pseudoknot-free secondary structures in sense tleae thre (i ) wherez‘ < j, inthe upper half-plane
finitely many motifs, i.e., shadows, for fixegl each of which is “I0 ' '
assigned a specific energy. Because of the multiplicity ofifsjo  Fatgraph representationln order to understand the topological pro-
which rapidly increases with ~, this allows for a more detailed perties of RNA molecules we need to pass from the picture of RNA
energy model of pseudoknotted structures based on theilcgical as diagrams or contact-graphs to that of topological surfaces. Only
complexity. the associated surface carries the important invariants leading to a
meaningful filtration of RNA structures. Formally, we will view an
RNA molecule as a topological surface (Anders¢al, 2010). The

2 RESULTS main idea is to “thicken” the edges into (untwisted) bands or rib-
bons and to expand each vertex to a disk as shown in Fig. 2. This
2.1 Topology of RNA Structures inflation of edges leads to a fatgrajsh(Loebl and Moffatt, 2008;

Diagram RepresentatiorRNA molecules are linear biopolymers Penneeet al, 2010).

consisting of the four nucleotides, U, C, andG characterized by a A fatgraph, sometimes also called “ribbon graph” or “map”, is
sequence endowed with a unique orientatigriq 3'). Each nucleo-  a graph equipped with a cyclic ordering of the incident half-edges
tide can interact (base pair) with at most one other nucleotide byt each vertex. Thusg) refines its underlying grap® insofar as
means of specific hydrogen bonds. Only the Watson-Crick g&irs it encodes the ordering of the ribbons incident on its disks. In the
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Fig. 2. Inflation of edges and vertices to ribbons and disks. Here
we have four vertices, five edges and one boundary component

(@,b,&,d, e, f.§,h,i,7). The corresponding surface has Euler characte-

risic x = v —e+4+r = 0andgenusg = 1, see egs (2.1) and Fjg 4. Reduction to fatgraphs with a single vertex. Contracting the back-
(2.2). bone of a diagram into a single vertex decreases the length of the boundary
components and preserves the gefiige contracted fatgraph is equivalent

to the labeled directed cycl&éhe backbone of the polymer can be recovered
by re-inflating the disk into the backboriEhe polygon (r.h.s.) represents the
standard 2D-model of a surface as discussed in (Massey, 1967).

VAN dan Vi Wiy c
oY, .

———

j k'l mnopagqgr

the removal of thg N — 1) covalent bonds therefore preserves the
Euler characteristic and genus, see Fig. 4.
Fig. 3. Computing the number of boundary components. The diagram con- Using the collapsed fatgraplwe see that the relation between
tains5 4+ 9 edges and0 vertices. We follow the alternating paths described the genus of the surface and the number of boundary components is

in the text and observe that there are exactly two boundary componenigetermined by the number of arcs in the upper half-plane, namely,
(bold and thin). According to eq. (2.1), the genus of the diagram is given

1 - ; .
by 1 — 5(10 — 14 + 2) = 2, see SM, Fig. S6 for details. 22 —r—=1-n, 2.3)

wheren is number of base pairs amdhe number of boundary com-
ponents. The latter can be computed easily and therefore controls the
genus of the moleculekq. (2.3) follows from egns. (2.2) and (2.1),
which together yiel® — 2g — » = v — e, and the observation that

the contracted graph has= n arcs and a singles(= 1) vertex.

following we will deal with orientable ribbon graphsEach rib-
bon has two boundaries. The first one in counterclockwisesiord
is labeled by an arrowhead, see Fig. 2DAcycle orD-boundary
component is then constructed by following these directathda-
ries from disk to diskhereby alternating between base pair ribbons
and backbonewith the exception of the segment of the boundary
component that travels along the bottom of the backbonegusity 2.2 ~y-sructures

backbone bondsas shown in Figs. 2 and Ve give a brief tuto-  Theshadowof a diagram (RNA structure) is obtained by removing

rial on how to compute boundary components in the SM, Fig. S6all noncrossing arcs, collapsing all isolated vertices and replacing
Topological invariants such as the number of boundary compisn  all remaining stacks (i.e., adjacent parallel arcs) by single arcs; see
of the fatgraphD can thus be computed directly from the underly- Fig. 5. Shadows can be seen as a generalization of shape abstracti-
ing diagramD. Furthermore, fatgraphs can be succinctly stored andons (Giegericlet al., 2004) to pseudoknotted structures (Reidys and
conveniently manipulated on the computer as pairs of permutation¥/ang, 2010)Similar to the process of contracting the backbone into

(Penneet al,, 2010). asingle vertex, the projection into a shadow changes negheus
The fatgraphD gives rise to a unique surfackp, and eactD- nor the number of boundary components (Anderseal., 2010).
cycle corresponds to a boundary componentXef, whose Euler  Allinformation on stack-lengths and on noncrossing congmis of
characteristic and genus are given by the structure is lost in the process however. We shall seetltea
set of structures with shado® can nevertheless be reconstructed

X(Xp) = v—e+r (2.1) efficiently. To this end we will show that, for fixed gengsthere
1 are only finitely many distinct shadowsg, which will play a central

9(Xp) = 1-5x(Xo), (2.2)  role in constructing folding algorithms.

A diagram is irreducible (or connected) (Kleitman, 1970) if for
wherew, e, r denotes the number of discs, ribbons and boundaryany two arcs there is a sequence of arcs so that consecutise ar
components inD (Massey, 1967).The graphD can readily be  cross one other. A shadow is not necessarily irreducibleviayt be
obtained by continously contracting the ribbons and di$d3.o composed of multiple irreducible components or blocks, Kge6

We next make use of an additional feature of RNA structures,(1). Any shadow (and in general, any diagram) can be decoadapos
namely, that the backbone forms a unique oriented chain determiteratively by removing irreducible components from battto top,
ned by the covalent bonds. Thus, the backbone can be collapsed td.€., S0 that that there is no component “inside” the onerprsibved.
single disksince the surface is orientable: in absence of twisted ribb-Note that the sets of irreducible components of the set of shadows,
ons, there is no particular information in the backbonelitéadeed,  &(S), equals the set of shadows of the irreducible components of
the procedure can be undone by re-inflating the disk andIcébgi
the backbone. The contraction of thevertices to a single one and

2 in order to relate this to the standard 2D-models of surfaces derived from
triangulations: from the collapsed fatgraph we can derive pgblygonal

1 ribbons may also be allowed to twist giving rise to possibly non-orientablemodel of the surfacé(p, i.e., a2n-gon in which edges are identified in
surfaces (Massey, 1967) pairs; see Fig. 4
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given by
A AN CI= RO T 121 @9
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diagram shadow where P, (z) is an integral polynomial of degre@g — 1) such

that P,(1/4) # 0. The number of genus zero matchings are well-
known to be given by the Catalan numbers, and eq. (2.5) allows the

Fig. 5. The shadow of a diagram is obtained by removing all noncros-derivation of explicit formulas for higher genera, for instance,
sing arcs and isolated vertices and collapsing all resulting stacks into single

arcs. While taking shadows is a significant reduction, the key togioial 2"2(2p — ! 24 (50, — 2)(2n — 1)
invariants of genus and number of boundary components remain invariant. €1 n) = W7 ca2(n) = 90(n — 4)!
Furthermore, the numbet,(2g) of matchings of genug having
exactly 2¢g arcs i.e., matchings having exactly one boundary
7 component, is the coefficient of? in P, () and is given by
1) (2)
4g)!
es(29) = 26)

49(2g + 1)1
Fig. 6. ~-structures: we display the shadow oflestructure (left) having .
topological genus two and the shadow of the HDV-structure (right) (Ferré-EXpl'C'tly' we havec1(2) =1 02(4.) = 21, andcs(6) - 1485 "for
D'Amaré et al, 1998), a2-structure having also genus two. Although both example. These particular matCh'ngs will serve as seeds for our
shadows have genus two, the HDV structure cannot be generated iterativef@lding algorithm. More precisely, we shall use the following:
via successive removals &f;-elements and stacked arcs. The structure

displayed on the left is derived via tw8) -substructures. THEOREM2.2. For arbitrary genusg, the setS, of shadows is

finite. Every shadow i, contains at leas2g and at mos{6g — 2)

arcs.
the diagrams. Furthermore, the genus @(S) is the sum of the The special casg = 1, on which we focus in the algorithmic
genera of its irreducible components, i.e., part of this contribution, is explicated in the Supplementary Material
(SM).
S)=9(6(5)) = &"). 2.4
9(5) = 9(8(5)) 6,612( )g( ) @4 PrROOF. First note that if there is more than one boundary compo-
&(S

nent, then there must be an arc with different boundary components

on its two sides, and removing this arc decreasdsy exactly

one while preserving since the number of arcs is given by =

2g -+ r — 1. Furthermore, if there are, boundary components of

length? in the polygonal model, the?n = 3", v, since each side

of each arc is traversed once by the boundary. For a shadow,0

by definition, and» < 1 as one sees directly. It therefore follows

that2n = 3", vy > 3(r —1)+2,802n =4g+2r —2 > 3r — 1,

i.e.,4g — 1 > r. Thus we haver = 2g + (49 — 1) — 1 = 69 — 2,

i.e. any shadow can contain at mégt— 2 arcs. The lower bound
LEmmA 2.1. An RNA structure is @-structure if and only if it~ 2g follows directly fromn = 2g + r — 1 by observing- = 1.

is a simple secondary structure. In particularQestructure always

has genug = 0.

It seems natural, therefore, to determine the complexity struc-
ture by the maximal genus of the components of its shadowse Mo
precisely, we say tha$ is ay-structure ifg(&’) < ~ holds for

all irreducible components of the shado@g,S). By definition, a
~-structure can thus be constructed from the$gbf shadows of
genus at mos¥ by inserting certain noncrossing arcs , see Fig. 6.
The simplest class of structures are of coursstructures, obtained
by placing noncrossing arcs over the empty structure.

Many S,-shadows are in faet structures for some < g, thatis,
they can be constructed from elementsSof One key result of this
PrROOF. We first observe that a diagram of genus zero containscontribution is the following characterization dfstructures:
no crossing arcs. _Thls follqws from the fact that genus is a mono- THEOREM2.3. An RNA structure is d-structure if and only if
tone non-decreasing function of the number of arcs (see eq. (2'3?25 shadow can be decomposed by iteratively removing one of the
and that the genus of the matching (H) consisting of two mutuallyf

. our shadows
crossing arcs has only one boundary component and hence genus

one; see Fig. 2. Second, we observe by induction on the number
of arcs that each new noncrossing arc contributes a new boundary >~ m m m
© )

component an@ — 2g — (r + 1) = 1 — (n + 1) shows that the " (K)

genus remains zero. Structures consisting only of noncrossing arcs

therefore have genus zero. In particular, 1-structures can have arbitrarily large topological
genus

Next, we consider structures of arbitary genus. For their analysis;
diagrams without isolated points, i.e., matchings, play a central role. PROOF. We only give a sketch here and refer to the SM for a
Let ¢, (n) be the set of matchings of genyswith n arcs, and let  full proof. First, we observe that taking the shadow preserves genus.
cy(n) := |%4(n)| denote its cardinality. As shown by Andersen Since (H) is the unique matching with two arcs of gegus- 1,
et al. (2010), the generating functioB, (z) = >, -, cs(n) 2™ is it is contained in every matching of genys= 1. An arc crossing
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4-non-crossing
1-structure
L&P, D&P

A&U

R&E

Fig. 8. Fragment-pairs in RNA structures: the ruld —
IA1IB1I1A2IB>S induces the fragment-pairgii,r1], [s1,71] and
[i2,72], [s2,j2]. Arcs connecting the two fragments of a pair are non-
crossing, while arcs with both endpoints within the same fragment may be
crossing such as those withisy, j2].

Fig. 7. Venn diagram of important classes of structures with pseudskno

The mutual relationships of pseudoknot-free secondary structure (SS), the

two H-shadow classes D&P and L&P, and the classes A&U and R&E,'epresenting an arbitrary diagram over a segment and three terminal

resp., were already described by Condon et al. (2004). 1-structures anBymbols to represent isolated vertices (sympabdpenings (symbol

4-noncrossing structures are added here. () and closings (symbo)) of base pairs. We only need the three
production-rules

into (H) preserves the genus and leads to either (K) or (L).IGN_hi“ S —: 8, S = ()8, S e, 2.7)
every arc added to (K) increases the genus, there is one possibility

to preserve the genus when adding an arc to (L), namely, the addition ]

leading to (M). It remains to observe that no further arc can be addef generate the corresponding languége

to (M).

) o ) ) ) We shall use that (1) anj-structure can be inductively genera-
Before proceeding to algorithmic considerations we brieflne ¢4 from genus one structures and (2) that every genus one structure

pare the class of/-s_tructu_res with other classes of pseudoknots.pas shadow (H), (K), (L), or (M), to specify a multiple context-free
Condoret al.(2004) investigated the structure classes L&P (Lyngs‘?’grammar (MCFG) (Sekét al, 1991). In contrast to context-free

and Pedersen, 2000), D&P (Dirks and Pierce, 2003), A&U (AkutsU.grammars, the non-terminal symbols of MCFGs may consist of mul-
2000), and R&E-class (Rivas and Eddy, 1999). The L&P- and D&P-jpje components which must be expandietparallel. In this way,

class are based on the H-type shadow depicted in Theorem 2.3 afjthecomes possible to couple separated parts of a derivation and
hence are proper subsets of the 1-structures. The A&U-class dogfys to generate crossings. In the caseé-sfructures, the language

not cover shadow M but on the other hand contains some configus s puilt upon sequences of intervafsagment-pairy li, 7], [s, ],
rations that are not-structures, and even thestructures do not where(i, 5), (r, s) are nested arcs. Arcs having endpoints in the dif-
completely contain the A&U-class. Nevertheless, the A&U-classterent fragments are assumed to be noncrossing; see Fig. 8. For the
is small: there are moré-structures than A&U-structures for any \crG, the fragments of a pair are associated with two different

given sequence length (Nebel and Weinberg, 2011). (coupled) components of&dimensional non-terminal symbol.
The R&E class does notimpose a limiton the genus of the shadow accordingly, we (re)introduce the following symbols:

and hence contains-structure with arbitrarily largey. Conver-
sely, Fig. 3 shows @-structure that is not contained in the R&E ¢ non-terminal S, representing secondary structure elements

class. This example is minimal, i.e., all 1-structures are contai- (i.e., diagrams without crossing arcs) according to the rules
ned in R&E. Similarly, the set ok-noncrossing structures (Jin given above,
et al, 2008; Huanget al, 2009) has infinitely many shadows for

any fixedk > 3 (Reidys and Wang, 2010), and hence, like R&E, e non-terminals/ andT, representing an arbitradystructure,

containsy-structure with arbitrarily largey. We note that every- e non-terminalsX = [Xi, X,] with two components used
structure isd-noncrossing; more precisely, shadows (H) and (K)  to represent a fragment-pair with nested arcx] €
are3-noncrossing, while shadow (L) and (M) consist3afutually {H,K,L,M},

crossing arcs. See Fig. 7. e terminals(x, )x denoting the opening and closing of a base

pair, resp., wheréX is one of the type$7, K, L or M.
2.3 Minimum freeenergy folding of ~-structures

We have shown in the previous section thagttructures are sim-
ple RNA secondary structures. Their minimum free energy (MFE)Z.
configuration can be obtained by DP recursions (Waterman, 197é?|nally,
Zuker and Stiegler, 1981) derived from a decomposition into sui-
table substructures. This decomposition can be expressed in terms
of a context-free grammar (Dowell and Eddy, 2004; Steffen and This coupling is only required for components that were generated by the
Giegerich, 2005). In the simplest case, which corresponds to evasame production step. Components, even if of the same kind, derived in
luating base pairs only, we consider a single non-terminal syiibol different steps are independent of each other.

Different brackets as well as the different non-terminals of pattern
X are used to distinguish nestings of the various kinds of shadows.
we specify the production-rules of our unambiguous MCFG
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— (S)S| :S|e

— I(T)S

TA1IB1I1A2IBsS

— TAIB1TAICIB2ICS

— TAIB1IC1TASIB2I1C,S

— TAIB1IC1IA3ID1IB2IC2ID2S
[(xIX1, X2D)x] | [(x,)x],

NN NN S n ~
l

whereX € {H, K, L, M} distinguishes the four types of pseudo-
knots.

THEOREM2.4. Any RNAL-structure can bainiquely decompo-
sed viaZ1, and any diagram generated Vid, is a 1-structure, see
Fig. 9.

ST\ 1)) 68y
I A LB 1ATIB,

Fig. 9. lllustration of the gramma#?; .

PROOF. We proceed by induction on the number of shadows.

Induction basisin a1-structureS that contains no genusshadow

there are no crossings and hence the structure can be decompo
sed uniquely via the context-free grammar of secondary structure

Induction stepSuppose we are givenlastructure containing > 1
shadows of genus one. We decompose from right to left. Everythin
is clear until we encounter a substructure containing a geérang-
dow. For an arex = (4, ), we distinguish two cases: (§) is not
crossed, or (I« is crossed by another arc. In case of (l), there
exists al-structure nested in. In case of (1), we consider the par-
tial order <, where(i, j) < (r,s) ifand only ifr < ¢ andj < s.
Since crossing arcs inkstructure are contained in one of the four
base types, we distinguish the following scenarios

(H): then there exist maximal base pafts= (r, s), wherer < i <

5 < 7,

(K): then there exist maximal base pafts= (r, s) andd = (u,v),
whereu < r <v <i<s<j,

(L): then there exist maximal base paits= (r, s) andf = (u,v),
whereu < r <i<wv < s <j,

(M): then there exist maximal base paits= (r, s), 6 = (u,v) and
0= (p,q),wherep<u<r<g<i<v<s<j.

iieses juj uoouror, v, i s, s

/AW, _ N
2)

B. A, B, A, B, A, C B.C,
(1)
0 5 0
a ﬁﬁ% o
/A
oLy U Lraskl R PUSLEE 9 LEuras )
A, B, C; A, B.C, A, B, C A, D, B, C, D,
(3) (4)

Fig. 10. Fragmentation: the four cases corresponding to the four shadows
(H), (K), (L) and (M). In (1), there are two maximal arcs: = (7, ;) and

B = (r,s), wherer < i < s < j, whence the diagram has shadow (H).
Here,ax = (i«, j«) is the minimal arc crossing’(«) and 8« = (r«, sx)

is the minimal arc crossing’(3). We haveB1 = [i,i«]|, B2 = [j,]«],

A1 = [r,rs], A2 = [s, s«]. Cases (2), (3) and (4) are analyzed similarly.

Consider the sef’(«) of arcs that are crossed ky and the mini-

mal arca. that crosses any element 6f(a)). Here minimality is
considered with respect to the partial orderwhere(i, 5) < (r, s)

if and only if r < 7 andj < s. It follows thata = (7,5) and

a. = (ix, j«) induce the fragment pali, i.] and[j., j]. We simi-

larly obtain the corresponding argk, 6. or d., which induce at
most four fragment-pairs and correspond to a unique shadow of type
(H), (K), (L) or (M). See Fig. 10. By construction, the number of
genusl shadows of any substructure contained in such a fragment-
pair is reduced at least by one and can by induction hypothesis, be
uniquely decomposes vi#,. Finally, any structure generated via
%1 1s constructed from top-to-bottom by iteratively building con-
figurations of arcs having shadow (H), (K), (L) or (M). Thus any
structure obtained viaz, is indeed al-structure completing the
proof of the theorem.

2-structures.A folding algorithm for 2-structures requires an ana-
logous enumeration of all (irreducible) shadows of geRugrom

eg. (2.6), it is straightforward to explicitly derive tl2¢ shadows of
enus 2 witht arcs, see SM Figl0. As in the case of genus arc-
insertions into thes@1 configurations leads to the complete set of
3472 shadows of genus two. This large number makes it infeasible
% build a practically useful folding algorithms fatl 2-structures.

It may be useful, however, to deal with a (small) subset of sha-
dows. The complexity of such an algorithm is determined by the
complexity of decomposing the individual shadows by means of
MCFG-production rules reminiscent of those fat. For instance,
the shadow of the HDV structure displayed in Fig.6, (2), is con-
tained in the R&E class and can therefore be computed (iv®)
time andO(N*) space. However, when resorting to our approach
its time complexity is at leasD(N®): the shadow presented in
Fig. 11 requires a DP algorithm wit®(N®) time- andO(N°)
space-complexity. It is ongoing work to devise a sensible folding
algorithm for2-structures.

MFE folding of 1-structures.If we make use of a naive table-
based parsing scheme, checking for each subwoofl the input
and for each rulef whether f can produces, a rule like f =
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decompose .
i j i r s i T s i r s i r s
1(i.j) G(i,j;r,s) Gu(i,j;r,s) Gv(i,j;r,s) Gw(i,j;r,s)
_ G

. S\

i r s it pip s aqr1 1)
Fig. 11. Folding of2-structures: The shadow shown heradd contained in G(ijirs) G+1p-)  G(P,QINS) i@t
the R&E class of structures and cannot be generated by gap-matrices. It can Glp+1jing+1)
be decomposed, however, using thandexest, j, k, I, m, n, p andg, thus //:11‘\ _
implying a O(N®) time-complexity. This makes use of a six-dimensional i ‘S\_\,j - ¢ I\pp : b :
gap matrixG; k1, m,n,p, Which impliesO( N %) space-complexity. Gu(ijirs) 1(i,p) I(s,q) !

Py A TGUCUhaPs)
< _\_/ N VAN
I — TA1IB>IC1TA>1D11B>1C>1D5S introduces a complexity [/~ S\ = '—p"”—*\ =
O(N'®): First, we must proces®(N?) different subwordss indu- " Gyujirs) Wyl o
ced by an input of size. Second, each non-terminal but the first on ==
the right-hand side of the production introduces an additional split /—au‘\\ Gu(i,qirp+1) /—6\/‘\\Gv(i,q;r,p+1)
point which specifies the part efto be generated by the correspon- Gy EOR N A EO N A
i - i i i i ithin4 ,~ -~ \ = / v / AU
ding non te'rmlnfal. S_lnce |_ts location may freely pe chosen W|th|n,_, \‘Fl‘ l L e [ o e
s, each split point gives rise to another loop variable, and hence (..o " ' ' '\_\"\* N — l\—\v\ ;l—/l
contributes a facto® (V) to the runtime. “Gu N Gu
Even if there are much more sophisticated parsing algorithms, it Gu(s jip.a+1) Gu(s,j;p.a+1)

is useful to consider this simple scheme since it directly transla-

tes into a recursion for a DP algorithm typically used to compute_ - ] ) ]

structures of minimum free energy. Furthermore, it is possible td !9 12 The decomposition fod-dimensional matrices, Gu, Gv, and
introduce intermediate steps in the derivation of our language by v

making use of additional non-terminals and production-rules such

that the time complexity can be reduced20N°®). For that purpose

let the non-terminal’ represent -structures in which no structures [s, 4], and letGu(i, j; 7, s) be the fragment-pair (associated with)
with shadow (H), (K), (L) or (M) are nested and the last vertex is [U1, Us], Gu(i, j; r, s) be the fragment-paiity, Va], Gw(i, j; r, s)

paired. We introduce the non-terminal symbbis= [U1, U2, V = be the fragment-paifiV;, W], andG(i, j; r, s) be the fragment-
Vi, V2] and W = [W;, W2] assumed to represent intermediate pair [X,, X»]. The recursions for these matrices, summarized in
fragment-pairs and the production-rules graphical form in Fig. 12, are determined directly by the grammar.
R We can conclude from the rewriting rules that the computation
U — [IX1,1X5] of the 2-dimensional matrices requires at most three loop variables,
V = [LWU],UUS) and there ar€(N?) many of them. AccordinglyO(N°®) operati-
- , , ons are required to fill the associatealimensional matrices. For
W — U, hU:Us] | [Vi, U VaUe] the4-dimensional matrices, two loop variables are needed for each

P ) ) of the corresponding rewriting rules (those with a left-hand side
where (U1, Us) is a marked copy ofUs,Uz) used to identify of dimension2) for there are in each case two split points intro-

the components which must later be expanded in a cou.pled Wa¥%uced by the right-hand sides of the corresponding productions.
Accordingly, we replace the derivations 6fin %1 as follows: Since we need to comput@(N*) matrix entries, the total run time

, is in O(N°®). Obviously, O(N*) space is required to store these

T - IDSI|TS tables. Accordingly, the algorithm can generatelafitructures in

I' - ViV | UhWiUsVa | Uy WU Wa O(N°®) time andO(N*) space i.e., with the same complexity as

pknot sRE (Rivas and Eddy, 1999) (for the larger R&E class).
Note that syntactically, i.e., considered as dot-bracket represerfhe advantage of-structures is that structurally different shadows
tations, thel-structures can be generated by a MCFG, parsable irtan be parametrized in different ways, and that the search space is
time O(N°®). However, in that case, corresponding brackets are notestricted to moderately complex shadows. In contrast, the language
generated in a coupled way making the grammar inappropriate foof R&E-structures is based on crossings and can neither identify
algorithmic purposes. blocks of arcs not restrict the genus of the shadows. For more struc-
As typical for DP and in analogy to our parsing scheme, we useure classes restricted f@-structures, NUPACK (Dirks and Pierce,

2-dimensional matrices to store the optimal structure over a frag2003) require)(N°®) time andO(N*) space.
ment. The matrix is indexed by the sequence coordinates of the This is substantially more demanding, of course, tharQha™)
endpoints. It can be a simple secondary structusea substructure  time andO(N?) memory complexity ofpknot sRG Reeder and
of higher genus. For the fragment-pairs, i.e., for the non-terminalssiegerich (2004), which, however, deals with a very restricted sub-
of dimension two, 4-dimensional matrices indexed by the end- set of H-shadow structures, demanding that helices are maximally
points of both linked fragments are required to store the optimakxtended and perfect in the sense that they are not interrupted by
structure over them. Suppose the pair of fragment§i,is] and  bulge- or interior-loopspknot sRGthus is not guaranteed to find
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the minimum energy structure within the class H-shadow structuresgenerates a Boltzmann sample Iestructures, see (Tacket al,
A related fast heuristic treats the (K)-shadow as a superposition af996; Ding and Lawrence, 2003; Huaegal., 2010) for analogous

the two H-shadows Theit al. (2010).

2.4 Partition function and sampling

We have shown that the MCF@?; uniquely generates all-
structures, i.e., it is unambiguous. Consequentl§; can be
employed to countl-structures over a given sequengeand to
compute the corresponding partition function

Q= Z e—G(s)/RT7

s€Gy

where R is the universal gas constari, is the temperaturei7(s)

is energy of structure over sequence;, and S, is the set ofl-
structures in which all base paifs j) satisfy the base pairing rules
for RNA, i.e., z;z; € {AU,UA,GC,CG,GU,UG}. Let N; ;
denote the substructure represented by the nonterminal sy¥hiool
- over the fragment, j], and IerX’i,jmS denote the fragment-pair
X = [X1, Xu], whereX, = [i,7] and X, = [s, j] in the recursions

constructions.

The basic data structure for this sampling is a staekhich stores
blocks of the form(¢, j, N) (or (¢, j; , s, )Z')), presenting substruc-
tures of nonterminal symbol8/ over [i, j] (or X over [X1, Xo]
whereX; = [i,7] and X2 = [s, j]). L is a set of base pairs sto-
ring those removed by the decomposition step in the grammar. We
initialize with the block(1,n,I) in A, andL = &. In each step,
we pick up one element inl and decompose it via the grammar
with probability @™ /Q™, whereQ” is the partition function of the
block which is picked up fromd, andQ" is the partition function
of the target block which is decomposed by the rewriting rule. The
base pairs which are removed in the decomposition step are moved
to L. For instance, according to the rewriting rafe— I1(7)S, the
block (7, j, T') is decomposed into the three blocKs; h — 1,1),
(h+1,6—-1,T), (¢ +1,4,5) and one base paiih, ¢) which is
to be removed. For fixed indicds ¢, wherei < h < ¢ < j, the
probability of decomposingi, j, T') reads

for energy minimization. For each of these symbols, we introduce

corresponding partial partition functiodgy, ; and@ ;. Since
) 1,J;7,8

_E[h,]/RT
Qli‘h—l X QT]‘+1,171 X Q51+1‘j xe

Phe =

the MCFG is unambigous, the recursions for the ioéftial partition
functions are derived by replacing minima by sums and addition
of energy contribution by multiplication of partial partition functi-

ons, see e.g., (VoBt al, 2006). For instance, the recursion for the The sampling step is iterated until is empty. The resulting

QTi,j

partition functions corresponding to the nonterminal synibotads

Qr,,; = Z Qrip X Qspyn
h

_E[h,¢]/RT
+ E Qli.h—l X QTj+1,e—1 X QS@+1.;‘ xXe )
h,l

1-structure is the given by the lidt of base pairs.

2.5 Software

Implementation MFE folding, partition function including a com-
putation of base pairing probabilities, and stochastic backtracing are
implemented irgf ol d. The program is written in C.

whereE][h, ¢] denotes the energy of the loop closed by the base pair

(h, ).
The probabilitiesPy, ; of partial structures of typeV over the
fragment|[i, ] and the probabilitie@)fi s of partial structures

of type X over the fragment paifi, j], [, s] are readily calculated

from the partial partition functions. These “backward recursions”
are analogous to those derived by McCaskill (1990) for crossing fre

structures: Lef\y, ; be the set ofl-structures containingV;,; and

let Ay, e be the set ofl-structures containing the fragment-pair

—

X jirs. It follows that we have

]P>N7’,,_7‘: Z P,

sEAN; j

Py =

i,4;7,8

> P

SEA ¢

1,557, 8
SupposeN; ; or X’i,j;r,s are obtained by decomposiry. The
conditional probablitiesPy, ;. and P g olo, Q€ then given

by Qo.(Ni;)/Qo. and Qo.(Xij.rs)/Qo. respectively. Here
Qo, represents the partition function ofs, and Qo (Ns,;)
and Qo, (Xi,j;r,s) represent the partition functions for tho8e-
configurations that contaitv; ; and )?iﬁjms respectively. Taking
the sum over all possibkg;, we obtain

Pn,, :]}D%M7 P

Q95 Xi,jir,s

—

Qo, (X jirs)
° Qo

Energy Model. Although the presentation above uses a simplified
grammar that does not explicitly distinguish the usual loop types,
gf ol d implements the Mathews-Turner energy model without
dangles (Mathewst al,, 1999, 2004) for secondary structure ele-
ments. For pseudoknots, we use here an extended version of the
Dirks-Pierce (DP) model (Dirks and Pierce, 2003) that allows dif-

ferent penaltiesix for the four topologically distinct pseudoknot

typesX = H,K,L, M. We have observed that the valuesf

have a substantial influence on the accuracy of the predicted struc-
tures. In bothNUPACK and pknot sRE, a common pseudoknot
penalty3; is assigned whenever two gap matrices cross. Since the
number of such crossings depends on the type of the pseudoknot,
this algorithmic design would implyga = 51, B8 = Bc = 201,
and8p = 361. In gf ol d, these parameters are independent and
can be adjusted to improve the performance. Since most experimen-
tally known pseudoknots are of types (H) and (K), we focused in
particular on the ratio oB4 and3 and found that both sensitivity
(the ratio of correctly predicted base pairs to the total nendf

base pairs in the reference structuagld positive predictive value
reach a maximum fos = 1.334. The pseudoknot penalty of type
(H) coincides with that of the DP model, i.e34 = (1 = 9.6
[kcal/mol]. The other penalties are setfg = 12.6, Sc = 14.6,
andf@p = 17.6; see SM for details. An alternative set of pseudo-
knot parameters described by Andronestial. (2010) can easily

From this backward recursion, one immediately derives a stochastioe incorporated but would require a re-adjustment of these four
backtracing recursion from the probabilities of partial structures thatopological penalties.
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Topology and prediction of RNA pseudoknots

Performance.The current implementation @f ol d is applicable I B Lo T
to sequences with a length up  ~ 150 nucleotides on current B B; r C-
PC hardwareFig. 13 summarizes the resource requirements. > 0.9 [ ]
2 > g
= 2 I e
5 4 % o Y
10 g T T | L B E 10 E T T T E ) 0.8+ —
= & . ': E B m
10 S B o ] ®
— F = 1 TIE 0 " 3 [
L ar = F 1 2 F o’ E = 07 s ecoo
p1E e 3 = F 0® . gm%a nwoo
5 F - T 1 z10°F E S 2
o .q20 Tz 1 & E ! 3 o Q bp prob
o 10°E = 5 ERE S E e B
o E - i 9 B o b
i X 1 210k o . =
10E . % 3 E E
. F s T | 3 . E °x - | | ] Fig. 14. Performance off ol d. Comparison of the average sensitivity (A)
1005, 64 128 1005, sa 128 and PPV (B) of different prediction algorithms on a sampléftructures
length N length N from Pseudobase. All details of this sample are given in the SM (Tab.S-

2). (C) The PPV increases signficantly if only base pairs with larger pairing
probabilities as predicted by the partition function versiongbdbl d are
Fig. 13. Run time (left) and peak memory (right) of gf ol Timing included in the predicted structure.
information is given for MFE-only (triangles) and paritition function with
sampling 10,000 structures from the Boltzmann ensemble. To compute error
bars, we folded folded betwea (N > 100) and100 (N < 70)randomly ~ be constructed only for certain types of structures. On the other
generated sequences on a Xeon E5410, 2.33Ghz, 48Gb memory. Memohand, the larger the structure sets are, the more base pairing pat-
allocation is independent of the sequence. For N > 100, double precisiorterns are contained in them that cannot be realized in nature due to
floats are necessary to avoid overflows. This leads to the jump in memorgteric constraints. Algorithm design so far has been mostly driven
consumptiop by a factor of. Dotted lines indicate the theor(_etica_l behavior by the desire to reduce computational complexity. The idea behind
of O(N°) (time) and O(\*) (space). The slope for CPU time is slightly o | 4 in contrast, is to define a more suitable class of structures
steeper than the theory since constraints among the 6 indices introduced . .
the minimum size of the complex pseudoknot elements lead to an additionzgxat can be generat.ed by nesting .and Congatenatlng a §ma|| number
speedup for small N. of elenjenta}ry building b!ocks. This recursive structure is captured
by a fairly simple unambiguous multiple context-free grammar that
translates in a canonical way to DP algorithms for computing the
We have observed thaff ol d provides a substantial increase minimum energy structure and the partition functioriaV ®) time
in both sensitivity and a positive predictive value (PPV, ratio of andO(N*) space. In addition to MFE folding, we have implemen-
correctly predicted base pairs to the total number of base pairs ited the computation of base pairing probabilities and a stochastic
the predicted structure) compared to the alternative DP approachédmcktracing recursion, thus providing the major functionalities of
pknot sRE (Rivas and Eddy, 1999WUPACK (Dirks and Pierce, RNA secondary structure prediction software for a very natural class
2003), andpknot sRG nf e (Reeder and Giegerich, 2004), and of pseudoknotted structures.
thatgf ol d provides a substantial increase in accuracy, cf. Fig. 14. The 1-structures considered here strike a balance between the
In an evaluation on the entilRseudobase (van Batenburgt al., generality necessary to cover almost all known pseudoknotted struc-
2001), gf ol d achieves a sensitivity di.762 and PPV of0.761. tures, and the restriction to topologically elementary structures that
As detailed in SM (Tab.S-3), the performance varies substantialljhave a good chance to actually correspond to a feasible spatial
between different classes of sequences however. Interestingly, tteructure. From a mathematical point of view, the characterization
more complex pseudoknots of type (K) are predicted with even higof structures in terms of irreducible components with given topo-
her accuracy (sensitivit§.889, PPV0.899) than the simpler, much logical genus appears particularly natural and promises to reflect
more frequent type H. closely the ease with which a structure can be embedded in three
The PPV ofgf ol d predictions can be increased by filtering dimensions. In addition, the grammar underlyigigol d naturally
the base pairs of the MFE structure by their probabilitpf for- distinguishes different types of pseudoknots and admits different
mation, which is computed by the partition function version of energy parameters for them. We observe that this additional freedom
gf ol d. Accepting only base pairs with a predicted base pairingof the parametrization leads to a substantial increase of sensitivity
probability p > 0.95 increases the PPV fro.76 to more than  of type (K) pseudoknotsp(63 — 0.889) and PPV (.73 — 0.899)
0.9, see Fig. 14ClIn order to evaluate the false positive rate, compared to the usage of a common penalty for each crossing of
we folded 100 tRNA sequences from Sprinzl's tRNA databasegap matrices. In terms of prediction accuragy,ol d thus com-
(Juhling et al., 2009). gf ol d correctly identifies 94% of them as pares favorably also with the leading alternative DP approaches to
pseudoknot-freeln comparison, NUPAR correctly identifies 86%  pseudoknotted structures.
andpknot sRG- nf e 89% of this sample set.
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