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ABSTRACT
Motivation: Several dynamic programming algorithms for predicting
RNA structures with pseudoknots have been proposed that differ
dramatically from one another in the classes of structures considered.
Results: Here we use the natural topological classification of RNA
structures in terms of irreducible components that are embedable
in surfaces of fixed genus. We add to the conventional secondary
structures four building blocks of genus one in order to construct
certain structures of arbitrarily high genus. A corresponding unam-
biguous multiple context free grammar provides an efficient dynamic
programming approach for energy minimization, partition function,
and stochastic sampling. It admits a topology-dependent parame-
trization of pseudoknot penalties that increases the sensitivity and
positive predictive value of predicted base pairs by 10-20% compa-
red to earlier approaches. More general models based on building
blocks of higher genus are also discussed.
Availability: The source code of gfold is freely available at http:
//www.combinatorics.cn/cbpc/gfold.tar.gz

Contact: duck@santafe.edu
Supplementary information: Supplementary material containing a
complete presentation of the algorithms, full proofs of theorems, and
detailed performance data are available at Bioinformatics online.

1 INTRODUCTION
The global conformation of RNA molecules is to a large extent
determined by topological constraints encoded at the level of secon-
dary structure, i.e., by the mutual arrangements of the base paired

∗to whom correspondence should be addressed. Phone: *86-22-2350-6800;
Fax: *86-22-2350-9272;duck@santafe.edu

helices (Bailoret al., 2010). In this context, secondary structure is
understood in a wider sense that includes pseudoknots. Although the
vast majority of RNAs has simple, i.e., pseudoknot-free, secondary
structure,PseudoBase (Tauferet al., 2009) lists more than250
records of pseudoknots determined by a variety of experimental and
computational techniques including crystallography, NMR, muta-
tional experiments, and comparative sequence analysis. In many
cases, they are crucial for molecular function. Examples include
the catalytic cores of several ribozymes (Doudna and Cech, 2002),
programmed frameshifting (Namyet al., 2006), and telomerase acti-
vity (Theimeret al., 2005), reviewed in (Staple and Butcher, 2005;
Giedroc and Cornish, 2009).

Secondary structures can been interpreted as matchings in a graph
of permissible base pairs (Tabaskaet al., 1998). The energy of
RNA folding is dominated by the stacking of adjacent base pairs,
not by the hydrogen bonds of the individual base pairs (Mathews
et al., 1999). In contrast to maximum weighted matching, the gene-
ral RNA folding problem with a stacking-based energy function
is NP-complete (Akutsu, 2000; Lyngsø and Pedersen, 2000). The
most commonly used RNA secondary structure prediction tools,
includingmfold (Zuker, 1989) and theVienna RNA Package
(Hofackeret al., 1994), therefore exclude pseudoknots.

Polynomial-time dynamic programming (DP) algorithms can be
devised, however, for certain restricted classes of pseudoknots. In
contrast to theO(N2) space andO(N3) time solution for sim-
ple secondary structures (Waterman, 1978; Nussinovet al., 1978;
Zuker and Stiegler, 1981), however, most of these approaches are
computationally much more demanding. The design of pseudo-
knot folding algorithms thus has been governed more by the need
to limit computational cost and achieve a manageable complexity
of the recursion than the conscious choice of a particularly natu-
ral search space of RNA structures. As a case in point, the class
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of structures underlying the algorithm by Rivas and Eddy (1999)
(R&E-structures,pknot-R&E) was characterized only in a subse-
quent publication (Rivas and Eddy, 2000). The following references
provide a certainly incomplete list of DP approaches to RNA struc-
ture prediction using different structure classes characterized in
terms of recursion equations and/or stochastic grammars: Rivas and
Eddy (1999); Uemura Y.et al. (1999); Akutsu (2000); Lyngsø and
Pedersen (2000); Caiet al. (2003); Dirks and Pierce (2003); Deo-
gunet al. (2004); Reeder and Giegerich (2004); Li and Zhu (2005);
Matsui et al. (2005); Katoet al. (2006); Chenet al. (2009). The
inter-relationships of some of these classes of RNA structures have
been clarified in part by Condonet al. (2004) and Rødland (2006).
In addition to these exact algorithms, a plethora of heuristic approa-
ches to pseudoknot prediction have been proposed in the literature;
see e.g., (Metzler and Nebel, 2008; Chen, 2008) and the references
therein.

At least three distinct classification schemes of RNA contact
structures have been proposed: Haslinger and Stadler (1999) sugge-
sted using book-embeddings, Jinet al. (2008) focused on the maxi-
mal set of pairwise crossing base pairs, and Bonet al. (2008) based
the classification on topological embeddings. While these classifi-
cations have in common that simple secondary structure forms the
most primitive class of structures, they differ already in the con-
struction of the first non-trivial class of pseudoknots. Despite their
mathematical appeal, however, no efficient (polynomial-time) algo-
rithms are available for predicting pseudoknotted structures even in
the simplest case of3-noncrossing RNA structures. A practically
workable approach to3-noncrossing structures requires the enume-
ration of an exponentially growing number of diagrams which are
then “filled in” by means of DP (Huanget al., 2009); a Monte-
Carlo approach utilizing the topological approach with a very simple
matching-like energy model was explored by (Vernizzi and Orland,
2005).

In this contribution, we show that the topological classification of
RNA structures can be translated into efficient DP algorithms. To
this end, we introduce γ -structures and prove that they can be deri-
ved from a finite family of abstract shapes called shadows. In Theo-
rem 2.3, we enumerate these four shadows for γ = 1, which can be
cast as explicit construction rules for a unique multiple context-free
grammar (Section 2.3). Corresponding DP algorithms for energy
minimization, partition function, and Boltzmann-sampling func-
tionalities are implemented in the software packagegfold. An
important feature is that γ  -structures can be treated algorithmically
like pseudoknot-free secondary structures in sense that there are
finitely many motifs, i.e., shadows, for fixed γ , each of which is
assigned a specific energy. Because of the multiplicity of motifs,
which rapidly increases with γ , this allows for a more detailed
energy model of pseudoknotted structures based on their topological
complexity.

2 RESULTS

2.1 Topology of RNA Structures
Diagram Representation.RNA molecules are linear biopolymers
consisting of the four nucleotidesA, U, C, andG characterized by a
sequence endowed with a unique orientation (5′ to3′). Each nucleo-
tide can interact (base pair) with at most one other nucleotide by
means of specific hydrogen bonds. Only the Watson-Crick pairsGC
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Fig. 1. RNA structure as planar graph(hydrogen bonds (resp. backbone)
represented by red (resp. black) edges)and diagram.

and AU as well as the wobbleGU are admissible. These base pairs
determine the secondary structure. Note that we have neglected here
base triples and other types of more complex interactions. Secon-
dary structures can thus be represented as graphswhere nucleotides
are represented by vertices, the backbone of the molecule aswell as
the hydrogen bonds are represented by edges; see Fig. 1 (a). More
conveniently, we use the convention to represent the backbone of the
polymer by a horizontally drawn chain. As before, this chaincon-
sists of vertices and arcs respectively representing the nucleotides
and covalent bonds. However, the edges representing the base pairs
now are depicted as arcs in the upper half-plane; see Fig. 1 (b). We
call this representation the diagram of the molecule.

Thus, we shall identify a structure with a labelled graph overthe
vertex set[N ] = {1, 2, . . . , N} represented by drawing the vertices
1, 2, . . . , N on a horizontal line in the natural order and the arcs
(i, j), wherei < j, in the upper half-plane.

Fatgraph representation.In order to understand the topological pro-
perties of RNA molecules we need to pass from the picture of RNA
as diagrams or contact-graphs to that of topological surfaces. Only
the associated surface carries the important invariants leading to a
meaningful filtration of RNA structures. Formally, we will view an
RNA molecule as a topological surface (Andersenet al., 2010). The
main idea is to “thicken” the edges into (untwisted) bands or rib-
bons and to expand each vertex to a disk as shown in Fig. 2. This
inflation of edges leads to a fatgraphD (Loebl and Moffatt, 2008;
Penneret al., 2010).

A fatgraph, sometimes also called “ribbon graph” or “map”, is
a graph equipped with a cyclic ordering of the incident half-edges
at each vertex. Thus,D refines its underlying graphD insofar as
it encodes the ordering of the ribbons incident on its disks. In the
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Fig. 2. Inflation of edges and vertices to ribbons and disks. Here
we have four vertices, five edges and one boundary component
(~a  , 

~b,  ~c  ,  

~d  , ~e  , 

~f ,  ~g  , 

~h , 

~i, 

~j ). The corresponding surface has Euler characte-
ristic χ = v −  e + r = 0 and genus g = 1, see eqs (2.1) and
(2.2).
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Fig. 3. Computing the number of boundary components. The diagram con-
tains5 + 9 edges and10 vertices. We follow the alternating paths described
in the text and observe that there are exactly two boundary components
(bold and thin). According to eq. (2.1), the genus of the diagram is given
by 1 − 1

2 

(10 −  14 + 2) = 2, see SM, Fig. S6 for details.

following we will deal with orientable ribbon graphs1. Each rib-
bon has two boundaries. The first one in counterclockwise order
is labeled by an arrowhead, see Fig. 2. A D-cycle or D-boundary
component is then constructed by following these directed bounda-
ries from disk to diskthereby alternating between base pair ribbons
and backbone,with the exception of the segment of the boundary
component that travels along the bottom of the backbone using only
backbone bonds, as shown in Figs. 2 and 3.We give a brief tuto-
rial on how to compute boundary components in the SM, Fig. S6.
Topological invariants such as the number of boundary components
of the fatgraphD can thus be computed directly from the underly-
ing diagramD. Furthermore, fatgraphs can be succinctly stored and
conveniently manipulated on the computer as pairs of permutations
(Penneret al., 2010).

The fatgraphD gives rise to a unique surfaceXD, and eachD-
cycle corresponds to a boundary component ofXD, whose Euler
characteristic and genus are given by

χ(XD) = v − e + r (2.1)

g(XD) = 1 − 1

2
χ(XD), (2.2)

wherev, e, r denotes the number of discs, ribbons and boundary
components in D (Massey, 1967).The graph D  can readily be
obtained by continously contracting the ribbons and discs of  D.

We next make use of an additional feature of RNA structures,
namely, that the backbone forms a unique oriented chain determi-
ned by the covalent bonds. Thus, the backbone can be collapsed to a
single disksince the surface is orientable: in absence of twisted ribb-
ons, there is no particular information in the backbone itself. Indeed,
the procedure can be undone by re-inflating the disk and rebuilding
the backbone. The contraction of the N  vertices to a single one and

1 ribbons may also be allowed to twist giving rise to possibly non-orientable
surfaces (Massey, 1967)
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Fig. 4. Reduction to fatgraphs with a single vertex. Contracting the back-
bone of a diagram into a single vertex decreases the length of the boundary
components and preserves the genus.The contracted fatgraph is equivalent
to the labeled directed cycle.The backbone of the polymer can be recovered
by re-inflating the disk into the backbone.The polygon (r.h.s.) represents the
standard 2D-model of a surface as discussed in (Massey, 1967).

the removal of the ( N  −  1)  covalent bonds therefore preserves the
Euler characteristic and genus, see Fig. 4.

Using the collapsed fatgraph2 we see that the relation between
the genus of the surface and the number of boundary components is
determined by the number of arcs in the upper half-plane, namely,

2 − 2g − r = 1 − n, (2.3)

wheren is number of base pairs andr the number of boundary com-
ponents. The latter can be computed easily and therefore controls the
genus of the molecules.Eq. (2.3) follows from eqns. (2.2) and (2.1),
which together yield 2 −  2g − r  = v  − e, and the observation that
the contracted graph has e = n  arcs and a single ( v =  1) vertex.

2.2 γ-structures
Theshadowof a diagram (RNA structure) is obtained by removing
all noncrossing arcs, collapsing all isolated vertices and replacing
all remaining stacks (i.e., adjacent parallel arcs) by single arcs; see
Fig. 5. Shadows can be seen as a generalization of shape abstracti-
ons (Giegerichet al., 2004) to pseudoknotted structures (Reidys and
Wang, 2010).Similar to the process of contracting the backbone into
a single vertex, the projection into a shadow changes neither genus
nor the number of boundary components (Andersenet al., 2010).
All information on stack-lengths and on noncrossing components of
the structure is lost in the process however. We shall see that the
set of structures with shadow S can nevertheless be reconstructed
efficiently. To this end we will show that, for fixed genus g , there
are only finitely many distinct shadows S g 

, which will play a central
role in constructing folding algorithms.

A diagram is irreducible (or connected) (Kleitman, 1970) if for
any two arcs there is a sequence of arcs so that consecutive arcs
cross one other. A shadow is not necessarily irreducible butmay be
composed of multiple irreducible components or blocks, seeFig. 6
(1). Any shadow (and in general, any diagram) can be decomposed
iteratively by removing irreducible components from bottom to top,
i.e., so that that there is no component “inside” the one justremoved.
Note that the set IS 

of irreducible components of the set of shadows,
S (  S  ), equals the set of shadows of the irreducible components of

2 in order to relate this to the standard 2D-models of surfaces derived from
triangulations: from the collapsed fatgraph we can derive thepolygonal
model of the surfaceXD, i.e., a2n-gon in which edges are identified in
pairs; see Fig. 4
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shadowdiagram

Fig. 5. The shadow of a diagram is obtained by removing all noncros-
sing arcs and isolated vertices and collapsing all resulting stacks into single
arcs.While taking shadows is a significant reduction, the key topological
invariants of genus and number of boundary components remain invariant.

(1) (2)

Fig. 6. γ-structures: we display the shadow of a1-structure (left) having
topological genus two and the shadow of the HDV-structure (right) (Ferré-
D’Amaré et al., 1998), a2-structure having also genus two. Although both
shadows have genus two, the HDV structure cannot be generated iteratively
via successive removals ofS1-elements and stacked arcs. The structure
displayed on the left is derived via twoS1-substructures.

the diagram S  . Furthermore, the genus of S (  S  )  is the sum of the
genera of its irreducible components, i.e.,

g  (  S  )  =  g  (  S (  S  )  )  =
X

S 

′  ∈  IS(S )

g  (  S 

′  )  .  (2.4)

It seems natural, therefore, to determine the complexity ofa struc-
ture by the maximal genus of the components of its shadows. More
precisely, we say that S  is a γ  -structure if g  (  S 

′  )  ≤  γ  holds for
all irreducible components of the shadows S (  S  ). By definition, a
γ  -structure can thus be constructed from the set S  γ  

of shadows of
genus at most γ  by inserting certain noncrossing arcs , see Fig. 6.
The simplest class of structures are of course 0-structures, obtained
by placing noncrossing arcs over the empty structure.

LEMMA 2.1. An RNA structure is a0-structure if and only if it
is a simple secondary structure. In particular, a0-structure always
has genusg = 0.

PROOF. We first observe that a diagram of genus zero contains
no crossing arcs. This follows from the fact that genus is a mono-
tone non-decreasing function of the number of arcs (see eq. (2.3))
and that the genus of the matching (H) consisting of two mutually
crossing arcs has only one boundary component and hence genus
one; see Fig. 2. Second, we observe by induction on the number
of arcs that each new noncrossing arc contributes a new boundary
component and2 − 2g − (r + 1) = 1 − (n + 1) shows that the
genus remains zero. Structures consisting only of noncrossing arcs
therefore have genus zero.

Next, we consider structures of arbitary genus. For their analysis,
diagrams without isolated points, i.e., matchings, play a central role.
Let Cg(n) be the set of matchings of genusg with n arcs, and let
cg(n) := |Cg(n)| denote its cardinality. As shown by Andersen
et al. (2010), the generating functionCg(z) =

P

n≥0 cg(n) zn is

given by

Cg(z) = Pg(z)

√
1 − 4 z

(1 − 4z)3g
, g ≥ 1, (2.5)

wherePg(z) is an integral polynomial of degree(3g − 1) such
thatPg(1/4) 6= 0. The number of genus zero matchings are well-
known to be given by the Catalan numbers, and eq. (2.5) allows the
derivation of explicit formulas for higher genera, for instance,

c1(n) =
2n−2(2n − 1)!!

3(n − 2)!
, c2(n) =

2n−4(5n − 2)(2n − 1)!!

90(n − 4)!
.

Furthermore, the numbercg(2g) of matchings of genusg having
exactly 2g arcs, i.e., matchings having exactly one boundary
component, is the coefficient ofz2g in Pg(z) and is given by

cg(2g) =
(4g)!

4g(2g + 1)!
. (2.6)

Explicitly, we havec1(2) = 1, c2(4) = 21 andc3(6) = 1485 for
example. These particular matchings will serve as “seeds” for our
folding algorithm. More precisely, we shall use the following:

THEOREM 2.2. For arbitrary genusg, the setSg of shadows is
finite. Every shadow inSg contains at least2g and at most(6g−2)
arcs.

The special caseg = 1, on which we focus in the algorithmic
part of this contribution, is explicated in the Supplementary Material
(SM).

PROOF. First note that if there is more than one boundary compo-
nent, then there must be an arc with different boundary components
on its two sides, and removing this arc decreasesr by exactly
one while preservingg since the number of arcs is given byn =
2g + r − 1. Furthermore, if there areνℓ boundary components of
lengthℓ in the polygonal model, then2n =

P

ℓ ℓνℓ since each side
of each arc is traversed once by the boundary. For a shadow,ν1 = 0
by definition, andν2 ≤ 1 as one sees directly. It therefore follows
that2n =

P

ℓ ℓνℓ ≥ 3(r− 1) + 2, so2n = 4g + 2r− 2 ≥ 3r− 1,
i.e.,4g − 1 ≥ r. Thus we haven = 2g + (4g − 1) − 1 = 6g − 2,
i.e. any shadow can contain at most6g − 2 arcs. The lower bound
2g follows directly fromn = 2g + r − 1 by observingr = 1.

ManySg-shadows are in factγ structures for someγ < g, that is,
they can be constructed from elements ofSγ . One key result of this
contribution is the following characterization of1-structures:

THEOREM 2.3. An RNA structure is a1-structure if and only if
its shadow can be decomposed by iteratively removing one of the
four shadows

(H) (K) (L) (M)

In particular, 1-structures can have arbitrarily large topological
genus.

PROOF. We only give a sketch here and refer to the SM for a
full proof. First, we observe that taking the shadow preserves genus.
Since (H) is the unique matching with two arcs of genusg = 1,
it is contained in every matching of genusg = 1. An arc crossing
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4- -non crossing

1-structure

L&P, D&P

A&U

R&ESS

Fig. 7. Venn diagram of important classes of structures with pseudoknots.
The mutual relationships of pseudoknot-free secondary structure (SS), the
two H-shadow classes D&P and L&P, and the classes A&U and R&E,
resp., were already described by Condon et al. (2004). 1-structures and
4-noncrossing structures are added here.

into (H) preserves the genus and leads to either (K) or (L). While
every arc added to (K) increases the genus, there is one possibility
to preserve the genus when adding an arc to (L), namely, the addition
leading to (M). It remains to observe that no further arc can be added
to (M).

Before proceeding to algorithmic considerations we briefly com-
pare the class ofγ-structures with other classes of pseudoknots.
Condonet al.(2004) investigated the structure classes L&P (Lyngsø
and Pedersen, 2000), D&P (Dirks and Pierce, 2003), A&U (Akutsu,
2000), and R&E-class (Rivas and Eddy, 1999). The L&P- and D&P-
class are based on the H-type shadow depicted in Theorem 2.3 and
hence are proper subsets of the 1-structures. The A&U-class does
not cover shadow M but on the other hand contains some configu-
rations that are not1-structures, and even the2-structures do not
completely contain the A&U-class. Nevertheless, the A&U-class
is small: there are more1-structures than A&U-structures for any
given sequence length (Nebel and Weinberg, 2011).

The R&E class does not impose a limit on the genus of the shadow
and hence containsγ-structure with arbitrarily largeγ. Conver-
sely, Fig. 3 shows a2-structure that is not contained in the R&E
class. This example is minimal, i.e., all 1-structures are contai-
ned in R&E. Similarly, the set ofk-noncrossing structures (Jin
et al., 2008; Huanget al., 2009) has infinitely many shadows for
any fixedk ≥ 3 (Reidys and Wang, 2010), and hence, like R&E,
containsγ-structure with arbitrarily largeγ. We note that every1-
structure is4-noncrossing; more precisely, shadows (H) and (K)
are3-noncrossing, while shadow (L) and (M) consist of3 mutually
crossing arcs. See Fig. 7.

2.3 Minimum free energy folding of γ-structures
We have shown in the previous section that0-structures are sim-

ple RNA secondary structures. Their minimum free energy (MFE)
configuration can be obtained by DP recursions (Waterman, 1978;
Zuker and Stiegler, 1981) derived from a decomposition into sui-
table substructures. This decomposition can be expressed in terms
of a context-free grammar (Dowell and Eddy, 2004; Steffen and
Giegerich, 2005). In the simplest case, which corresponds to eva-
luating base pairs only, we consider a single non-terminal symbolS

i1 r1 s1 j1

i2 r2 s2 j2

A1 AI IB B

} } }}

1 2 2

Fig. 8. Fragment-pairs in RNA structures: the ruleI →

IA1IB1IA2IB2S induces the fragment-pairs[i1, r1], [s1, j1] and
[i2, r2], [s2, j2]. Arcs connecting the two fragments of a pair are non-
crossing, while arcs with both endpoints within the same fragment may be
crossing such as those within[s2, j2].

representing an arbitrary diagram over a segment and three terminal
symbols to represent isolated vertices (symbol:), openings (symbol
() and closings (symbol)) of base pairs. We only need the three
production-rules

S →: S, S → (S)S, S → ε, (2.7)

to generate the corresponding languageS.

We shall use that (1) any1-structure can be inductively genera-
ted from genus one structures and (2) that every genus one structure
has shadow (H), (K), (L), or (M), to specify a multiple context-free
grammar (MCFG) (Sekiet al., 1991). In contrast to context-free
grammars, the non-terminal symbols of MCFGs may consist of mul-
tiple components which must be expanded3 in parallel. In this way,
it becomes possible to couple separated parts of a derivation and
thus to generate crossings. In the case of1-structures, the language
S is built upon sequences of intervals (fragment-pairs) [i, r], [s, j],
where(i, j), (r, s) are nested arcs. Arcs having endpoints in the dif-
ferent fragments are assumed to be noncrossing; see Fig. 8. For the
MCFG, the fragments of a pair are associated with two different
(coupled) components of a2-dimensional non-terminal symbol.

Accordingly, we (re)introduce the following symbols:

• non-terminal S, representing secondary structure elements
(i.e., diagrams without crossing arcs) according to the rules
given above,

• non-terminalsI andT , representing an arbitrary1-structure,

• non-terminals ~X = [X1, X2] with two components used
to represent a fragment-pair with nested arcs,X ∈
{H, K, L, M},

• terminals(X , )X denoting the opening and closing of a base
pair, resp., whereX is one of the typesH,K, L or M .

Different brackets as well as the different non-terminals of pattern
~X are used to distinguish nestings of the various kinds of shadows.
Finally, we specify the production-rules of our unambiguous MCFG

3 This coupling is only required for components that were generated by the
same production step. Components, even if of the same kind, derived in
different steps are independent of each other.
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R1:

I → S | T

S → (S)S | :S | ǫ

T → I(T )S

T → IA1IB1IA2IB2S

T → IA1IB1IA2IC1IB2IC2S

T → IA1IB1IC1IA2IB2IC2S

T → IA1IB1IC1IA2ID1IB2IC2ID2S

~X → [(XIX1, X2I)X ] | [(X , )X ] ,

whereX ∈ {H, K, L, M} distinguishes the four types of pseudo-
knots.

THEOREM2.4. Any RNA1-structure can beuniquely decompo-
sed viaR1, and any diagram generated viaR1 is a1-structure, see
Fig. 9.

II I I I I S

II I I I I

II I I

S

S

II I I I I SI I

I =

T
I S

=
I I

S

S

I T S( ) SIIII A AB B1 1 2 2 SIIII A AB B1 1 2 2I I C2C1

SIIII A AB B1 1 2 2I I C2C1 SIIII A AB B1 1 2 2I I C2C1 I ID1 D2

II X1 X2 X1 X2 I )(

T

T

T

T

=

Fig. 9. Illustration of the grammarR1.

PROOF. We proceed by induction on the number of shadows.
Induction basis:In a1-structureS that contains no genus1-shadow
there are no crossings and hence the structure can be decompo-
sed uniquely via the context-free grammar of secondary structures.
Induction step:Suppose we are given a1-structure containingr ≥ 1
shadows of genus one. We decompose from right to left. Everything
is clear until we encounter a substructure containing a genus1 sha-
dow. For an arcα = (i, j), we distinguish two cases: (I)α is not
crossed, or (II)α is crossed by another arc. In case of (I), there
exists a1-structure nested inα. In case of (II), we consider the par-
tial order≤, where(i, j) ≤ (r, s) if and only if r < i andj < s.
Since crossing arcs in a1-structure are contained in one of the four
base types, we distinguish the following scenarios
(H): then there exist maximal base pairsβ = (r, s), wherer < i <
s < j,
(K): then there exist maximal base pairsβ = (r, s) andθ = (u, v),
whereu < r < v < i < s < j,
(L): then there exist maximal base pairsβ = (r, s) andθ = (u, v),
whereu < r < i < v < s < j,
(M): then there exist maximal base pairsβ = (r, s), θ = (u, v) and
δ = (p, q), wherep < u < r < q < i < v < s < j.

}

A1

} } i jir r vu s s j} } }

A2B1 B2 C2C1

u v} i jir r s s j} } }

A1 A2 B2B1

}

A1

} }i jir r vu s s j} } }

A2B1 B2 C2C1

u v }

A1
} } i jir r vu s s j} } }

A2B1 B2 C2C1

u v
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}p qqp
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bq
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* * * *

* * * * * *

* * * * * *

********

Fig. 10. Fragmentation: the four cases corresponding to the four shadows
(H), (K), (L) and (M). In (1), there are two maximal arcs:α = (i, j) and
β = (r, s), wherer < i < s < j, whence the diagram has shadow (H).
Here,α∗ = (i∗, j∗) is the minimal arc crossingC(α) andβ∗ = (r∗, s∗)
is the minimal arc crossingC(β). We haveB1 = [i, i∗], B2 = [j, j∗],
A1 = [r, r∗], A2 = [s, s∗]. Cases (2), (3) and (4) are analyzed similarly.

Consider the setC(α) of arcs that are crossed byα and the mini-
mal arcα∗ that crosses any element ofC(α). Here minimality is
considered with respect to the partial order≤, where(i, j) ≤ (r, s)
if and only if r < i and j < s. It follows that α = (i, j) and
α∗ = (i∗, j∗) induce the fragment pair[i, i∗] and[j∗, j]. We simi-
larly obtain the corresponding arcsβ∗, θ∗ or δ∗, which induce at
most four fragment-pairs and correspond to a unique shadow of type
(H), (K), (L) or (M). See Fig. 10. By construction, the number of
genus1 shadows of any substructure contained in such a fragment-
pair is reduced at least by one and can by induction hypothesis, be
uniquely decomposes viaR1. Finally, any structure generated via
R1 is constructed from top-to-bottom by iteratively building con-
figurations of arcs having shadow (H), (K), (L) or (M). Thus any
structure obtained viaR1 is indeed a1-structure completing the
proof of the theorem.

2-structures.A folding algorithm for 2-structures requires an ana-
logous enumeration of all (irreducible) shadows of genus2. From
eq. (2.6), it is straightforward to explicitly derive the21 shadows of
genus 2 with4 arcs, see SM Fig.10. As in the case of genus1, arc-
insertions into these21 configurations leads to the complete set of
3472 shadows of genus two. This large number makes it infeasible
to build a practically useful folding algorithms forall 2-structures.
It may be useful, however, to deal with a (small) subset of sha-
dows. The complexity of such an algorithm is determined by the
complexity of decomposing the individual shadows by means of
MCFG-production rules reminiscent of those forR1. For instance,
the shadow of the HDV structure displayed in Fig.6, (2), is con-
tained in the R&E class and can therefore be computed inO(N6)
time andO(N4) space. However, when resorting to our approach
its time complexity is at leastO(N8): the shadow presented in
Fig. 11 requires a DP algorithm withO(N8) time- andO(N6)
space-complexity. It is ongoing work to devise a sensible folding
algorithm for2-structures.

MFE folding of 1-structures.If we make use of a naı̈ve table-
based parsing scheme, checking for each subwords of the input
and for each rulef whetherf can produces, a rule like f =
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i j k l m n p q

decompose

Fig. 11. Folding of2-structures: The shadow shown here isnotcontained in
the R&E class of structures and cannot be generated by gap-matrices. It can
be decomposed, however, using the8 indexesi, j, k, l, m, n, p andq, thus
implying a O(N8) time-complexity. This makes use of a six-dimensional
gap matrixGj,k,l,m,n,p, which impliesO(N6) space-complexity.

I → IA1IB2IC1IA2ID1IB2IC2ID2S introduces a complexity
O(N18): First, we must processO(N2) different subwordss indu-
ced by an input of sizen. Second, each non-terminal but the first on
the right-hand side of the production introduces an additional split
point which specifies the part ofs to be generated by the correspon-
ding non-terminal. Since its location may freely be chosen within
s, each split point gives rise to another loop variable, and hence
contributes a factorO(N) to the runtime.

Even if there are much more sophisticated parsing algorithms, it
is useful to consider this simple scheme since it directly transla-
tes into a recursion for a DP algorithm typically used to compute
structures of minimum free energy. Furthermore, it is possible to
introduce intermediate steps in the derivation of our language by
making use of additional non-terminals and production-rules such
that the time complexity can be reduced toO(N6). For that purpose
let the non-terminalI ′ represent1-structures in which no structures
with shadow (H), (K), (L) or (M) are nested and the last vertex is
paired. We introduce the non-terminal symbols~U = [U1, U2], ~V =
[V1, V2] and ~W = [W1, W2] assumed to represent intermediate
fragment-pairs and the production-rules

~U → [IX1, IX2]

~V → [U1U
′
1, U2U

′
2]

~W → [U1, U
′
1U2U

′
2] | [V1, U1V2U2]

where (U ′
1, U

′
2) is a marked copy of(U1, U2) used to identify

the components which must later be expanded in a coupled way.
Accordingly, we replace the derivations ofT in R1 as follows:

T → I(T )S | I ′S

I ′ → V1V2 | U1V1U2V2 | U1W1U2W2

Note that syntactically, i.e., considered as dot-bracket represen-
tations, the1-structures can be generated by a MCFG, parsable in
timeO(N5). However, in that case, corresponding brackets are not
generated in a coupled way making the grammar inappropriate for
algorithmic purposes.

As typical for DP and in analogy to our parsing scheme, we use
2-dimensional matrices to store the optimal structure over a frag-
ment. The matrix is indexed by the sequence coordinates of the
endpoints. It can be a simple secondary structureS or a substructure
of higher genus. For the fragment-pairs, i.e., for the non-terminals
of dimension two,4-dimensional matrices indexed by the end-
points of both linked fragments are required to store the optimal
structure over them. Suppose the pair of fragments is[i, r] and

=
i r s j i

i r s j i r s j

G(i,j;r,s) Gu(i,j;r,s) Gv(i,j;r,s) Gw(i,j;r,s)

i r s j i r s j

p-1p qq+1i+1 j-1 j

G(i,j;r,s) G(p,q;r,s)

i r s j

Gu(i,j;r,s)

=
r s j

G(p+1,j;r,q+1)

i p q

Gv(i,j;r,s)

i r s j

Gw(i,j;r,s)

i r s j

=
j

=

r
i s

j

Gu(p+1,j;r,q+1)

r s

I(i+1,p-1) I(q+1,j-1)

I(i,p) I(s,q)

Gu(i,q;p,s)

p
q+1

ri
s j

Gu(s,j;p,q+1)

Gu(i,q;r,p+1)

p

Gu(s,j;p,q+1)

Gv(i,q;r,p+1)

Gu Gv Gw

i j

I(i,j)

Gu

G

GG

I

I I

I
p+1

I
q+1

G

Gv
Gu

Gu

p+1
q

Gw
Gu

Gu

q+1
qp+1 ri

s jp

Gv

Gu

q+1
qp+1

Fig. 12. The decomposition for4-dimensional matricesG, Gu, Gv, and
Gw.

[s, j], and letGu(i, j; r, s) be the fragment-pair (associated with)
[U1, U2], Gv(i, j; r, s) be the fragment-pair[V1, V2], Gw(i, j; r, s)
be the fragment-pair[W1, W2], andG(i, j; r, s) be the fragment-
pair [X1, X2]. The recursions for these matrices, summarized in
graphical form in Fig. 12, are determined directly by the grammar.

We can conclude from the rewriting rules that the computation
of the2-dimensional matrices requires at most three loop variables,
and there areO(N2) many of them. Accordingly,O(N5) operati-
ons are required to fill the associated2-dimensional matrices. For
the4-dimensional matrices, two loop variables are needed for each
of the corresponding rewriting rules (those with a left-hand side
of dimension2) for there are in each case two split points intro-
duced by the right-hand sides of the corresponding productions.
Since we need to computeO(N4) matrix entries, the total run time
is in O(N6). Obviously, O(N4) space is required to store these
tables. Accordingly, the algorithm can generate all1-structures in
O(N6) time andO(N4) space, i.e., with the same complexity as
pknotsRE (Rivas and Eddy, 1999) (for the larger R&E class).
The advantage of1-structures is that structurally different shadows
can be parametrized in different ways, and that the search space is
restricted to moderately complex shadows. In contrast, the language
of R&E-structures is based on crossings and can neither identify
blocks of arcs not restrict the genus of the shadows. For more struc-
ture classes restricted toH-structures, NUPACK (Dirks and Pierce,
2003) requiresO(N5) time andO(N4) space.

This is substantially more demanding, of course, than theO(N4)
time andO(N2) memory complexity ofpknotsRG Reeder and
Giegerich (2004), which, however, deals with a very restricted sub-
set of H-shadow structures, demanding that helices are maximally
extended and perfect in the sense that they are not interrupted by
bulge- or interior-loops.pknotsRG thus is not guaranteed to find
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the minimum energy structure within the class H-shadow structures.
A related fast heuristic treats the (K)-shadow as a superposition of
the two H-shadows Theiset al. (2010).

2.4 Partition function and sampling
We have shown that the MCFGR1 uniquely generates all1-
structures, i.e., it is unambiguous. Consequently,R1 can be
employed to count1-structures over a given sequencex and to
compute the corresponding partition function

Q =
X

s∈Sx

e−G(s)/RT ,

whereR is the universal gas constant,T is the temperature,G(s)
is energy of structures over sequencex, andSx is the set of1-
structures in which all base pairs(i, j) satisfy the base pairing rules
for RNA, i.e., xixj ∈ {AU, UA, GC, CG, GU, UG}. Let Ni,j

denote the substructure represented by the nonterminal symbolN in
R1 over the fragment[i, j], and let~Xi,j;r,s denote the fragment-pair
~X = [X1, X2], whereX1 = [i, r] andX2 = [s, j] in the recursions
for energy minimization. For each of these symbols, we introduce
corresponding partial partition functionsQNi,j andQ ~Xi,j;r,s

. Since
the MCFG is unambigous, the recursions for the partial partition
functions are derived by replacing minima by sums and addition
of energy contribution by multiplication of partial partition functi-
ons, see e.g., (Voßet al., 2006). For instance, the recursion for the
partition functions corresponding to the nonterminal symbolT reads

QTi,j =
X

h

QI′
i,h

× QSh+1,j

+
X

h,ℓ

QIi,h−1 × QTj+1,ℓ−1 × QSℓ+1,j
× e−E[h,ℓ]/RT ,

whereE[h, ℓ] denotes the energy of the loop closed by the base pair
(h, ℓ).

The probabilitiesPNi,j of partial structures of typeN over the
fragment[i, j] and the probabilitiesP ~Xi,j;r,s

of partial structures

of type ~X over the fragment pair[i, j], [r, s] are readily calculated
from the partial partition functions. These “backward recursions”
are analogous to those derived by McCaskill (1990) for crossing free
structures: LetΛNi,j be the set of1-structures containingNi,j and
let Λ ~Xi,j;r,s

be the set of1-structures containing the fragment-pair
~Xi,j;r,s. It follows that we have

PNi,j =
X

s∈ΛNi,j

Ps, P ~Xi,j;r,s
=

X

s∈Λ ~Xi,j;r,s

Ps.

SupposeNi,j or ~Xi,j;r,s are obtained by decomposingθs. The
conditional probablitiesPNi,j |θs

and P ~Xi,j;r,s|θs
are then given

by Qθs(Ni,j)/Qθs and Qθs( ~Xi,j;r,s)/Qθs respectively. Here
Qθs represents the partition function ofθs, and Qθs(Ni,j)
and Qθs( ~Xi,j;r,s) represent the partition functions for thoseθs-
configurations that containNi,j and ~Xi,j;r,s respectively. Taking
the sum over all possibleθs, we obtain

PNi,j = Pθs

Qθs(Ni,j)

Qθs

, P ~Xi,j;r,s
= Pθs

Qθs( ~Xi,j;r,s)

Qθs

.

From this backward recursion, one immediately derives a stochastic
backtracing recursion from the probabilities of partial structures that

generates a Boltzmann sample of1-structures, see (Tackeret al.,
1996; Ding and Lawrence, 2003; Huanget al., 2010) for analogous
constructions.

The basic data structure for this sampling is a stackA which stores
blocks of the form(i, j, N) (or (i, j; r, s, ~X)), presenting substruc-
tures of nonterminal symbolsN over [i, j] (or ~X over [X1, X2]
whereX1 = [i, r] andX2 = [s, j]). L is a set of base pairs sto-
ring those removed by the decomposition step in the grammar. We
initialize with the block(1, n, I) in A, andL = ∅. In each step,
we pick up one element inA and decompose it via the grammar
with probabilityQM/QN , whereQN is the partition function of the
block which is picked up fromA, andQM is the partition function
of the target block which is decomposed by the rewriting rule. The
base pairs which are removed in the decomposition step are moved
to L. For instance, according to the rewriting ruleT → I(T )S, the
block (i, j, T ) is decomposed into the three blocks:(i, h − 1, I),
(h + 1, ℓ − 1, T ), (ℓ + 1, j, S) and one base pair(h, ℓ) which is
to be removed. For fixed indicesh, ℓ, wherei ≤ h < ℓ ≤ j, the
probability of decomposing(i, j, T ) reads

Ph,ℓ =
QIi,h−1 × QTj+1,ℓ−1 × QSℓ+1,j

× e−E[h,ℓ]/RT

QTi,j

.

The sampling step is iterated untilA is empty. The resulting
1-structure is the given by the listL of base pairs.

2.5 Software
Implementation.MFE folding, partition function including a com-
putation of base pairing probabilities, and stochastic backtracing are
implemented ingfold. The program is written in C.

Energy Model.Although the presentation above uses a simplified
grammar that does not explicitly distinguish the usual loop types,
gfold implements the Mathews-Turner energy model without
dangles (Mathewset al., 1999, 2004) for secondary structure ele-
ments. For pseudoknots, we use here an extended version of the
Dirks-Pierce (DP) model (Dirks and Pierce, 2003) that allows dif-
ferent penaltiesβX for the four topologically distinct pseudoknot
typesX = H,K, L, M . We have observed that the values ofβX

have a substantial influence on the accuracy of the predicted struc-
tures. In bothNUPACK and pknotsRE, a common pseudoknot
penaltyβ1 is assigned whenever two gap matrices cross. Since the
number of such crossings depends on the type of the pseudoknot,
this algorithmic design would implyβA = β1, βB = βC = 2β1,
andβD = 3β1. In gfold, these parameters are independent and
can be adjusted to improve the performance. Since most experimen-
tally known pseudoknots are of types (H) and (K), we focused in
particular on the ratio ofβA andβB and found that both sensitivity
(the ratio of correctly predicted base pairs to the total number of
base pairs in the reference structure)and positive predictive value
reach a maximum forβB = 1.3βA. The pseudoknot penalty of type
(H) coincides with that of the DP model, i.e.,βA = β1 = 9.6
[kcal/mol]. The other penalties are set toβB = 12.6, βC = 14.6,
andβD = 17.6; see SM for details. An alternative set of pseudo-
knot parameters described by Andronescuet al. (2010) can easily
be incorporated but would require a re-adjustment of these four
topological penalties.
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Topology and prediction of RNA pseudoknots

Performance.The current implementation ofgfold is applicable
to sequences with a length up toN ≈ 150 nucleotides on current
PC hardware.Fig. 13 summarizes the resource requirements.
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Fig. 13. Run time (left) and peak memory (right) of gfold. Timing
information is given for MFE-only (triangles) and paritition function with
sampling 10,000 structures from the Boltzmann ensemble. To compute error
bars, we folded folded between 10 (N > 100) and 100 (N < 70) randomly
generated sequences on a Xeon E5410, 2.33Ghz, 48Gb memory. Memory
allocation is independent of the sequence. For N ≥ 100, double precision
floats are necessary to avoid overflows. This leads to the jump in memory
consumption by a factor of 2. Dotted lines indicate the theoretical behavior
of O (N 

6 ) (time) and O (N 

4 ) (space). The slope for CPU time is slightly
steeper than the theory since constraints among the 6 indices introduced by
the minimum size of the complex pseudoknot elements lead to an additional
speedup for small N .

We have observed thatgfold provides a substantial increase
in both sensitivity and a positive predictive value (PPV, ratio of
correctly predicted base pairs to the total number of base pairs in
the predicted structure) compared to the alternative DP approaches
pknotsRE (Rivas and Eddy, 1999),NUPACK (Dirks and Pierce,
2003), andpknotsRG-mfe (Reeder and Giegerich, 2004), and
thatgfold provides a substantial increase in accuracy, cf. Fig. 14.
In an evaluation on the entirePseudobase (van Batenburget al.,
2001),gfold achieves a sensitivity of0.762 and PPV of0.761.
As detailed in SM (Tab.S-3), the performance varies substantially
between different classes of sequences however. Interestingly, the
more complex pseudoknots of type (K) are predicted with even hig-
her accuracy (sensitivity0.889, PPV0.899) than the simpler, much
more frequent type H.

The PPV ofgfold predictions can be increased by filtering
the base pairs of the MFE structure by their probabilityp of for-
mation, which is computed by the partition function version of
gfold. Accepting only base pairs with a predicted base pairing
probability p > 0.95 increases the PPV from0.76 to more than
0.9, see Fig. 14C.In order to evaluate the false positive rate,
we folded 100 tRNA sequences from Sprinzl’s tRNA database
(Jühling et al., 2009). gfold correctly identifies 94% of them as
pseudoknot-free.In comparison, NUPACK correctly identifies 86%
andpknotsRG-mfe 89% of this sample set.

3 DISCUSSION
Combinatorial models of pseudoknotted RNA structures are limi-
ted in two ways: On the one hand, exact algorithmic folding can
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Fig. 14. Performance ofgfold. Comparison of the average sensitivity (A)
and PPV (B) of different prediction algorithms on a sample of32 structures
from Pseudobase. All details of this sample are given in the SM (Tab.S-
2). (C) The PPV increases signficantly if only base pairs with larger pairing
probabilities as predicted by the partition function version ofgfold are
included in the predicted structure.

be constructed only for certain types of structures. On the other
hand, the larger the structure sets are, the more base pairing pat-
terns are contained in them that cannot be realized in nature due to
steric constraints. Algorithm design so far has been mostly driven
by the desire to reduce computational complexity. The idea behind
gfold, in contrast, is to define a more suitable class of structures
that can be generated by nesting and concatenating a small number
of elementary building blocks. This recursive structure is captured
by a fairly simple unambiguous multiple context-free grammar that
translates in a canonical way to DP algorithms for computing the
minimum energy structure and the partition function inO(N6) time
andO(N4) space. In addition to MFE folding, we have implemen-
ted the computation of base pairing probabilities and a stochastic
backtracing recursion, thus providing the major functionalities of
RNA secondary structure prediction software for a very natural class
of pseudoknotted structures.

The 1-structures considered here strike a balance between the
generality necessary to cover almost all known pseudoknotted struc-
tures, and the restriction to topologically elementary structures that
have a good chance to actually correspond to a feasible spatial
structure. From a mathematical point of view, the characterization
of structures in terms of irreducible components with given topo-
logical genus appears particularly natural and promises to reflect
closely the ease with which a structure can be embedded in three
dimensions. In addition, the grammar underlyinggfold naturally
distinguishes different types of pseudoknots and admits different
energy parameters for them. We observe that this additional freedom
of the parametrization leads to a substantial increase of sensitivity
of type (K) pseudoknots, (0.63 → 0.889) and PPV (0.73 → 0.899)
compared to the usage of a common penalty for each crossing of
gap matrices. In terms of prediction accuracy,gfold thus com-
pares favorably also with the leading alternative DP approaches to
pseudoknotted structures.
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