1st Exercise sheet for Advanced Algorithmics, SS 13

Hand In: Until Thursday, 25.04.2013, 12:00am, Exercise sessions, hand-in box in stairwell 48-6 or email.

Exercise Policy

- The exercise problems take up the material from lecture. Working on them deepens understanding and increases proficiency. As such, we highly recommend you invest some time on the problems.
- Participation - that is, hand-ins and attendance - is optional. However, we will assume that you are familiar with the exercise problems (and, ideally, their solutions) during exams.
- In order to give you feedback on your progress, hand-ins will be graded.
- Exercise sessions will be dynamic in nature, that is we will work on the attendees' problems. Do not expect to get full solutions.

Problem 1

Consider the following problems from $\mathcal{N} \mathcal{P}$. Prove that they are $\mathcal{N} \mathcal{P}$-complete, respectively.

You may use that the standard problems 3SAT, Hamilton Path, Clique, Knapsack, Subset Sum, Vertex Cover and Traveling Salesperson are $\mathcal{N} \mathcal{P}$-complete.
a) Subgraph Isomorphism:

Input: Two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$.
Question: Does G_{1} have a subgraph which is isomorphic to G_{2} ?
b) Longest Path:

Input: A graph $G=(V, E)$ with edge weights $w: E \rightarrow \mathbb{N}$, nodes $s, t \in V$ and $k \in \mathbb{N}$.
Question: Is there a simple path from s to t in G that has weight w.r.t. $w-$ at least k ?

c) Optimal Composition:

Input: A finite set A, a set $C \subseteq 2^{A}$ of subsets of A and $J \in \mathbb{N}$.
Question: Is there a sequence of $j \leq J$ unions

$$
\left\langle x_{1} \cup y_{1}, x_{2} \cup y_{2}, \ldots, x_{j} \cup y_{j}\right\rangle
$$

so that
i) $x_{i} \cap y_{i}=\emptyset$ for all $i \in[1 . . j]$,
ii) $x_{i}, y_{i} \in\{\{a\} \mid a \in A\} \cup\left\{x_{k} \cup y_{k} \mid k<i\right\}$ for all $i \in[1 . . j]$ and
iii) there is an i with $x_{i} \cup y_{i}=c$ for every $c \in C$?
d) Scheduling with Missed Deadlines:

Input: A set $T=\left\{t_{1}, \ldots, t_{n}\right\}$ of jobs, each with duration 1 , deadlines $d: T \rightarrow \mathbb{N}$, a partial order \lessdot on T and a natural bound $k \leq n$.

Question: Is there a mapping $\sigma: T \rightarrow\{1,2, \ldots, n\}$ which orders the jobs such that
i) $i \neq j \Longrightarrow \sigma\left(t_{i}\right) \neq \sigma\left(t_{j}\right)$ for all $i, j \in[1 . . n]$,
ii) $t_{i} \lessdot t_{j} \Longrightarrow \sigma\left(t_{i}\right)<\sigma\left(t_{j}\right)$ for all $i, j \in[1 . . n]$ and
iii) $|\{t \in T \mid \sigma(t)>d(t)\}| \leq k$?

Advice: Remember what you know from basic courses! What are all the necessary steps? Try to write down at least one of these proofs in formal detail!

