Technische Universität
Fachbereich Informatik
KAISERSLAUTERN

Exercise Sheet 6 zur Vorlesung Computational Biology (Part 2), WS 12/13

Hand In: Until Monday, 21.01.2013, 10:00 am, email to wild@cs... or in lecture.

Exercise 2013

Let $s:=s_{1} s_{2} \cdots s_{n}$ be an RNA sequence of length n, i. e. its primary structure is given. Assume that base pairs can be formed between Watson-Crick base pairs and $\mathrm{G}-\mathrm{U}$ wobble pairs. Moreover, hair pins must have a minimal length of one base.
a) Give a recurrence relation for the number of possible secondary structures for the given (fixed) primary structure s.
b) Now, consider a random sequence s were each base is chosen i.i.d. according to probabilities p_{x} for $x \in\{\mathrm{~A}, \mathrm{C}, \mathbf{G}, \mathbf{U}\}$. In this model, the probability p for the event that bases s_{i} and s_{j} can form a pair is the same for all i and j.

Determine precise asymptotics for the expected number of possible secondary structures for a random sequence of length n.
If you cannot find a formula for general p, you may consider the special case $p=\frac{1}{4}$ for partial credit.

