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1. Introduction

One central problem arising in parallel computing is to determine an optimal linkage of a given

collection of processors. A particular class of processor linkages with point-to-point communication

links are static interconnection networks. The latter are widely used for message-passing architec-

tures. A static interconnection network can be represented as a graph. The binary n-cubes, Qn
2 ,

[1, 36] are a particularly well-studied class of interconnection networks [15, 20, 21, 41].

Akers et al. [2] observed the deficiencies of n-cubes as models for interconnection networks and

proposed an alternative: the Cayley graph of the permutation group induced by the (n− 1) star-

transpositions (1 i), which was denoted by Γ(Sn, Pn). Pak [37] studied minimal decompositions of

a particular permutation via star-transpositions and Irving et al. [30] extended his results. The

star-graph Γ(Sn, Pn) is in many aspects superior to n-cubes [1, 36]. Some properties of star-graphs

studied in [26, 28, 29, 27, 31, 34] were cycle-embeddings and path-embeddings. Diameter and fault

diameter of star-graphs were computed by Akers et al. [2, 33, 40] and Lin et al. [35] analyzed

diagnosability. An alternative to n-cubes as interconnection networks are the bubble-sort graphs

[3], studied by Tchuente [42]. The bubble-sort graph is the Cayley graph of the permutation group

induced by all n− 1 canonical transpositions (i i+ 1), denoted by Γ(Sn, Bn).

Recently, Araki [5] brought the attention to a generalization of star- and bubble-sort graphs, the

Cayley graph generated by all transpositions [12]. The latter has direct connections to a problem
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of interest in computational biology: the evolutionary distances between species based on their

genome order in the Cayley graph of signed permutations generated by reversals. A reversal is a

special permutation that acts by flipping the order as well as the signs of a segment of genes. Han-

nenhalli and Pevzner [23] presented an algorithm computing minimal number of reversals needed

to transform one sequence of distinct genes into a given signed permutation. For distant genomes,

however, it is well-known, that the true evolutionary distance is generally much greater than the

shortest distance [43, 13, 11, 7]. In order to obtain a more realistic estimate of the true evolu-

tionary distance, the expected reversal distance was shifted into focus. Its computation, however,

has proved to be hard and motivated models better suited for computation. Point in case is the

work of Eriksen et al. [19], where the authors derive a closed formula for the expected transposi-

tion distance and subsequently show how to use it as an approximation of the expected reversal

distance. Berestycki and Durrett [8] studied the shortest distance of random walks over Cayley

graphs generated by all transpositions and canonical transpositions, respectively, and compared

the shortest distance with the expected distance [19].

The theory of random graphs was pioneered by Erdös and Rényi in the late 1950s [17, 18], who

analyzed the phase transition of G(n, pn), the random graph containing n vertices in which an edge

{i, j} is selected with independent probability pn. For pn = c
n and c < 1, the largest component

in G(n, pn) is a.s. of size O(log n). For pn = 1+θ·n−
1
3

n , where θ > 0, a.s. a largest component of

size O(n
2
3 ) emerges. For pn = c

n and c > 1, we have a.s. a unique largest component of size O(n)

and all other components are smaller than O(log n). Erdös and Rényi’s construction of the giant

component [17, 18] has motivated Lemma 3, which assures the existence of certain subtrees of size

⌊ 1
4n

2
3 ⌋. For a review of Erdös-Rényi random graph theory, see Durrett [16] or van der Hofstad [22].

In this paper we study a subgraph of the Cayley graph generated by all transpositions, the Cayley

graph Γ(Sn, Tn), where Tn is a minimal generating set of transpositions. Setting Tn = Pn and

Tn = Bn we can recover the star- and the bubble-sort graph as particular instances. We study

structural properties of Γ(Sn, Tn) in terms of the random graph obtained by selecting permutations

with independent probability. The main result of this paper is

Theorem 1. Let λn = 1+ǫn

n−1 , where n− 1
3+δ ≤ ǫn < 1 and δ > 0. Let Tn be a minimal generating

set of transpositions and let Γn denote the random induced subgraph of Γ(Sn, Tn), obtained by

independently selecting each permutation with probability λn. Then Γn has a.s. a unique giant

component, C
(1)
n , whose size is given by

(1.1) |C(1)
n | = (1 + o(1)) · x(ǫn) · 1 + ǫn

n− 1
· n!,
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Figure 1. The evolution of the giant component in random induced subgraphs of

Γ(S9, P9). We display the relative size of the giant component
|C

(1)
9 |

|Γ9|
as a function

of λ9 = (1 + ǫ)/8 as data-curve (blue) versus the growth predicted by Theorem 1

(red).

where x(ǫn) > 0 is the survival probability of a Poisson branching process with parameter λ = 1+ǫn

and also the unique positive root of e−(1+ǫn)y = 1− y. Particularly, if n− 1
3+δ ≤ ǫn = o(1), then we

have x(ǫn) = (2 + o(1))ǫn.

In contrast to vertex-induced random graphs, edge-induced random graphs have been studied quite

extensively. Random induced subgraphs of n-cubes [9, 38]. as well as G(n, pn) and random induced

subgraphs of Γ(Sn, Tn) exhibit a giant component for very small vertex selection probabilities. One

might speculate that the critical probability pn = 1+θ·n−
1
3

n is determined by the size of the generator

set. Note that |Tn| = n− 1 holds for any minimal generating set of transpositions and the size of

the generator set for n-cube is n. Specific properties of n-cubes, like for instance, the isoperimetric

inequality [24], do not play a key role for establishing the existence of the giant component. The

isoperimetric inequality depends on an inductive argument using particular properties of a linear

ordering of the vertices of an n-cube. This induction cannot be carried out for Cayley graphs over
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canonical transpositions. In this paper any argument involving (vertex) boundaries follows from a

generic estimate of the vertex boundary in Cayley graphs due to Aldous [4, 6].

The paper is organized as follows: after introducing in Section 2 our notation and some basic

facts about branching processes, we analyze in Section 3 vertices contained in polynomial size

subcomponents. The strategy is similar to that in [38], where first a specific branching process is

embedded (for its first ⌊ 1
4n

2
3 ⌋ steps) into Γ(Sn, Tn). It is its survival probability that provides a

lower bound on the probability that a given vertex is contained in a subcomponent of arbitrary,

polynomial size. In Section 4 we “sandwich” this bound by showing that there are many vertices

in “small” components. Only here we use ǫ < 1. In Section 5 we show that there are many vertex

disjoint paths between certain splits of permutations. The a.s. existence of the giant component

follows using the ideas of Ajtai et al. [1].

2. Background and notation

Let Sn denote the symmetric group over [n]. We write a permutation π ∈ Sn as an n-tuple

(x1, x2, · · · , xn), i.e.,
(

1 2 · · · n

x1 x2 · · · xn

)

= (x1, x2, · · · , xn).

Particularly we use (i j) to briefly denote the transpositions that merely interchange the elements

at positions i and j of the identity permutation. Plainly, we have

(2.1) (x1, · · · , xi, xi+1, · · · , xj−1, xj , · · · , xn) · (i j) = (x1, · · · , xj , xi+1, · · · , xj−1, xi, · · · , xn).

Furthermore, we set ((x1, · · · , xn))m = xm i.e. extracting the m-th coordinate. Let Tn ⊂ Sn be a

minimal generating set of transpositions. We consider the Cayley graph Γ(Sn, Tn), having vertex

set Sn and edges {v, v′} where v−1 ·v′ ∈ Tn. For v, v′ ∈ Sn, let d(v, v′) be the minimal number of Tn-

transpositions by which v and v′ differ. For A ⊂ Sn we set B(A, j) = {v ∈ Sn | ∃α ∈ A; d(v, α) ≤
j} and d(A, i) = {v ∈ Sn \A | ∃α ∈ A; d(v, α) = i} and call B(A, j) and d(A) = d(A, 1) the ball of

radius j around A and the vertex boundary of A in Γ(Sn, Tn). If A = {α} we simply write B(α, j).

Let D,E ⊂ Sn, we call D ℓ-dense in E if B(σ, ℓ)∩D 6= ∅ for any σ ∈ E. Let “≤” be the following

linear order over Γ(Sn, Tn)

(2.2) σ ≤ τ ⇐⇒ σ = τ or σ <lex τ,
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where <lex denotes the lexicographical order. Any notion of minimal or smallest element in a

subset A ∈ Sn refers to eq. (2.2).

Let Γλn(Sn, Tn) be the probability space (random graph) consisting of Γ(Sn, Tn)-subgraphs, Γn,

induced by selecting each Γ(Sn, Tn)-vertex with independent probability λn. A property M is a

subset of induced subgraphs of Γ(Sn, Tn) closed under graph isomorphisms. The terminology “M

holds a.s.” is equivalent to limn→∞ P(M) = 1. A component of Γn is a maximal, connected,

induced Γn-subgraph, Cn. The largest Γn-component is denoted by C
(1)
n . We write xn ∼ yn if

and only if (a) limn→∞ xn/yn exists and (b) limn→∞ xn/yn = 1. We set g(n) = o(f(n)) if and

only if g(n)/f(n) → 0. A largest Γn-component C
(1)
n is called giant if it is unique, i.e. any other

component, Cn, satisfies |Cn| = o(|C(1)
n |).

We furthermore write g(n) = O(f(n)) as n → ∞ if and only if g(n)
f(n) is bounded as n → ∞, i.e.,

for arbitrary M > 0, there exists a constant C (independent of M) such that for all n > M ,
∣
∣
∣

g(n)
f(n)

∣
∣
∣ ≤ C.

Let Zn =
∑n

i=1 ξi be a sum of mutually independent indicator random variables (r.v.), ξi having

values in {0, 1}. Then we have, [14], for η > 0 and cη = min{− ln(eη[1 + η]−[1+η]), η2

2 }

(2.3) P( |Zn − E[Zn] | > η E[Zn] ) ≤ 2e−cηE[Zn] .

In Lemma 3 we shall use

(2.4) P(Zn < (1 − η) E[Zn] ) ≤ e−
η2

2 ·E[Zn] .

In the following we shall assume that n is always sufficiently large. Let us next recall Chebyshev’s

inequality [39]: suppose ξ is a r.v. having finite variance, V(ξ), and m > 0. Then

(2.5) P(|ξ − E(ξ)| ≥ m) ≤ V(ξ)

m2
.

Furthermore, the r.v. X is Bi(n, λn)-distributed if

P(X = ℓ) =

(
n

ℓ

)

λℓ
n (1 − λn)n−ℓ

and we call X binomially distributed (with parameters n, λn).

We next come to some basic facts about binomial branching processes, Pn = Pn(p) [25, 32].

Suppose the process Pn is initialized at ξ. Let (ξ
(t)
i ), i, t ∈ N count the number of “offspring” of the

ith-individual of generation (t− 1) and in particular ξ
(1)
1 counts the number of offspring generated
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by ξ, in which all the r.v.s ξ
(t)
i are Bi(n, p)-distributed. Let P0 = P0(p) denote the branching

process for which ξ
(1)
1 is Bi(n, p)- and all ξ

(t)
i 6= ξ

(1)
1 are Bi(n − 1, p)-distributed. Furthermore,

let PP (λ), (λ > 0) denote the Poisson branching process in which all individuals ξ
(t)
i generate

offspring according to the Poisson distribution, i.e., P(ξ
(t)
i = j) = λj

j! e
−λ. We accordingly consider

the family of r.v. (Zx
i )i∈N0 : Z

x
0 = 1 and Zx

t =
∑Zx

t−1

i=1 ξ
(t)
i for t ≥ 1 and interpret Zx

t as the number

of individuals “alive” in generation t, where x ∈ {n, 0, P}. Of particular interest for us will be the

limit limt→∞ P(Zx
t > 0), i.e. the probability of infinite survival. We write

π0(p) = lim
t→∞

P(Z0
t > 0), πn(p) = lim

t→∞
P(Zn

t > 0) and πP (λ) = lim
t→∞

P(ZP
t > 0)

for the survival probability of P0, Pn and PP (λ), respectively.

Lemma 1. [10] Let p = χn/n where χn > 1, then π0(p) = (1 + o(1))πP (χn), where πP (χn) > 0

is the unique positive root of the equation e−χny = 1 − y. Particularly, if χn = 1 + ǫn where

0 < ǫn = o(1) and s = o(nǫn),

π0(p) = (1 + o(1))πn−s(p) = (2 + o(1))ǫn.

Proof. Let fm(s) be the probability generating function for the binomial distribution Bi(m, χn

n )

and gχn(s) be the probability generating function for Poisson distribution with parameter λ = χn,

i.e.,

fm(s) =

m∑

j=1

P (ξ
(t)
i = j) · sj

=

m∑

j=1

(
m

j

)

(
χns

n
)j(1 − χn

n
)m−j

=
[

1 − (1 − s)
χn

n

]m

gχn(s) =

∞∑

i=0

e−χn · (χn)i

i!
· si = e(s−1)χn .

Then πn and πχn , the survival probabilities for the binomial distribution and Poisson distribution,

are the roots of fn(1 − s) = 1 − s and gχn(1 − s) = 1 − s, respectively. Clearly, fn(1 − s) =
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gχn(1 − s)eO( 1
n ), whence

fn(1 − πχn + o(1)) = gχn(1 − πχn + o(1)) · eO( 1
n )

= e−πχnχneo(1)χn+O( 1
n )

= e−πχnχn(1 + o(1)) = 1 − πχn + o(1).(2.6)

Since E(ξ
(t)
i ) = f ′

n(1) = χn

n n = χn > 1, where ξ
(t)
i counts the number of “offspring” of the ith-

individual of generation (t− 1), we can conclude that πn is the unique positive root of fn(1− s) =

1 − s. In view of eq. (2.6) we have πn = πχn + o(1) = πχn(1 + o(1)). This implies

π0(
χn

n
) = (1 + o(1))πn = πχn(1 + o(1)),

where x = πχn is the unique positive root of e−χn·x = 1 − x. In case of 0 < ǫn = o(1), we can

compute πn explicitly via the binomial branching process Pm(χn

n ). To this end we consider the

root of fn−k(1 − s) = 1 − s where k = o(nǫn) and observe

πn(
1 + ǫn
n

) =
2nǫn
n− 1

+O(ǫ2n) = 2ǫn +O(
ǫn
n

) +O(ǫ2n) = (2 + o(1))ǫn

πn−k(
1 + ǫn
n

) = 2ǫn +O(
ǫn
n

) +O(
k

n
) +O(ǫ2n) = (2 + o(1))ǫn.

Using πn−k(1+ǫn

n ) ≤ π0(
1+ǫn

n ) ≤ πn(1+ǫn

n ), we arrive at

π0(
1 + ǫn
n

) = (1 + o(1))πn(
1 + ǫn
n

) = (1 + o(1))(2 + o(1))ǫn = (2 + o(1))ǫn

and the lemma follows. �

3. Components of polynomial size

Let ǫ be a positive constant satisfying 0 < ǫ < 1. Suppose y = x > 0 is the unique positive root of

exp(−(1 + ǫ)y) = 1 − y and

(3.1) ℘(ǫn) =







(1 + o(1))x for ǫn = ǫ > 0

(2 + o(1))ǫn for 0 < ǫn = o(1).

According to Lemma 1, ℘(ǫn) = π0(
1+ǫn

n−1 ) is the survival probability of branching process P0(
1+ǫn

n−1 ).

For k ∈ N we set

(3.2) µn = ⌊ 1

2k(k + 1)
n

2
3 ⌋, ℓn = ⌊ k

2(k + 1)
n

2
3 ⌋, and rn = n− kµn − ℓn.
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Without loss of generality we can assume µn, ℓn, rn ∈ N and establish some basic properties of the

Cayley graph Γ(Sn, Tn):

Lemma 2. Let Tn be a minimal generating set of Sn consisting of transpositions, then we have

(1) Tn has cardinality n− 1 and corresponds uniquely to a labeled tree over [n], denoted by Tn.

(2) there exists a sequence (vi)2≤i such that Tn = {(vi si) | 2 ≤ i ≤ n} and

∀ j < i; xvi = ((x1, . . . , xn) · (vj sj))vi 6= ((x1, . . . , xn) · (vi si))vi .(3.3)

(3) the diameter of Γ(Sn, Tn) is given by

(3.4) diam(Γ(Sn, Tn)) ≤
(
n

2

)

.

Proof. It is straightforward to prove by induction that |Tn| = n− 1. We next consider the graph

Tn over [n], having edge-set Tn. Since 〈Tn〉 = Sn, Tn is connected and since Tn is independent, Tn

is a tree. This establishes the mapping

ψ : {Tn | Tn is a maximal independent transposition set} −→ {Tn | Tn is a tree over [n]}.

Furthermore, ψ has an inverse; as the edges of a tree over [n] give rise to a maximal independent

set of transpositions that generate Sn, whence assertion (1). Note that the critical probability

λn = 1+ǫn

n−1 of Theorem 1 is determined by the cardinality of the generator set Tn, i.e., |Tn| = n−1.

In order to prove (2), we generate the tree Tn inductively as follows: we start with vertex 1 by

setting T1 = ∅ and v1 = 1. Given Ti, we consider the transposition (vi+1 si+1), where vi+1 is the

unique minimal element contained in Tn \ Ti, having minimal distance to 1, and si+1 is its unique

Ti-neighbor. We then set Ti+1 = Ti ∪{(vi+1 si+1)}. This process gives rise to the sequence of trees

T2 ⊂ T3 ⊂ · · · ⊂ Tn and denoting the vertex sets of Ti by Vi, we have V1 = {1} ⊂ V2 ⊂ V3 ⊂
. . . Vn−1 ⊂ Vn = [n] where {vi} = Vi \ Vi−1. By construction

∀ j < i; xvi = ((x1, . . . , xn) · (vj sj))vi 6= ((x1, . . . , xn) · (vi si))vi ,

where (x1, . . . , xn) · (vj sj) is the product of permutations and ((x̃1, . . . , x̃n))vi = x̃vi . In other

words, we order the Tn-transpositions via the sequence of trees {Ti}, such that the transpositions

added before (vi si) will not transpose the element xvi . To prove (3) we can, without loss of

generality, restrict ourselves to the case where we have an arbitrary permutation (x1, . . . , xn) and

(y1, . . . , yn), the unique permutation satisfying yvi = i. We proceed by constructing a Γ(Sn, Tn)-

path between these two permutations. Obviously, there exists a unique vj such that n = xvj and

in the tree Tn there exists a unique path of length at most diam(Tn) ≤ n−1 connecting vj and vn.
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Accordingly, there is a Γ(Sn, Tn)-path of length at most diam(Tn) between (xi) and a permutation

(zi) such that zvn = n. Our construction in (2) implies

∀ i < n; ((z1, . . . , zn) · (vi si))vn = n,

whence we can proceed inductively, moving (n− 1) to the vn−1th position using the subtree Tn−1.

We consequently arrive at

diam(Γ(Sn, Tn)) ≤
n∑

i=2

diam(Ti) ≤
(
n

2

)

and the proof of the lemma is complete. �

In case of star-transpositions, i.e. Tn = Pn = {(1 j) | 2 ≤ j ≤ n}, we have the following situation:

(3.5) {1} ⊂ {(1 2)} ⊂ {(1 2), (1 3)} ⊂ · · · ⊂ {(1 j) | 2 ≤ j ≤ n},

(vi si) = (i 1) i.e. si = 1 and diam(Γ(Sn, Pn)) = ⌊ 3(n−1)
2 ⌋, which can be derived from a theorem of

Pak [37], being strictly less than
(
n
2

)
.

Example 1. Consider the Cayley graph Γ(S5, P5) and generate the trees {Ti}5
i=1 inductively.

Setting T1 = ∅ and v1 = 1 we select the minimal element in distance 1 to v1 and set v2 = 2,

T2 = {(1 2)}. We proceed by selecting the minimal element in distance 1 to the vertex set {1, 2}
and set v3 = 3, T3 = {(1 2), (1 3)}. Finally, we select the minimal element in distance 1 to the

vertex set {1, 2, 3} and set v4 = 4, T4 = {(1 2), (1 3), (1 4)}. The only remaining vertex v5 = 5 is

the minimal element in distance 1 to the vertex set {1, 2, 3, 4} and T5 = {(1 2), (1 3), (1 4), (1 5)}.�� q 1q
2

��q
3

AAq
4

��q
5

is generated via �� q 1qg
2

-
v2 = 2

�� q 1q
2

��q
3

g -
v3 = 3

�� q 1q
2

��q
3

AAq
4

g -
v4 = 4

�� q 1q
2

��q
3

AAq
4

��q
5

g
v5 = 5

Lemma 2 provides the upper bound
∑5

i=2 diam(Ti) = 7, where diam(Γ(S5, P5)) = 6 and the

distance between id = (1, 2, 3, 4, 5) and (1, 3, 2, 5, 4) is the diameter of Γ(S5, P5).

We next discuss the bubble-sort graph, Tn = Bn = {(i i+ 1) | 1 ≤ i ≤ n− 1}. In view of

(3.6) {1} ⊂ {(1 2)} ⊂ {(1 2), (2 3)} ⊂ · · · ⊂ {(i i+ 1) | 1 ≤ i ≤ n− 1}

we arrive at (vi si) = (i i− 1) and diam(Γ(Sn, Bn)) =
(
n
2

)
.
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Example 2. In order to make the above explicit we consider the Cayley graph Γ(S5, B5) and

generate the trees {Ti}5
i=1 inductively. Setting T1 = ∅ and v1 = 1, we select the minimal element

in distance 1 to v1 and set v2 = 2, T2 = {(1 2)}. We proceed by selecting the minimal element in

distance 1 to the vertex set {1, 2} and set v3 = 3, T3 = {(1 2), (2 3)}. Finally we select the minimal

element in distance 1 to the vertex set {1, 2, 3} and set v4 = 4, T4 = {(1 2), (2 3), (3 4)}. Then v5 = 5

is the minimal element in distance 1 to the vertex set {1, 2, 3, 4} and T5 = {(1 2), (2 3), (3 4), (4 5)}.qq
2

1 q
3 q
4 q
5

is generated via qq
2

1 g -
v2 = 2

qq
2

1 q
3

g -
v3 = 3

qq
2

1 q
3 q
4

g -
v4 = 4

qq
2

1 q
3 q
4 q
5

g
v5 = 5

Lemma 2 provides the upper bound
∑5

i=2 diam(Ti) = 10, and diam(Γ(S5, B5)) = 10. The distance

between id = (1, 2, 3, 4, 5) and (5, 4, 3, 2, 1) is the diameter of Γ(S5, B5).

Lemma 3. Suppose Tn is a minimal generating set of transpositions. We select permutations with

independent probability λn = 1+ǫn

n−1 , where n− 1
3 +δ ≤ ǫn, for some δ > 0. Then each permutation,

v, is contained in a Γn-subtree Tn(v) of size ⌊ 1
4n

2
3 ⌋ with probability at least ℘(ǫn).

Proof. We construct the subtree Tn(v) by means of a branching process [25] within Γ(Sn, Tn).

Without loss of generality, we may initiate the process at id and have rn = n − 1
2n

2
3 ∈ N. We

shall begin by specifying an appropriate move-set (of transpositions) by which the offspring of the

branching process is being generated. To this end, let

N = {(vj sj) | 1 ≤ j ≤ n− 1

2
n

2
3 − 1} ⊂ Tn.

Note that N acts trivially on labels vh where h > n− 1
2n

2
3 − 1.

The process is defined as follows: we set U0 = ∅ ⊂ N and M0 = L0 = {id} ⊂ Sn. At step (j + 1),

suppose we are given Uj ⊂ N , Mj and Lj ⊂ Sn. In case of Lj = ∅ or |Uj| = ⌊ 1
4n

2
3 ⌋ − 1 the

process stops. Otherwise, we consider the smallest element lj ∈ Lj and select among its smallest

(n− ⌊ 3
4n

2/3⌋− 1) neighbors, contained in N \Uj with independent probability λn. Let x1 = lj rx1

be the first selected lj-neighbor and rx1 ∈ N \ Uj . We then set Uj(x1) = Uj∪̇{rx1} and proceed

the selection with the smallest (n−⌊ 3
4n

2/3⌋−1) neighbors contained in N \Uj(x1) instead of those



11

in N \ Uj . After all lj neighbors are checked and given that (x1, . . . , xs) have been subsequently

selected, we set

Uj+1 = Uj∪̇{rx1 , . . . , rxs}
Lj+1 = (Lj \ {lj}) ∪ {x1, . . . , xs}
Mj+1 = Mj∪̇{x1, . . . , xs}.

The minimality of Tn and the fact that each Tn-element is used at most once implies that this

process generates a tree, i.e. each Mj+1-element is considered only once. Furthermore, in view of

(3.7)
1 + ǫn
n− 1

·
(

n− ⌊3

4
n

2
3 ⌋ − 1

)

> 1.

Relating our construction with the binomial branching process Pm(1+ǫn

n−1 ), wherem = n−⌊ 3
4n

2
3 ⌋−1,

we observe

P

(

|Mj| = ⌊1

4
n

2
3 ⌋ | for some j

)

≥ πm

(
1 + ǫn
n− 1

)

= ℘(ǫn).

Indeed, the above equation holds for ǫn ≥ n− 1
3 +δ. In case of 0 < ǫn = o(1) we notice ⌊ 3

4n
2
3 ⌋ = o(n ·

ǫn). Therefore Lemma 1, (2) implies πm(1+ǫn

n−1 ) = (2 + o(1))ǫn = ℘(ǫn). In case of 0 < ǫn = ǫ < 1,

we consider the probability generating functions for both: the binomial distribution, Pm( 1+ǫ
n−1 ) and

the Poisson distribution, PP (1 + ǫ). Let fn−1(s) be the probability generating function for the

binomial distribution Bi(n−1, 1+ǫ
n−1 ) and g1+ǫ(s) be the probability generating function for Poisson

distribution with parameter λ = 1 + ǫ, i.e.

fn−1(s) =

n−1∑

j=0

P (ξ
(t)
i = j) · sj

=
n−1∑

j=1

(
n− 1

j

)(
1 + ǫ

n− 1

)j (

1 − 1 + ǫ

n− 1

)n−j

sj

=

[

1 − (1 − s)
1 + ǫ

n− 1

]n−1

g1+ǫ(s) =

∞∑

i=0

e−(1+ǫ) · (1 + ǫ)i

i!
· si = e(s−1)(1+ǫ).

Clearly, fn−1(1 − s) = g1+ǫ(1 − s)eO( 1
n−1 ) and fm(1 − s) = fn−1(1 − s) · (1 − s 1+ǫ

n−1 )−⌊ 3
4n

2
3 ⌋. By

studying the roots of fm(1 − s) = 1 − s, fn−1(1 − s) = 1 − s and g1+ǫ(1 − s) = 1 − s, we derive

πm

(
1 + ǫ

n− 1

)

= (1 + o(1))πn−1

(
1 + ǫ

n− 1

)

= (1 + o(1))πP (1 + ǫ) = ℘(ǫ)
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and the lemma follows. �

For given δ, by choosing k sufficiently large, we proceed by enlarging the trees of Lemma 3 to

subcomponents of arbitrary polynomial size. We remark that Lemma 2 is of central importance

for the construction of the subcomponents of Lemma 4.

Lemma 4. Given k ≥ 2 and δ > 0, λn = 1+ǫn

n−1 , where n− 1
3+δ ≤ ǫn, there exists a function θn,k,

with the property θn,k ≥ 1
4k(k+1)n

δ. Then each Γn-vertex is contained in a Γn-subcomponent of

size at least
1

2k+2
·
[

1

4k(k + 1)

]k

· n 2
3+kδ

with probability at least

(3.8) δk(ǫn) = ℘(ǫn) (1 − e−βk,nθn,k),

where 0 < βk,n < 1 and ǫn ≥ n− 1
3+δ.

Proof. Without loss of generality we may assume π = id, µn ∈ N and set for all 1 ≤ m ≤ k,

Am =
{
(vm

j sm
j ) ∈ Tn | 1 ≤ j ≤ µn

}
.

where (vm
j sm

j ) = (vrn+j+(m−1)µn−1 srn+j+(m−1)µn−1) and rn = n− ⌊ 1
2n

2
3 ⌋, see eq. (3.2). That is,

Am is the “first” (in the sense of the labeling given by the sequence (vrn , vrn+1, . . . , vn)) subset of

Tn-transpositions that act on labels vi, where i ≤ rn +mµn − 1 for 1 ≤ m ≤ k. Furthermore, for

1 ≤ m ≤ k, |Am| = µn = ⌊ 1
2k(k+1)n

2
3 ⌋, see eq. (3.2). We set w

(h)
j = (vh

j s
h
j ) ∈ Ah and consider the

branching process of Lemma 3 at π = id, assuming that we obtain a tree T 1 of size ⌊ 1
4n

2
3 ⌋. Let

Y1 =
∣
∣
∣{w(1)

i ∈ A1 | ∃x ∈ T 1;x · w(1)
i ∈ Γn}

∣
∣
∣ .

According to Lemma 2

∀x, y ∈ T 1; ∀w(1)
i 6= w(1)

r ∈ A1; x · w(1)
i 6= y · w(1)

r ,

whence

E[Y1] = µn ·



1 −
(

1 − 1 + ǫn
n− 1

) 1
4n

2
3



 ∼ µn

(

1 − exp(−(1 + ǫn)
1

4
n− 1

3 )

)

.(3.9)

Using large deviation inequalities eq. (2.4) [14], we conclude that β1 = 1
8 > 0 satisfies

P

(

Y1 <
1

2
E[Y1]

)

≤ exp (−β1 · E[Y1]) .
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We select the smallest element, x(i j), from the set {x · w(1)
j | x ∈ T 1, x · w(1)

j ∈ Γn} and start the

branching process of Lemma 3 at x(i j). As a result, we derive the tree C2(x(i j)) of size ⌊ 1
4n

2
3 ⌋

with probability at least ℘(ǫn). However, note that T 1 ∪ C2(x(i j)) may not be tree any more.

According to Lemma 3, the generation of this tree C2(x(i j)) exclusively involves labels vj where

j ≤ rn − 1. Therefore, since any two smallest elements x(i1 j1) and x(i2 j2) differ in at least one of

two coordinates with labels vj1 , vj2 for rn ≤ j1, j2 ≤ rn + µn, we have

C2(x(i1 j1)) ∩ C2(x(i2 j2)) = ∅.

Let X1 be the r.v. counting the number of these new Γn-subcomponents. In view of eq. (3.9), we

obtain

E[X1] = ℘(ǫn) · E[Y1] ∼ ℘(ǫn) · µn

(

1 − exp(−(1 + ǫn)
1

4
n− 1

3 )

)

.

In order to make the dependence of θn,k = ℘(ǫn) · µn

(

1 − exp(−(1 + ǫn)1
4n

− 1
3 )
)

for fixed δ > 0

on k and n explicit, we compute

θn,k ≥ 2 · n− 1
3+δ · 1

2k(k + 1)
n

2
3 · (1 + n− 1

3+δ) · 1

4
· n− 1

3 − o(1)

=
1

4k(k + 1)
· nδ as n→ ∞.

Again, using large deviation inequalities eq. (2.4), we conclude that β1 = 1
8 > 0 satisfies

P(X1 <
1

2
θn,k) ≤ exp(−β1θn,k)

or equivalently, since the union of all the C2(x(i j))-subcomponents with T 1 forms a Γ(Sn, Tn)-

subcomponent, T 2, we have

(3.10) P

(

|T 2| < ⌊1

4
n2/3⌋ · 1

2
θn,k

)

≤ exp(−β1θn,k).

We now proceed by induction:

Claim: For each 2 ≤ i ≤ k, there exists some constant βi,n > 0 and a Γ(Sn, Tn)-subcomponent T i

such that

P(|T i| < ⌊1

4
n2/3⌋ ·

(
θn,k

2

)i−1

) ≤ exp(−βi−1,nθn,k).

We have already established the induction basis. As for the induction step, let us assume the

claim holds for i < k and let Ci(α) denote a subcomponent generated by the branching process of
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Lemma 3 in the i-th step. We consider the Tn-transpositions w
(i+1)
r 6= w

(i+1)
a ∈ Ai+1. We consider

the minimal elements, xα
r of

Yi+1 = {w(i+1)
r ∈ Ai+1 | ∃x ∈ Ci(α);x · w(i+1)

r ∈ Γn}

at which we initiate the branching process of Lemma 3. The process generates subcomponents

Ci+1(x
α
r ) of size ⌊ 1

4n
2
3 ⌋ with probability ≥ ℘(ǫn). Any two of these are mutually disjoint and let

Xi+1 be the r.v. counting their number. We derive setting qn = ⌊ 1
4n

2/3⌋. In order to make the

dependence of βi,n for fixed δ > 0, k ≥ 2 on n and i explicit, we set β1,n = β1 = 1
8 and recursively

define βi,n for i ≥ 2,

βi,n = βi−1,n −
ln(1 + exp(−β1θ

i−1
n,k + βi−1,nθn,k))

θn,k
= βi−1,n + o(1) for k ≥ i ≥ 2

We compute

P

(

|T i+1| < qn
1

2i
θi

n,k

)

≤ P

(

|T i| < qn
1

2i−1
θi−1

n,k

)

︸ ︷︷ ︸

failure at step i

+

P

(

|T i+1| < qn
1

2i
θi

n,k and |T i| ≥ qn
1

2i−1
θi−1

n,k

)

︸ ︷︷ ︸

failure at step i + 1 conditional to |T i| ≥ qn
1

2i−1 θi−1
n,k

≤ e−βi−1,n θn,k

︸ ︷︷ ︸

induction hypothesis

+ e−β1 θi
n,k

︸ ︷︷ ︸

large deviation results

·(1 − e−βi−1,n θn,k) ,

≤ e−βi,n θn,k

and the Claim follows.

Therefore, each Γn-vertex is contained in a subcomponent of size

≥ 1

4
· n 2

3 · 1

2k
·
[

1

4k(k + 1)

]k

· nkδ =
1

2k+2
·
[

1

4k(k + 1)

]k

· n 2
3+kδ ,

with probability at least ℘(ǫn)(1 − e−βk,nθn,k) and the lemma is proved. �

4. Vertices in small components

For given 0 < δ < 1, let

(4.1) Mk(n) =
1

2k+2

[
1

4k(k + 1)

]k

n
2
3 +kδ.
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Let Γn,k denote the set of Γn-vertices contained in components of size ≥Mk(n) for fixed 0 < δ < 1.

In this section we prove that |Γn,k| is a.s. ∼ ℘(ǫn)1+ǫn

n−1 n!. In analogy to Lemma 3 of [38] we first

observe that the number of vertices, contained in Γn-components of size < Mk(n), is sharply

concentrated. The concentration reduces the problem to a computation of expectation values. It

follows from considering the indicator r.vs. of pairs (C, v) where C is a component and v ∈ C and

to estimate their correlation. Since the components in question are small, no “critical” correlation

terms arise.

Let Un = Un(a) denote the set of vertices contained in components of size < na where a > 0. Then

following the arguments in [10]

Lemma 5. Let a > 0 be a fixed constant. We are given δ > 0 and λn = 1+ǫn

n−1 , where 1 > ǫn ≥
n− 1

3 +δ. Then

(4.2) P

(

| |Un| − E[|Un|] | ≥
1

n
E[|Un|]

)

= o(1).

Proof. Let IC,v, be the indicator r.v. of the pair (C, v), where v ∈ C and C ∈ Un is a component

of size < na. We have

|Un| =
∑

(C,v)

IC,v.

and we proceed by proving that the r.v. |Un| is sharply concentrated by analyzing the correlation

terms E(IC1,vIC2,w). Correlation may arise in two ways: the pairs (C1, v) and (C2, w) either satisfy

C1 = C2 or the minimal distance, dΓ(Sn,Tn)(C1, C2) = 2. Suppose first C1 = C2, then

∑

(C,v)∼(C,w)

E(IC,vIC,w) =
∑

(C,v)

∑

(C,w)∼(C,v)

E(IC,v)

≤
∑

(C,v)

na
E(IC,v) = na

E[|Un|]

Secondly we consider the case C1 6= C2. Then there exist vertices v ∈ C1 and w ∈ C2 with

dΓ(Sn,Tn)(v, w) = 2, i.e. we have an additional vertex u 6∈ Γn which, if selected, would lead to a

merger of the subcomponents C1 and C2. Accordingly,

P(d(C1, C2) = 2) =
(1 − λn)

λn
P(C1 ∪ C2 ∪ {u} is a Γn-component)

≤ n P(C1 ∪ C2 ∪ {u} is a Γn-component)
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and we derive, summing over all possible v, w, u, the upper bound
∑

d(C1,C2)=2

E[IC1,v1 IC2,v2 ] ≤ n (2na + 1)3 |Γn|.

The uncorrelated pairs (IC1,v1 , IC2,v2) can be estimated by
∑

(C1,v1) 6∼(C2,v2)

E[IC1,v1 IC2,v2 ] =
∑

(C1,v1) 6∼(C2,v2)

E[IC1,v1 ] · E[IC2,v2 ] ≤ E[|Un|]2.

Consequently we arrive at

E[Un(Un − 1)] =
∑

(C,v1)
∼(C,v2)

E[IC,v1 IC,v2 ] +
∑

(C1,v1)
∼(C2,v2)

E[IC1,v1 IC2,v2 ] +
∑

(C1,v1)
6∼(C2,v2)

E[IC1,v1 IC2,v2 ]

≤ na
E[|Un|] + n (2na + 1)3|Γn| + E[|Un|]2.

Just considering isolated vertices implies E[Un] ≥ c |Γn| for some c > 0, i.e. the expected number of

vertices in small components grows faster than any polynomial. Employing Chebyshev’s inequality,

eq. (2.5), we derive

P

(

||Un| − E[|Un|]| ≥
1

n
E[|Un|]

)

≤ n2 V[|Un|]
E[|Un|]2

= n2 E[|Un|(|Un| − 1)] + E[|Un|] − E[|Un|]2
E[|Un|]2

≤ n2n
a + 1

c n (2na + 1)3 + 1

E[|Un|]
= o

(
1

n2

)

,

whence the lemma. �

With the help of Lemma 5, we proceed by computing the size of Γn,k.

Lemma 6. Suppose k ∈ N is arbitrary but fixed and we are given δ > 0. Let ωn = |Γn\Γn,k| and

λn = 1+ǫn

n−1 , where n− 1
3+δ ≤ ǫn < 1. Then

(4.3) |Γn,k| ∼ ℘(ǫn)
1 + ǫn
n− 1

n! a.s. .

Proof. First we prove for any n− 1
3+δ ≤ ǫn ≤ λ, where λ > 0

(4.4) (1 − o(1))℘(ǫn) |Γn| ≤ |Γn,k| a.s.

By Lemma 4 we have

E[ωn] ≤ (1 − δk(ǫn))|Γn|.
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In view of Lemma 5, we derive

ωn <

(

1 + O(
1

n
)

)

E[ωn] <

(

1 − δk(ǫn) +O(
1

n
)

)

|Γn| a.s.,

whence

|Γn,k| ≥
(

δk(ǫn) −O(
1

n
)

)

|Γn| = (1 − o(1))℘(ǫn)|Γn| a.s..

Next we prove for n− 1
3 +δ ≤ ǫn < 1 and arbitrary but fixed k,

(4.5) |Γn,k| ≤ (1 + o(1))℘(ǫn) |Γn| a.s.

Let Wn = Un(1
2 ) = {r ∈ Γ(Sn, Tn) | |Cr| < n1/2}, where Cr denotes a component containing r.

Obviously, Γn,k ⊂ Γn \Wn, whence it suffices to prove

(4.6) |Wn| ≥ [1 − (1 + o(1))℘(ǫn)] |Γn| a.s.

For this purpose we follow [9] and consider a certain branching process in the (n−1)-regular rooted

tree Tr∗ . Here the r.v. ξ∗r of the rooted vertex r∗ is Bi(n − 1, λn) distributed while the r.v. of

any other vertex r has the distribution Bi(n− 2, λn). Let Cr∗ denote the component generated by

this branching process. The idea here is to relate Cr∗ with its image under a covering map, i.e. a

specific Γn-component containing r, denoted by Cr .

Using the linear ordering on Γ(Sn, Tn), one can specify a unique procedure on how to generate

an acyclic connected Γ(Sn, Tn)-subgraph of size < n1/2, denoted by H†
r [9]. Let S be a stack.

We initialize by setting H†
r = {r}. Then we select the r-neighbors in Γ(Sn, Tn), one by one, in

increasing order, with probability λn. For each selected neighbor ri, we (a) put the corresponding

edge {r, ri} into S, (b) add ri to H†
r and (c) check condition (h1) “|H†

r | = n
1
2 ”. If (h1) holds we

stop, otherwise we proceed examining the next r-neighbor. Suppose (h1) does not hold and all

r-neighbors have been examined.

If S is empty, we stop. Otherwise we proceed inductively as follows: we remove the first element,

{r, w} from S and consider the w-neighbors, except r, one by one, in increasing order. For each

selected w-neighbor, x, we (a) insert the edge {w, x} into the back of S (b) add x to H†
r and (c)

check condition (h1) “|H†
r | = n

1
2 ”and (h2) “H†

r contains a cycle”. In case (h1) or (h2) holds we

stop. Otherwise, we continue examining w-neighbors in increasing order until all w-neighbors are

considered. If S is empty we stop and otherwise we consider the next element from S and iterate

the process.

Consequently we have by construction

(4.7) ∀m ≤ n
1
2 ; P

(
|H†

r | < m and H†
r is a acyclic

)
≤ P (|Cr∗ | < m) ,
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where the discrepancy between P
(
|H†

r | < m and H†
r is a acyclic

)
and P (|Cr∗ | < m) lies in those

events for which a ≤-compatible covering map from Tr∗ into Γ(Sn, Tn), mapping r∗ into r, produces

a cycle in Γ(Sn, Tn). The latter is bounded from above by the probability P
(
H†

r contains a cycle
)
.

Therefore,

(4.8) ∀m ≤ n
1
2 ; P

(
|H†

r | < m and H†
r is a acyclic

)
≥ P (|Cr∗ | < m) − P

(
H†

r contains a cycle
)
.

We proceed by computing P (|Cr∗ | < m) and P(H†
r contains a cycle).

Claim 1:[9] there exists some κ > 0 such that

P(|Cr∗ | < n1/2) ≥ 1 − π0(ǫn) − o(e−κ n1/2

).(4.9)

To prove the claim we compute

P(n1/2 ≤ |Cr∗ | <∞) =
∑

i≥n1/2

P(|Cr∗ | = i)

=
∑

i≥n1/2

(1 + o(1)) · (λn · (n− 2))i−1

i
√

2πi

[
(n− 2)(1 − λn)

(n− 3)

]ni−3i+2

≤
∑

i≥n1/2

[
(1 + ǫn)e−ǫn

]i ≤
∑

i≥n1/2

c(ǫ)i = o(e−κn1/2

),

where 0 < c(ǫ) < 1 and

P(|Cr∗ | = i) = (1 + o(1)) · (λn · (n− 2))i−1

i
√

2πi

[
(n− 2)(1 − λn)

(n− 3)

]ni−3i+2

,(4.10)

where i = i(n) → ∞ as n→ ∞ is due to [9]. We accordingly derive

P(|Cr∗ | < n1/2) = P(|Cr∗ | <∞) − P(n1/2 ≤ |Cr∗ | <∞)

≥ 1 − ℘(ǫn)
︸ ︷︷ ︸

=π0(
1+ǫn
n−1 )

−o(e−κn1/2

),(4.11)

where π0(
1+ǫn

n−1 ) = ℘(ǫn) = P(|Cr∗ | = ∞) is the survival probability of the branching process in

Tr∗ , which constructs the component rooted in r∗, see Lemma 1.

Claim 2: P(H†
r contains a cycle) ≤ O(n− 1

2 ).

Let ℓ denote the length of a cycle, Oℓ, generated by H†
r . We first notice that Oℓ contains at most

⌊ ℓ
2⌋ distinct Tn-elements. Otherwise Oℓ = (σs)

ℓ
s=1 contains ⌊ ℓ

2⌋ + 1 distinct Tn-transpositions and

consequently there exists at least one transposition σt = (i j) ∈ Oℓ that occurs only once. Then

we conclude, using
∏ℓ

s=1 σs = 1,

(i j) ∈ 〈Tn \ {(i j)}〉,
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which is impossible since Tn is a minimal generating set. Let N be the number of distinct trans-

positions in Oℓ and as be the multiplicity of s-th distinct transposition. We then have as ≥ 2 for

1 ≤ s ≤ N and N ≤ ⌊ ℓ
2⌋. We notice that the number of such cycles Oℓ, that contain a fixed vertex

is bounded from above by
(
n− 1

N

)

· ℓ!

a1! · a2! · · · aN !

≤
(
n− 1

N

)

· ℓ!
2N

≤
(
n− 1

2

)N
ℓ!

N !
≤
(
n− 1

2

)⌊ ℓ
2 ⌋ ℓ!

(⌊ ℓ
2⌋)!

= O

(
ℓ(n− 1)

e

)⌊ ℓ
2 ⌋

We next distinguish the cases of whether or not Oℓ contains r. Let us first assume r 6∈ Oℓ. Then

all vertices except of the lastly added vertex w, have been examined only once while w has been

examined for at most n
1
2 − 1 times. Therefore the probability of Oℓ is bounded by

≤ n
1
2 · ℓ ·

(
n− 1

2

)⌊ ℓ
2 ⌋ ℓ!

(⌊ ℓ
2⌋)!

·
(

2

n− 1

)ℓ−1
2

n− 1
·
(

n
1
2 − 1

)

= O

(

ℓn ·
(

4ℓ

e(n− 1)

)⌊ ℓ
2 ⌋
)

.

Taking the sum over all possible values 4 ≤ ℓ ≤ n
1
2 , we observe that the probability of the event

that H†
r contains such a cycle, is at most O(n−1).

Suppose next r ∈ Oℓ. Then r has by construction never been examined. The lastly added vertex

(the one leading to the cycle and therefore to the halting of the process) has been examined at

most n
1
2 − 1 times and all other vertices contained in Oℓ have been examined only once. Therefore

the probability of Oℓ is bounded by

≤ ℓ ·
(
n− 1

2

)⌊ ℓ
2 ⌋ ℓ!

(⌊ ℓ
2⌋)!

·
(

2

n− 1

)ℓ−2
2

n− 1
·
(

n
1
2 − 1

)

= O

(

ℓn
3
2 ·
(

4ℓ

e(n− 1)

)⌊ ℓ
2 ⌋
)

.

Taking the sum over 4 ≤ ℓ ≤ n
1
2 , we conclude that the probability of the event that H†

r contains

a cycle that contains r, is at most O(n− 1
2 ) and Claim 2 follows.

Claim 3:

(4.12) P

(

|Cr| < n
1
2

)

≥ 1 − (1 + o(1))℘(ǫn).

Let Dr be a tree containing r of size < n
1
2 in Γn. Since there is only one way by which the

procedure H†
r can generate Dr we have

(4.13) P (Cr = Dr) ≥ P
(
H†

r = Dr

)
.

Consequently, taking the sum over all such trees we obtain

(4.14) P

(

|Cr| < n
1
2 and Cr is a tree

)

≥ P

(

|H†
r | < n

1
2 and H†

r is acyclic
)

.
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According to eq. (4.8), Claim 1, Claim 2 and ℘(ǫn) ≥ n−1/3+δ we conclude

P

(

|H†
r | < n

1
2 and H†

r is acyclic
)

≥ 1 − (1 + o(1))℘(ǫn).

Accordingly we arrive at

P

(

|Cr| < n
1
2

)

≥ P

(

|Cr| < n
1
2 and Cr is a tree

)

≥ P

(

|H†
r | < n

1
2 and H†

r is acyclic
)

≥ 1 − ℘(ǫn) − o(e−κn
1
2 ) −O(n− 1

2 )

≥ 1 − (1 + o(1))℘(ǫn)

and Claim 3 is proved. By linearity of expectation, we have (1 − (1 + o(1))℘(ǫn))|Γn| ≤ E[|Wn|]
and according to Lemma 5, (1 −O(n−1)) E[|Wn|] < |Wn| a.s.. In view of n−1 = o(℘(ǫn)) we have

therefore proved eq. (4.6)

(1 − (1 + o(1))℘(ǫn)) |Γn| ≤ |Wn| a.s.

and the proof of lemma is complete. �

5. The main theorem

We show in this section that the unique giant component forms within Γn,k for two reasons:

first, for given δ, any Γn,k-vertex is a priori contained in a subcomponent of size ≥ Mk(n), see

eq. (4.1), limiting the number of ways by which Γn,k-splits can be chosen and second there are

many independent paths connecting large Γ(Sn, Tn)-subsets. We first prove Lemma 7 according

to which Γn,k is “almost” 2-dense in Γ(Sn, Tn).

Lemma 7. Let k ∈ N and ∆k =
[

k
2(k+1)

]2

/2, λn = 1+ǫn

n−1 where ǫn ≥ n− 1
3+δ for some δ > 0 and

let furthermore Aδ =
{
v | |d(v, 2) ∩ Γn,k| < 1

2∆k · nδ
}
. Then P(v ∈ Aδ) ≤ exp(− 1

8∆k · nδ) and

there exists some 0 < ρk <
1
8∆k for arbitrary but fixed k, such that

|Aδ| ≤ n!e−ρknδ

a.s..

Proof. We consider now the action of the transpositions

Ak+1 =
{
(vk+1

j sk+1
j ) ∈ Tn | 1 ≤ j ≤ ℓn

}
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where w
(k+1)
j = (vk+1

j sk+1
j ) = (vrn−1+j+kµn srn−1+j+kµn ) and ℓn = ⌊ k

2(k+1)n
2
3 ⌋, see eq. (3.2) and

set

d(k+1)(v, 2) = {v · w(k+1)
i · w(k+1)

j |1 ≤ i < j ≤ ℓn}.
We proceed by establishing a lower bound on the cardinality of d(k+1)(v, 2). Since Tn is a minimal

generating set, any sequence of distinct Tn-transpositions is acyclic. Therefore

|d(k+1)(v, 2)| ≥
(
ℓn
2

)

=
n

4
3

2
·
[

k

2(k + 1)

]2

· (1 − o(1)).

Let ∆k =
[

k
2(k+1)

]2

/2 and Z(v) be the r.v. counting the number of vertices contained in the set

d(k+1)(v, 2) ∩ Γn,k, whose subcomponents are constructed in Lemma 4. We immediately compute

E(Z(v)) ≥ λn · δk(ǫn) · |d(k+1)(v, 2)| ∼ ∆k n
4
3 · 1 + ǫn

n− 1
· ℘(ǫn)(1 − e−βk,nθn,k) ≥ ∆k · nδ.

The key observation is the following: the construction of the Lemma 4-subcomponents did not

involve any labels vrn−1+j+kµn , i.e. any two such subcomponents remain vertex-disjoint. Therefore

the r.v. Z(v) is a sum of independent indicator r.vs. and Chernoff’s large deviation inequality,

eq. (2.4), [14] implies

(5.1) P(v ∈ Aδ) = P

(

Z(v) <
1

2
∆k · nδ

)

≤ exp(−1

8
∆k · nδ).

Consequently, the expected number of vertices contained in Aδ is bounded by n! exp(− 1
8∆k · nδ).

Now Markov’s inequality [39],

P(X > tE(X)) ≤ 1/t, t > 0,

guarantees |Aδ| ≤ n! · e−ρknδ

a.s. for any 0 < ρk < 1
8∆k and arbitrary, fixed k and the lemma

follows. �

Next we show that there exist many vertex disjoint paths between Γn,k-splits of sufficiently large

size. The proof is analogous to Lemma 7 in [38]. We remark that Lemma 8 does not use an

isoperimetric inequality [24]. It only employs a generic estimate of the vertex boundary in Cayley

graphs due to Aldous [4, 6].

Lemma 8. Let (S, T ) be a vertex-split of Γn,k with the properties

(5.2) ∃ 0 < ρ0 ≤ ρ1 < 1; (n− 2)! ≤ |S| = ρ0|Γn,k| and (n− 2)! ≤ |T | = ρ1|Γn,k|.

Then there exists some c > 0 such that a.s. d(S) is connected to d(T ) in Γ(Sn, Tn) via at least

(5.3) c (n− 5)!/(n− 1)7
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vertex disjoint (independent) paths of length ≤ 3.

Proof. We distinguish the cases |B(S, 2)| ≤ 2
3 n! and |B(S, 2)| > 2

3 n!. In the former case, we employ

the generic estimate of vertex boundaries in Cayley graphs [4]

(5.4) |d(S)| ≥ 1

diam(Γ(Sn, Tn))
· |S|

(

1 − |S|
n!

)

.

In view of eq. (5.2) and Lemma 2, eq. (5.4) implies

(5.5) ∃ d1 > 0; |d(B(S, 2))| ≥ d1

n2
· |B(S, 2)| ≥ d1 · (n− 4)!.

According to Lemma 7, a.s. all but ≤ n! e−ρknδ

permutations are within distance 2 to some Γn,k-

vertex, whence

(5.6) |d(B(S, 2)) ∩ B(T, 2)| ≥ d2 · (n− 4)! a.s..

Let β2 ∈ d(B(S, 2)) ∩ B(T, 2). Then there exists a path (α1, α2, β2) such that α1 ∈ d(S), α2 ∈
d(B(S, 1)). We distinguish the cases

(5.7) |d(B(S, 2)) ∩ d(B(T, 1))| ≥ d2,1 (n− 4)! and |d(B(S, 2)) ∩ B(T, 1)| ≥ d2,2 (n− 4)!.

For |d(B(S, 2)) ∩ d(B(T, 1))| ≥ d2,1 (n− 4)!, we consider the set

T ∗ = {β1 ∈ d(T ) | d(β1, β2) = 1, for some β2 ∈ d(B(T, 1))}.

Evidently, at most n− 1 elements in d(T ) can be connected to a fixed β2, whence

|T ∗| ≥ 1

2
d2,1 (n− 5)!.

Let T1 ⊂ T ∗ be some maximal set such that any pair of T1-vertices (β1, β
′
1) has at least distance

d(β1, β
′
1) > 6. Then |T1| > |T ∗|/(n − 1)7 since |B(v, 6)| <

∑6
i=1(n − 1)i < (n − 1)7. Any two of

the paths from d(S) to T1 ⊂ d(T ) are of the form (α1, α2, β2, β1) and vertex disjoint since each of

them is contained in T(β1, 3). Accordingly there are a.s. at least

(5.8)
1

2
d2,1 (n− 5)!/(n− 1)7

vertex disjoint paths connecting d(S) and d(T ). In case of |d(B(S, 2)) ∩B(T, 1)| ≥ d2,2 (n− 3)! we

analogously conclude, that there exist a.s. at least

(5.9) d2,2 (n− 4)!/(n− 1)5
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vertex disjoint paths of the form (α1, α2, β2) connecting d(S) and d(T ).

It remains to consider the case |B(S, 2)| > 2
3 · n!. By construction both: S and T satisfy eq. (5.2),

whence we can, without loss of generality assume that also |B(S, 2)| > 2
3 · n! holds. But then

|B(S, 2) ∩ B(T, 2)| > 1

3
n!

and for each α2 ∈ B(S, 2) ∩ B(T, 2) we select α1 ∈ d(S) and β1 ∈ d(T ). We derive in analogy to

the previous arguments that there exist a.s. at least

(5.10) d2 (n− 2)!/(n− 1)5

pairwise vertex disjoint paths of the form (α1, α2, β1) and the proof of the lemma is complete. �

Proof of Theorem 1. To prove the theorem we employ an argument due to Ajtai et al. [1]

originally used for n-cubes and independent edge-selection. We proceed along the lines of [38] and

select the Γ(Sn, Tn)-vertices in two distinct randomizations.

Let x1, x2 > 1 such that 1
x1

+ 1
x2

= 1. First we select with probability 1+ǫn/x1

n and second with

probability ǫn

x2·n
. The probability of not being chosen in both rounds is given by

(

1 − 1 + ǫn/x1

n

)(

1 − ǫn
x2 · n

)

≥ 1 − 1 + ǫn
n

,

whence it suffices to prove that after the second randomization there exists a giant component

with the property |C(1)
n | ∼ |Γn,k|.

After the first randomization each Γ(Sn, Tn)-vertex has been selected with probability 1+ǫn/x1

n and

according to Lemma 6, we have

(5.11) |Γn,k(x1)| ∼ ℘(ǫn/x1) |Γn(x1)| a.s.,

where Γn(x1) ⊂ Γn. Suppose Γn,k(x1) contains a “large” component, S. To be precise a component

S of size

(n− 2)! ≤ |S| ≤ (1 − b) |Γn,k(x1)|, where b > 0.

Then there exists a split of Γn,k(x1), (S, T ), satisfying the assumptions of Lemma 8. We observe

that Lemma 4 limits the number of ways these splits can be constructed. Recall (eq. (4.1))

Mk(n) =
1

2k+2
·
[

1

4k(k + 1)

]k

· n 2
3 +kδ.

Obviously, there are at most 2n!/Mk(n) ways to select S of such a split. Now we employ Lemma 8.

In view of (n − 2)! ≤ |S|, Lemma 8 implies that there exists some c > 0 such that a.s. d(S) is

connected to d(T ) in Γ(Sn, Tn) via at least c · n!/n12 ≤ c · |S|/n10 vertex disjoint paths of length
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≤ 3.

We next perform the second randomization and select Γ(Sn, Tn)-vertices with probability ǫn/x2

n .

None of the above c · |S|/n10 paths can be selected during this process. Since any two paths are

vertex disjoint the expected number of such splits is, by linearity of expectation, less than

(5.12) 2n!/Mk(n)(1 − (ǫn/x2n)4)
c·n!
n12 ≤ 2n!/Mk(n)e−c′n!/n16

for some c, c′ > 0.

Accordingly, choosing k sufficiently large the expected number of these Γn,k(x1)-splits tends to

zero, i.e. for any k ≥ k0 ∈ N there exists a.s. no two component split (S, T ) of Γn,k(x1) with the

property ρ0|Γn,k(x1)| = |S| ≤ |T | . Consequently, there exists some subcomponent Cn(x1) with

the property

|Cn(x1)| = |Γn,k(x1)| ∼ ℘(ǫn/x1) |Γ(x1)| a.s.,

obtained by the merging of the subcomponents of size ≥Mk(n) generated during the first random-

ization via the paths selected during the second. Since ℘(ǫn/x1) is continuous in the parameter

ǫn/x1, see eq. (3.1), we derive, for x1 tending to 1

(5.13) |C(1)
n | = lim

x1→1
|Cn(x1)| ∼ ℘(ǫn)|Γn| a.s.

It remains to prove uniqueness. Any other largest component, C̃n, is necessarily contained in Γn,k.

However, we have just proved |C(1)
n | ∼ ℘(ǫn)|Γn| and according to Lemma 6, ℘(ǫn)|Γn| ∼ |Γn,k|.

Therefore |C̃n| = o(|C(1)
n |), whence C

(1)
n is unique. �
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