

Ausgabedatum: 02.11.2012 Version: 2012-11-02 07:09

3. Übungsblatt zur Übung Beweistechniken, WS 12/13

Abgabe: Bis Freitag, 09.11.2012, 12:00 Uhr, Abgabenkasten vor 48-694.

Hinweis: Geben Sie jeweils an, welche Beweismethode Sie verwenden. Auf die explizite Angabe von Anfang, Mitte und Ende können Sie ab diesem Blatt verzichten.

9. Aufgabe 2 + 1 Punkte

Zeigen Sie:

- a) Die Partialbruchzerlegung von $\frac{2x^2+3x-3}{x^3-7x+6}$ ist $\frac{11}{5(x-2)} \frac{1}{2(x-1)} + \frac{3}{10(x+3)}$.
- b) Die Ableitung von $\frac{6x^2 \sin(x)}{x^3}$ ist $\frac{6\cos(x)}{x} \frac{6\sin(x)}{x^2}$.

10. Aufgabe 2 Punkte

Die Menge \mathcal{T} der *erweiterten Binärbäume* sei (induktiv) definiert als die kleinste Menge mit folgenden Eigenschaften:

1. Ein einzelnes Blatt " \square " ist ein Binärbaum:

 $\square \in \mathcal{T}$

2. Für zwei Bäume $T_1, T_2 \in \mathcal{T}$ ist auch der Baum bestehend aus einem inneren Knoten " \bigcirc " und T_1 und T_2 als linkem bzw. rechten Teilbaum ein Binärbaum:

$$T_1$$
 T_2 $\in \mathcal{T}$

Sei $T \in \mathcal{T}$ ein solcher Binärbaum. Definiere b(T) als die Anzahl Blätter " \square " in T und analog k(T) die Anzahl innerer Knoten.

Zeigen Sie mit struktureller Induktion¹, dass für jeden erweiterten Binärbaum $T \in \mathcal{T}$ gilt: b(T) = k(T) + 1.

¹ Eine Einführung in strukturelle Induktion finden Sie im Kurzskript zu Beweistechniken (Seite 3) http://wwwagak.cs.uni-kl.de/Veroffentlichungen/EAA/Beweistechniken-WS-12/13/Kurzskript-zum-Vorlesungsteil.html

3. Übungsblatt Beweistechniken

11. Aufgabe 4 + 2 Punkte

Für $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ definieren wir (als mögliche Alternative zu $\mathcal{O}(f)$)

$$\mathcal{O}'(f) := \left\{ g : \mathbb{N}_0 \to \mathbb{R}_0^+ \mid \exists c > 0 \,\forall n \in \mathbb{N}_0 : g(n) \le c \cdot f(n) + c \right\}.$$

Zeigen Sie:

- a) Wenn $\lim_{n\to\infty} f(n) > 0$, dann gilt $g \in \mathcal{O}(f) \iff g \in \mathcal{O}'(f)$.
- b) Wenn $\lim_{n\to\infty} f(n) = 0$, dann gilt $g = \mathcal{O}(f) \implies g = \mathcal{O}'(f)$, aber nicht $g = \mathcal{O}(f) \longleftarrow g = \mathcal{O}'(f)$.

12. Aufgabe 1 + 2 Punkte

Wo ist in den folgenden "Beweisen" jeweils der Fehler:

a)
$$10 \text{ ct} = \frac{1}{10} \in \frac{1}{5} \in \frac{1}{5} \in \frac{1}{2} = 20 \text{ ct} \cdot 50 \text{ ct} = 1000 \text{ ct} = 10 \in.$$

b)
$$1 = \sqrt{1} = \sqrt{(-1) \cdot (-1)} = \sqrt{-1} \cdot \sqrt{-1} = i \cdot i = i^2 = -1.$$

13. Aufgabe 2 Punkte

Wo ist der Fehler in folgendem Induktionsbeweis:

Behauptung:

Sei $S = \{b_1, \ldots, b_n\}$ ein Strauß aus n Blumen, wobei jede Blume genau eine Farbe hat.² Dann haben alle Blumen in S die gleiche Farbe.

Induktionsanfang:

Jeder Blumenstrauß, der nur eine Blume enthält, ist offensichtlich einfarbig.

Induktionsvoraussetzung:

Alle Blumensträuße mit n Blumen sind einfarbig.

Induktionsschritt:

Sei jetzt $S = \{b_1, \ldots, b_{n+1}\}$ ein Strauß aus n+1 Blumen. Entfernen wir aus S eine Blume b_1 , so besteht der Reststrauß $R_1 := S \setminus \{b_1\}$ aus n Blumen und ist nach Induktionsvoraussetzung einfarbig. Entfernen wir nun eine andere Blume b_2 aus S, so ist der neue Reststrauß $R_2 := S \setminus \{b_2\}$ nach Induktionsvoraussetzung ebenfalls einfarbig.

Nun sind aber alle Blumen in $S \setminus \{b_1, b_2\}$ in beiden Reststräußen enthalten, folglich müssen beide Reststräuße nicht nur einfarbig sein, sondern auch die gleiche Farbe haben.

Weil
$$R_1 \cup R_2 = S$$
, ist auch ganz S einfarbig.

 $^{^2}$ Wir zählen hier nur die Farbe der Blüten und abstrahieren von Blumensorten, bei denen schon eine einzelne Blüte mehrere Farben aufweist ...