
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 21
2017-07-03

Definition 5.37 (APX, PTAS, FPTAS)

APX �
�
U ∈ NPO : ∃ constant c : ∃c-approx for U

�
,

PTAS �
�
U ∈ NPO : ∃ PTAS for U

�
,

FPTAS �
�
U ∈ NPO : ∃ FPTAS for U

�
, �

Obviously, we have

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NPO

Theorem 5.38 (Approximation Classes)
Unless P � NP, all of the above inclusions are strict. �

FPTAS for Knapsack
Assumption: any item fits in the knapsack alone, i.e., wi ≤ b

1 procedure approxKnapsack(w,v,b,ε)
2 V̂ � maxi�1,...,n vi
3 K � εV̂/n
4 ṽ � � v

K �
5 return DPKnapsack(w,ṽ,b)

Theorem 5.39
approxKnapsack is an FPTAS for 0/1-K������� �

FPTAS asks for much

Theorem 5.40 (FPTAS → FPT and pseudopolynomial)
1. U ∈ FPTAS �⇒ p-U ∈ FPT

2. U ∈ FPTAS and cost(u, x) < p
�
MaxInt(x)� for some polynomial p

�⇒ ∃ pseudopolynomial algorithm for U.

Bin Packing
Recall: B��-P������
Given: w1 , . . . ,wn ∈ N, b ∈ N, k ∈ N

Question: ∃a : [n] → [k] : ∀j ∈ [k] :
�

i�1,...,n
a[i]�j

wi ≤ b ?

Theorem 5.41 (First fit 2-approx)
The first-fit heuristic is a 2-approximation for B��-P������. �

A first inapproximability result

Theorem 5.42
There is no poly-time (3

2 − ε)-approximation for B��-P������ for any ε > 0 unless
P � NP. �

How can we transfer this result to other problems?
Is it tight?

5.9 Inapproximability

Assume in this section: goal � max.

Definition 5.43 (Gap problem)
Let c, s with 0 ≤ s ≤ c ≤ 1 be given and let U � (ΣI ,ΣO , L, LI ,M, cost, goal) an optimization
problem form NPO. We define the GAPc,s-U decision problem as follows:

� Input: x ∈ LI such that either OptU(x)/|x| ≥ c or OptU(x)/|x| < s holds.
� Output:

� Yes, in case OptU(x)/|x| ≥ c;
� No, in case OptU(x)/|x| < s.

Note: We will interpret |x|, the length of an encoding of the instance, a bit more freely and
use a more natural unit of size for the input, e.g., the number of clauses for 3SAT or the
number of nodes in I����������-S��.

Lemma 5.44 (Hard Gap → no approx)
Let U ∈ NPO and c, s with 0 ≤ s ≤ c ≤ 1 two constants.
If GAPc,s-U is NP-hard then under the assumption P � NP, then there is no polynomial
time c

s -approximation algorithm for U. �

Definition 5.45 (Gap reduction)
Let U1 and U2 be two maximization problems with potentially different input and output
alphabets. U1 is GP-reducible to U2 (notation U1 ≤GP U2) with parameters (c, s) and (c�, s�)
if and only if there is a polynomial time algorithm A with:

1. For every input x ∈ LI,1 we have A(x) ∈ LI,2.

2. OptU1 (x)
|x| ≥ c implies OptU2 (A(x))

|A(x)| ≥ c�.

3. OptU1 (x)
|x| < s implies OptU2 (A(x))

|A(x)| < s�.

