Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 21

2017-07-03

Definition 5.37 (APX, PTAS, FPTAS)

Obviously, we have

 $PO \subseteq FPTAS \subseteq PTAS \subseteq APX \subseteq NPO$

Theorem 5.38 (Approximation Classes)

Unless $\mathcal{P} = \mathcal{NP}$, all of the above inclusions are *strict*.

FPTAS for Knapsack

¹ **procedure** approxKnapsack((w,v,b,ε))

 $\hat{V} = \max_{i=1,\dots,n} v_i$

 $K = \varepsilon \hat{V}/n$

Assumption: any item fits in the knapsack alone, i.e., $w_i \leq b$

Knopsack

 $\max \sum_{i \in \mathbf{I}} V_i \quad sl. \sum_{i \in V} u_i s b$ gready $\frac{V_i}{\omega_i} \neq approx$

VILLIVA

all integers

4
$$\tilde{v} = \lfloor \frac{v}{K} \rfloor$$
 //round values to article production weight of
5 return DPKnapsack(w, \tilde{v}, b) $A [i, v] = unic - weight subset with value = v$

niterus War......

b capacity of knopsock

n.V

 $V = \sum_{i=1}^{n} v_i$

Theorem 5.39

2

approxKnapsack is an FPTAS for 0/1-KNAPSACK

$$\frac{R_{vuming}}{\tilde{V}_{i}} = \frac{V}{K} \leq \frac{n^{2}}{\varepsilon}$$

$$\frac{\tilde{V}_{i}}{\tilde{v}_{i}} \leq \frac{V}{K} \leq \frac{n^{2}}{\varepsilon}$$

$$O(n^{3} los(\frac{4}{\varepsilon}) + \frac{1}{\varepsilon}) \qquad po^{ly-hme} woh = \frac{1}{\varepsilon}$$

$$\frac{(1+\varepsilon) - approx}{\tilde{v}_{i}} \leq \frac{cost_{AKP}}{\varepsilon} \geq (1-\varepsilon) OPT$$

$$T \text{ optimal solution} \qquad \sim \text{ corf} \quad OPT = \sum_{i \in T} v_i$$

$$\widetilde{T} \text{ approx. solution} \qquad \sim \text{ corf}_{AKP} = \sum_{i \in \widetilde{T}} v_i$$

$$V_i \in [n] \qquad \widetilde{V}_i = \left\lfloor \frac{v_i}{K} \right\rfloor \in \left(\frac{v_i}{K} - 1, \frac{v_i}{K}\right] \qquad (*)$$

$$\circ \text{ for any } I \leq T_n$$

Δ

$$\sum_{i \in I} \tilde{V}_i \ge \sum_{i \in T} \left(\frac{V_i}{k} - \underline{1} \right) = \frac{4}{K} \sum_{i \in T} V_i - |I|^{\leq N}$$
(1)

$$\sum_{\hat{c} \in \mathbb{I}} \widetilde{V_{\hat{c}}} \leq \sum_{\hat{c} \in \mathbb{I}} \frac{V_{\hat{c}}}{K} = \frac{1}{K} \sum_{\hat{c}' \in \mathbb{I}} V_{\hat{c}}$$
(2)

$$cost_{AKP} = \sum_{i \in \tilde{T}} V_i \geqslant k \sum_{i \in \tilde{T}} \tilde{V}_i \geqslant k \sum_{i \in \tilde{T}} \tilde{V}_i \geqslant k \sum_{i \in T} \tilde{V}_i \geqslant \sum_{i \in T} V_i - n \cdot k$$

 $= OPT - \varepsilon \hat{V} // OPT \ge \hat{V}$ $\ge (1 - \varepsilon) - OPT$

FPTAS asks for much

Theorem 5.40 (FPTAS → FPT and pseudopolynomial)

1.
$$U \in \text{FPTAS} \implies p \cdot U \in \text{FPT}$$
 canonicl parametrication
2. $U \in \text{FPTAS}$ and $cost(u, x) < p(MaxInt(x))$ for some polynomial p

 $\Rightarrow \exists$ pseudopolynomial algorithm for *U*.

Proof (1) assume goal = min A(x, E) FPTAS for U winning Hune & g(1x1, =) q polynomial Courtwet also. B for p-U B(x, k) // output ByeM(x) : cont(y,x) < k $y = A\left(x, \frac{1}{1+1}\right)$ return cost (v.x) < k · cosd(y,x) < k (Yes) obviously correct · cost (y,x) > k+1 $OPT \geq \frac{\cos\{(y,x)\}}{1+\frac{\pi}{k+1}} \geq \frac{k+1}{1+\frac{\pi}{k+1}} = \frac{k+1}{k+2}(k+1) > k \implies \forall \in H(k): \operatorname{corl} sk$

=) No - instance

 \Box

Remains True i
$$A(x, \frac{1}{k+2})$$
 runs
in $g(lxl, k+1) = dpt$ (if $|x| \le k+1$ $g(lxl, k+1) \le g(k+3, k+1)$
 $= f(k)$
 $if |x| > k+1$ $g(lxl, k+1) \le g(lxl, k+1)$
 $wlos, g increasing = g'(lxl)$
 $y = A(x, \varepsilon)$ with $\varepsilon = \frac{1}{p(Max lat(x))}$
assume $goal = unic$

$$cost(y, x) \leq (1+\varepsilon) \circ \rho T$$

$$(\leq \circ \rho T + \varepsilon \cdot \rho (Max lut(x)))$$

$$= \circ \rho T + 1$$

$$= \circ cost(y, x) = \circ \rho T$$

$$Running Time : g(lxl, \frac{\pi}{\varepsilon}) = g(lxl, \rho (Max lut(x)))$$

$$= \rho \circ ly \circ onial \quad |x|, Max lut(x)$$

$$= \circ \rho \circ ly \circ onial$$

(2)

Bin Packing

Bin-Porting strengly NP-had =) us FPTAS (vuler, P=NH) min K Recall: BIN-PACKING Given: $w_1, \ldots, w_n \in \mathbb{N}, b \in \mathbb{N}, \underline{k \in \mathbb{N}}$ Question: $\exists a : [n] \to [k] : \forall j \in [k] : \sum w_i \leq b$? i=1,...,n a[i]=j

Theorem 5.41 (First fit 2-approx)

The first-*t*it heuristic is a 2-approximation for BIN-PACKING.

A first inapproximability result

Theorem 5.42

There is no poly-time $(\frac{3}{2} - \varepsilon)$ -approximation for BIN-PACKING for any $\varepsilon > 0$ unless $\mathcal{P} = \mathcal{NP}.$ Proofs PARTITION MP- complete Input ; XI Xn E /X/ Question: $\exists I \leq [n]$: $\sum x_i = \sum x_i$? ć ∈I ċ ∈ I Sull I reduce PARTITION to BIN-PACING $\omega = X$ If we had $\left(\frac{3}{2}-\varepsilon\right)$ -approx poly-line $b = \left\lfloor \frac{\sum x_i}{2} \right\rfloor k=2$ ~ would optimally solve this (distinguish 2 and 3)

 \square

How can we transfer this result to other problems? Is it tight?

5.9 Inapproximability

Assume in this section: *goal* = max.

Definition 5.43 (Gap problem)

Let c, s with $0 \le s \le c \le 1$ be given and let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem form \mathcal{NPO} . We define the GAP_{c,s}-U decision problem as follows:

- ▶ Input: $x \in L_I$ such that either $Opt_U(x)/|x| \ge c$ or $Opt_U(x)/|x| < s$ holds.
- Output:
 - Yes, in case $Opt_U(x)/|x| \ge c$;
 - No, in case $Opt_U(x)/|x| < s$.

Note: We will interpret |x|, the length of an encoding of the instance, a bit more freely and use a more natural unit of size for the input, e.g., the number of clauses for 3SAT or the number of nodes in INDEPENDENT-SET.

Lemma 5.44 (Hard Gap \rightarrow no approx)

Let $U \in \mathbb{NPO}$ and c, s with $0 \le s \le c \le 1$ two constants. If $\underline{GAP}_{c,s}$ -U is \mathbb{NP} -hard then under the assumption $\underline{\mathcal{P} \neq \mathbb{NP}}$, then there is no polynomial time $\frac{c}{s}$ -approximation algorithm for U.

Proof: Assume A computes
$$\frac{c}{s} = \frac{\delta}{opprox}$$
. poly-time.
Build decider B for $GAP_{c,s} = U$ assume goal = max
 $y = A(x)$
 $cost(y) < s \cdot |x|$
 $cost(y) < s|x| = cost(y) < s \cdot |x|$
 $\frac{cost(y) < s|x|}{\epsilon} = cost(y) < opt_0(x) < s|x|$
 $\frac{cost(y) < s|x|}{\epsilon} = cost(y) < opt_0(x) < s|x|$

$$A = \frac{c}{s} - \frac{approx}{s} = \frac{Opt_u(x)}{\cos t(y)} \leq \frac{c}{s}$$

=)
$$cost(y) \ge \frac{s}{c} Opt_U(x) \ge s/x$$

 \square

Definition 5.45 (Gap reduction)

Let U_1 and U_2 be two maximization problems with potentially different input and output alphabets. U_1 is *GP*-reducible to U_2 (notation $U_1 \leq_{GP} U_2$) with parameters (c, s) and (c', s') if and only if there is a polynomial time algorithm A with:

1. For every input $x \in L_{I,1}$ we have $A(x) \in L_{I,2}$.

2.
$$\frac{Opt_{U_1}(x)}{|x|} \ge c \text{ implies } \frac{Opt_{U_2}(A(x))}{|A(x)|} \ge c'.$$

3.
$$\frac{Opt_{U_1}(x)}{|x|} < s \text{ implies } \frac{Opt_{U_2}(A(x))}{|A(x)|} < s'.$$

