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5.7 Dual LPs & The Primal-Dual Schema

Starting with an original (“primal”) LP, how can we bound on its optimal objective value?

min 7x1 + x2 + 5x3

s. t. x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1 , x2 , x3 ≥ 0

Optimal solution:
x∗ � (1.75, 0, 2.75) with cTx∗ � 26.



Dual LPs

min cTx
s. t. Ax ≥ b

x ≥ 0

max bTy
s. t. ATx ≤ c

y ≥ 0

Generalizations:
� ith constraint in primal with ≥ � yi ≥ 0
� ith constraint in primal with � � yi unconstrained

Lemma 5.29 (Weak Duality)
If x and y are feasible solutions for the primal resp. dual LP, it holds that cTx ≥ bTy �



Duality Theory
Indeed one can show by a closer study that the optimal objective values match.

Theorem 5.30 (Strong duality)
The primal LP has a finite optimal objective if and only if the dual has. If x∗ resp. y∗ are
two optimal solutions to the primal resp. dual LP then cT · x∗ � bT · y∗ holds. �

Theorem 5.31 (Complementary Slackness Conditions (CSC))
Let x and y be feasible solutions to the primal and dual LP.
The pair (x, y) is optimal if and only if

1. xj � 0 or
�

1≤i≤m ai,j · yi � cj for all 1 ≤ j ≤ n, and
2. yi � 0 or

�
1≤j≤n ai,j · xj � bi for all 1 ≤ i ≤ m.

Remark 5.32
1. Strong duality implies that the LP threshold decision problem is in NP ∩ co-NP:

Yes-certificate: feasible solution; No-certificate: feasible solution for the dual.
2. For ILPs, we only get weak duality.



Set Cover LP and its dual

min
k�

j�1
c(Sj) · xj

s. t.
�

j∈V(u)
xj ≥ 1 ∀u ∈ U

x ≥ 0

max
k�

u∈U
yu

s. t.
�
u∈Sj

yu ≤ c(Sj) ∀j ∈ [k]

y ≥ 0

Intuition:
Pack as much (yu) of good u as possible, so that for group Sj its capacity c(Sj) is exceeded.



Analysis of greedySetCover by dual fitting
1 procedure greedySetCover(n, S, c)
2 C � ∅, C � ∅
3 // For analysis j � 1
4 while C � [n]
5 j∗ � arg min

i∈[n]
c(Si)
|Si \ C|

6 Add j∗ to C

7 C � C ∪ Sj∗

8 // For analysis: αj �
c(Sj∗ )
|Sj∗\C| ; j � j + 1

9 // For analysis: for u ∈ Si∗ \ C set price(u) � αj
10 return C

Lemma 5.33
yu � price(u)/Hn is dual-feasible. �





Integrality Gap of Set Cover
Previous result shows that integrality gap OPT

OPTfrac
≤ Hn.

Can we give a lower bound?

Theorem 5.34 (Integrality Gap of Set Cover)
For the set cover ILP and its relaxation holds

OPT
OPTfrac

≥ log2(n + 1)
2 n

n+1
∼ 1

2 ln 2Hn ≈ 0.721Hn �





Primal-Dual Schema
So far:

� ad hoc methods, a posteriori justified by LP arguments
� rounding algorithms, must solve primal LP to optimality (expensive!)

Can we use duality more directly?



CSC for set cover
Complementary Slackness Conditions for Set Cover

xj � 0 ∨
�
u∈Sj

yu � c(Sj) ∀j ∈ [k]

yu � 0 ∨
�

j∈V(u)
xj � 1 ∀u ∈ U

Problem: In general only simultaneously fulfilled by fractional solutions
Relax dual constraints to

yu � 0 ∨
�

j∈V(u)
xj ≤ f ∀u ∈ U

i.e., every element at most f times � trivially fulfilled.



Primal Dual Set Cover

1 procedure primalDualSetCover(n,S,c)
2 f = global frequency
3 �x � �0, �y � �0, T � [n]
4 while T � ∅
5 Choose u ∈ T arbitrary
6 Increase yu until CSC holds for (at least) one more set Sj
7 for all Sj with

�
u∈Sj yu � c(Sj)

8 C � C \ Sj
9 xj � 1

10 return {j ∈ [k] : xj � 1}

Theorem 5.35
primalDualSetCover is an f -approximation for S��-C����. �





5.8 Arbitrarily Good Approximations

Definition 5.36
Let U � (ΣI ,ΣO , L, LI ,M, cost, goal) an optimization problem.
An algorithm A is called polynomial time approximation scheme (PTAS) for U, if A computes
for each pair (x, ε) ∈ LI ×R+ a feasible solution which is at most a factor (1 + ε) worse than
the optimum (i.e., ε is the relative error) and needs a polynomial time in |x| (i.e.,
O(|x|exp(1/ε)) is possible).
If the running time of A is polynomially bounded in |x| and ε−1, A is called a fully
polynomial time approximation scheme (FPTAS) for U. �



Definition 5.37
APX � {U ∈ NPO | ∃polynomial time c-approximation algorithm for U, c constant}. �


