Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 19

2017-06-22

Definition 5.16 (Shortest-Superstring)

Given: alphabet Σ , set of strings $W = \{w_1, \dots, w_n\} \subseteq \Sigma^+$

Feasible Instances: *superstrings s* of *S*, i.e., *s* contains w_i as substring for $1 \le i \le n$.

Cost: |s|

Goal: min

Remark 5.17

Without-loss-of-generality assumption: no string is a substring of another.

Shortest Superstring by Set Cover

Construct *all* pairwise superstrings:

$$\sigma_{i,j,\ell} = (w_i)_{1,|w_i|-\ell}(w_j) \text{ valid iff } (w_j)_{1,\ell} = (w_i)_{|w_i|-\ell+1,|w_i|} M = \left\{ \sigma_{i,j,\ell} : i, j, \in [u], \ell \in [0..\min\{|w_i|,|w_j|\} \right\}$$

→ Set Cover instance:

Universe: $[n] \longrightarrow$ try to *cover* all words in *W* with superstring Subsets: $S = \{S_{\pi} : \pi \in W \cup M\}$... by combining pairwise superstrings. where $S_{\pi} = \{k \in [n] : \exists i, j : w_k = \pi_{i,j}\}$ Cost function: $c(S_{\pi}) = |\pi|$

Given set-cover solution $\{S_{\pi_1}, \ldots, S_{\pi_k}\}$ \rightsquigarrow superstring $\pi_1 \ldots \pi_k$ c in any order

Lemma 5.18 (Pairwise superstrings yield 2-SC-approx)

Let *W* be an instance for SHORTEST-SUPERSTRING and (n, S, c) the corresponding SET-COVER instance. Let further <u>OPT</u> resp. OPT_{sc} be the optimal objective value of *W* resp. (n, S, c). Then holds $OPT \le OPT_{sc} \le 2 \cdot OPT$.

Proof: OPT
$$\leq$$
 OPT_{sc}
shorket
OPT = 151 s^a superstring for W
OPT_{sc} = 151 where $s = \pi_2 \dots \pi_k$ is from set cover solution
s is a superstring for W
require $\{S\pi_1, \dots, S\pi_k\}$ cover all we
Not opt_{sc} $\leq 2.0PT$
where M

Π.

.5

Corollary 5.19 (2*H*_n **approximation for superstring)**

By solving the transformed set cover instance with greedySetCover, we obtain a $2H_n$ -approximation for the shortest superstring problem.

5.5 (Integer) Linear Optimization

Definition 5.20 (LP)

A linear program (LP) in *standard form* with <u>n</u> variables and <u>m</u> constraints is characterized by a matrix $A \in \mathbb{Z}^{m \times n}$, a vector $b \in \mathbb{Z}^m$, and a vector $c \in \mathbb{Z}^n$ and is written as

	$X = (X_2, \dots, X_N)$
min $c^T x$	min $\sum_{j=1}^n c_j \cdot x_j$
s.t. $Ax \ge b$	s.t. $\sum_{j=1}^{n} a_{ij} \cdot x_j \ge b_i$ for all $i \in [m]$
$x \ge 0$	$x_j \ge 0$ for all $j \in [n]$

(Comparisons on vectors are meant componentwise.) Any vector $x \in \mathbb{R}^n$ with $Ax \ge b$ and $x \ge 0$ is called a *feasible solution* for the LP, and $c^T x$ is its objective value. An *optimal solution* is a feasible vector x^* with **min**imal objective value.

Remark 5.21 (Rational coefficients)

We can in general allow $A \in \mathbb{Q}^{m \times x}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$; by multiplying constraints and scaling objective function with the common denominator we obtain an equivalent LP.

Example LP

c = (7, 1, 5)min $7x_1 + x_2 + 5x_3$ s.t. $x_1 - x_2 + 3x_3 \ge 10$ $A = \begin{pmatrix} 1 & -1 & 3 \\ 5 & 2 & -1 \end{pmatrix} \quad b = \begin{pmatrix} 10 \\ c \end{pmatrix}$ $5x_1 + 2x_2 - x_3 \ge 6$ $x_1, x_2, x_3 \ge 0$

→ Optimal solution $x^* = (1.75, 0, 2.75)$ with $c^T x^* = 26$.

Extreme point: feasible point that is *not* a convex combination of two distinct feasible solutions. charchenized by inequalities that are fulfilled with =

Remark 5.22 (Facts on LPs)

1. More general versions of LP possible:

= constraints, unrestricted variables, max instead of min ...

 \sim can all be transformed into equivalent one in standard form.

- **2.** LP can be *infeasible* (no solution), *unbounded* (no optimal solution) or *finite*.
- **3.** If LP has optimal solution, there is an optimal extreme point \rightsquigarrow finite problem!
- **4.** Optimal solutions can be computed in poly-time (ellipsoid method).

$$= \mu \cdot \gamma + (1 - \mu) \cdot z \qquad \mu \in (0, 1)$$

Definition 5.23 (ILP)

An *integer linear program* in standard form is an LP with the additional integrality constraints $x_i \in \mathbb{N}_0$:

min
$$c^T x$$

s.t. $Ax \ge b$
 $x \in \mathbb{N}_0^n$

4

Remark 5.24 (Facts on ILPs)

- 1. Generalized versions can again be transformed into standard form.
- **2.** Decision version of the problem \underline{NP} -complete.

5.6 Set Cover by LP Relaxation & Rounding

The Set Cover ILP

Idea $x_j = 1$ iff S_j in cover. ~ have to under sure $x_j > 1$ not optimal Notation: For $u \in U$ set $V(u) = \{j : u \in S_j\}$.

$$\min \sum_{\substack{j=1\\j\in V(u)}}^{k} c(S_j) \cdot x_j$$

s.t.
$$\sum_{\substack{j\in V(u)\\ \hat{x} \in \mathbb{N}_0^k}} x_j \ge 1 \quad \forall u \in U = l \text{ m}]$$

$$\hat{x} \in \mathbb{N}_0^k \quad x \in \{0, d\}^k$$

Observation: Any optimal solution fulfills $x \in \{0, 1\}^k$

Problem: ILP not efficiently solvable $\rightsquigarrow \underline{relax}$ integrality constraints! i.e., replace $x \in \mathbb{N}_0^k$ by $x \ge 0$. \rightsquigarrow efficiently solvable, but might get fractional solutions x^* .

Simple Rounding

1 procedure frequencyCutoffSetCover(n, S, c) $f = \text{global frequency of } S \quad \text{if max. $\#$ sols any a comparison$ $3 <math>x^* = \text{optimal solution of relaxed set cover LP.}$ $\mathcal{C} = \emptyset$ $\mathbf{for } j = 1, \dots, k$ $\mathbf{if } x_j^* \ge 1/f$ then add j to \mathcal{C} $\mathbf{return } \mathcal{C}$

Theorem 5.25

frequencyCutoffSetCover is an *f*-approximation for Set-Cover.

Proofs set-cover
$$x^*$$
 deasible $\sum_{j \in V(n)} x_j \ge 1$ $\forall u \in U$
Since $|V(u)| \le f = 3$ one x_j with $j \in V(u)$: $x_j \ge \frac{\pi}{f}$
=> $S_j \in \mathcal{C}$

$$\int approx; SC = uninimized to problem
OPT for $\leq OPT$ since we only shrink the devisibility region
 $C^{T}x^{*}$ That's why LPs help to find approx. algorithms
 $C(\mathcal{C}) = \sum_{j \in \mathcal{C}} c(S_{j}) \leq \sum_{j \in \mathcal{C}} f \cdot x_{j}^{*} c(S_{j})$
 $= \sqrt{\cdot} \sum_{j \in \mathcal{C}} x_{j}^{*} c(S_{j}) \leq \sqrt{\cdot} \sum_{j=1}^{k} x_{j}^{*} c(S_{j}) = \sqrt{\cdot} OPT_{for}$
Tisted example $U = \{0, ..., n-1\}$ $S_{i} = \{i, i+1, ..., i+f-1\}$ und a j
 $= \sum_{j \in \mathcal{C}} c(S_{j}) = \frac{1}{2}$
 $= \sum_{j \in \mathcal{C}} c(S_{j}) = \frac{1}{2}$
 $= \sum_{j \in \mathcal{C}} c(S_{j}) = \frac{1}{2}$$$

Lemma 5.26 (Correct with prob 3/4)

randomized Rounding Set computes with probability at least $\frac{3}{4}$ a feasible set-cover. Proof: Courider $u \in \mathcal{U}$ |V(u)| = t \Rightarrow $(P_{4}, \dots, P_{t}) = (x_{i_{3}}^{*}, \dots, x_{i_{t}}^{*}) \quad V(u) = j_{i_{3}} \dots j_{t}$ x^{*} feasible $p_{4} t - t p_{t} = c \ge 1$ Price not covered by \mathcal{C} = $(1 - p_{4}) \dots (1 - p_{t})$ \leftarrow decreases with cin one idention concare = j maximal at $p_{4} = P_{2} = \dots = p_{t} = \frac{c}{t}$

maximal value attained at
$$p_1 = \cdots = p_f = \frac{4}{\xi}$$

 \Box .

$$f_{1}\left[\begin{array}{c} u \text{ not covered by } \mathcal{C} \text{ in one iteration}\right] \\ \leq \left(1 - \frac{\pi}{e}\right)^{t} \leq \frac{\pi}{e} \\ P_{1}\left[\begin{array}{c} u \text{ not covered by } \mathcal{C}\right] \leq \left(\frac{\pi}{e}\right)^{l_{11}(4n)} = \frac{\pi}{4n} \end{array}$$

=)
$$\Pr[\mathcal{C} \text{ is not a set corer}] = \Pr[\bigcup_{v \in \mathcal{U}} u \text{ not covered by } \mathcal{C}]$$

 $\leq n \cdot \frac{1}{q_{H}} = \frac{1}{q}$

Lemma 5.27 (Expected quality)

The expected cost $\mathbb{E}[c(\mathcal{C})]$ of \mathcal{C} computed by randomizedRoundingSet are bounded from above by $\ln(4n) \cdot OPT_{frac}$.

-

 \Box

 \rightsquigarrow By Markov's inequality: $\Pr[c(\mathcal{C}) \ge 4 \ln(4n) \cdot OPT_{frac}] \le \frac{1}{4}$

Proofs With republicus $\mathcal{L} = \mathcal{L}_{1} \cup \cdots \cup \mathcal{L}_{e_{n}(4_{n})}$ $\mathbb{E}[c(\mathcal{L})] \leq \sum_{i=1}^{l_{n}(4_{n})} \mathbb{E}[c(\mathcal{L}_{i})] = l_{n}(4_{n}) \cdot OPT_{froe}.$

Randomized Rounding Approximation for Set Cover

<pre>procedure randomizedRoundingSetCover(n,S,c)</pre>		
2	C = randomizedRoundingSet(<i>n</i> , <i>S</i> , <i>c</i>)	
3	if $c(\mathcal{C}) > 4 \ln(4n) \cdot OPT_{frac} \vee \mathcal{C}$ not a set cover	
4	return S	
5	else	
6	return C	

Theorem 5.28 (randomizedRoundingSetCover randomized approx) randomizedRoundingSetCover is a randomized $4 \ln(4n)$ -approximation for SET-Cover.

 ∇