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Definition 5.16 (Shortest-Superstring)
Given: alphabet Σ, set of strings W � {w1 , . . . ,wn} ⊆ Σ+
Feasible Instances: superstrings s of S, i.e., s contains wi as substring for 1 ≤ i ≤ n.
Cost: |s|
Goal: min �

Remark 5.17
Without-loss-of-generality assumption: no string is a substring of another. �



Shortest Superstring by Set Cover
Construct all pairwise superstrings:

σi,j,� � (wi)1,|wi |−�(wj) valid iff (wj)1,� � (wi)|wi |−�+1,|wi |
M �

�
σi,j,� : i, j, ∈ [u], � ∈ �

0..min{|wi |, |wj |}
��

� Set Cover instance:

Universe: [n] � try to cover all words in W with superstring . . .
Subsets: S � {Sπ : π ∈ W ∪ M} . . . by combining pairwise superstrings.

where Sπ � {k ∈ [n] : ∃i, j : wk � πi,j}
Cost function: c(Sπ) � |π |

Given set-cover solution {Sπ1 , . . . , Sπk}
� superstring π1 . . . πk



Lemma 5.18 (Pairwise superstrings yield 2-SC-approx)
Let W be an instance for S�������-S���������� and (n, S, c) the corresponding S��-C����
instance. Let further OPT resp. OPTsc be the optimal objective value of W resp. (n, S, c).
Then holds OPT ≤ OPTsc ≤ 2 · OPT. �





Corollary 5.19 (2Hn approximation for superstring)
By solving the transformed set cover instance with greedySetCover, we obtain a
2Hn-approximation for the shortest superstring problem. �



5.5 (Integer) Linear Optimization

Definition 5.20 (LP)
A linear program (LP) in standard form with n variables and m constraints is characterized by
a matrix A ∈ Zm×n, a vector b ∈ Zm, and a vector c ∈ Zn and is written as

min cTx min
�n

j�1 cj · xj

s. t. Ax ≥ b s. t.
�n

j�1 aĳ · xj ≥ bi for all i ∈ [m]
x ≥ 0 xj ≥ 0 for all j ∈ [n]

(Comparisons on vectors are meant componentwise.)
Any vector x ∈ Rn with Ax ≥ b and x ≥ 0 is called a feasible solution for the LP, and cTx is its
objective value. An optimal solution is a feasible vector x∗ with minimal objective value. �

Remark 5.21 (Rational coefficients)
We can in general allow A ∈ Qm×x, b ∈ Qm and c ∈ Qn; by multiplying constraints and
scaling objective function with the common denominator we obtain an equivalent LP. �



Example LP
min 7x1 + x2 + 5x3

s. t. x1 − x2 + 3x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6
x1 , x2 , x3 ≥ 0

� Optimal solution x∗ � (1.75, 0, 2.75) with cTx∗ � 26.
Extreme point: feasible point that is not a convex combination of two distinct feasible
solutions.

Remark 5.22 (Facts on LPs)
1. More general versions of LP possible:

� constraints, unrestricted variables, max instead of min . . .
� can all be transformed into equivalent one in standard form.

2. LP can be infeasible (no solution), unbounded (no optimal solution) or finite.
3. If LP has optimal solution, there is an optimal extreme point � finite problem!
4. Optimal solutions can be computed in poly-time (ellipsoid method).



Definition 5.23 (ILP)
An integer linear program in standard form is an LP with the additional integrality
constraints xj ∈ N0:

min cTx
s. t. Ax ≥ b

x ∈ Nn
0 �

Remark 5.24 (Facts on ILPs)
1. Generalized versions can again be transformed into standard form.
2. Decision version of the problem NP-complete.



5.6 Set Cover by LP Relaxation & Rounding

The Set Cover ILP
Idea xj � 1 iff Sj in cover.
Notation: For u ∈ U set V(u) � {j : u ∈ Sj}.

min
k�

j�1
c(Sj) · xj

s. t.
�

j∈V(u)
xj ≥ 1 ∀u ∈ U

x ∈ Nk
0

Observation: Any optimal solution fulfills x ∈ {0, 1}k

Problem: ILP not efficiently solvable � relax integrality constraints!
i.e., replace x ∈ Nk

0 by x ≥ 0.
� efficiently solvable, but might get fractional solutions x∗.



Simple Rounding

1 procedure frequencyCutoffSetCover(n,S,c)
2 f = global frequency of S
3 x∗ = optimal solution of relaxed set cover LP.
4 C � ∅
5 for j � 1, . . . , k
6 if x∗j ≥ 1/f then add j to C

7 return C

Theorem 5.25
frequencyCutoffSetCover is an f -approximation for S��-C����. �





Randomized Rounding

1 procedure randomizedRoundingSet(n,S,c)
2 x∗ = optimal solution of relaxed set cover LP.
3 C � ∅
4 for j � 1, . . . , k
5 for i � 1, . . . , �ln(4n)�
6 b = coin flip with prob x∗j
7 if b � 1 then add j to C

8 return C

Lemma 5.26 (Correct with prob 3/4)
randomizedRoundingSet computes with probability at least 3

4 a feasible set-cover. �





Lemma 5.27 (Expected quality)
The expected cost E[c(C)] of C computed by randomizedRoundingSet are bounded from
above by ln(4n) · OPTfrac. �

� By Markov’s inequality: Pr
�
c(C) ≥ 4 ln(4n) · OPTfrac

� ≤ 1
4



Randomized Rounding Approximation for Set Cover

1 procedure randomizedRoundingSetCover(n,S,c)
2 C = randomizedRoundingSet(n,S,c)
3 if c(C) > 4 ln(4n) · OPTfrac ∨ C not a set cover
4 return S
5 else
6 return C

Theorem 5.28 (randomizedRoundingSetCover randomized approx)
randomizedRoundingSetCover is a randomized 4 ln(4n)-approximation for S��-C����. �


