
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 18
2017-06-19

5.2 Randomized Approximations

Definition 5.3 (Randomized δ-approx.)
Let U � (ΣI ,ΣO , L, LI ,M, cost, goal) an optimization problem. For δ > 1 a randomized
algorithm A is called randomized δ-approximation algorithm for U, if

� Pr[A(x) ∈ M(x)] � 1 and (always feasible)
� Pr[RA(x) ≤ δ] ≥ 1

2 (typically within δ)
for all x ∈ LI. �

Definition 5.4 (δ-expected approx.)
Let U � (ΣI ,ΣO , L, LI ,M, cost, goal) an optimization problem. For δ > 1 a randomized
algorithm A is called (randomized) δ-expected approximation algorithm for U, if

� Pr[A(x) ∈ M(x)] � 1 and (always feasible)

� max
�
E[cost(A(x))]

OptU(x) ,
OptU(x)

E[cost(A(x))]
�
≤ δ (expected within δ)

for all x ∈ LI. �

I sloppily write E[R], but we are
actually always taking expectations
first, then compute the ratio to OPT.

Randomized Max-Sat Approximation
Recall: k-M��-S�� asks for an assignment satisfying a maximal number of clauses.
Assumption: Each clause contains exactly k literals over k different variables.

1 procedure randomAssignment(ϕ)
2 Let ϕ have variables x1 , . . . , xn
3 Choose assignment α ∈ {0, 1}n uniformly at random
4 s = number of clauses in ϕ satisfied by alpha
5 return (s, α)

Theorem 5.5 (randomAssignment is approx)
randomAssignment is

1. a 2k

2k−1 -expected approximation and

2. a randomized 2k−1

2k−1−1 -approximation
for k-M��-S��. �

Randomized Max-Cut
Simple Example: Approximate a maximal cut in a graph G � (V, E).
Note: M��-C�� is NP-hard. (much unlike M��-C��!)

1 procedure randomCut(G � (V, E))
2 V1 � ∅, V2 � ∅;
3 for each v ∈ V
4 b = random bit
5 Add v to Vb+1
6 return (V1 ,V2).

Theorem 5.6 (randomCut is 2-expected approx)
randomCut is a 2-expected approximation for the Max-Cut. �

Can we also give a randomized 2-approximation?
Problem: Events for edges are only pairwise independent.
� But doable with amplification

1 procedure goodRandomCut(G � (V, E))
2 for i � 1, . . . , |E| + 2
3 Ci = randomCut(G)
4 return largest found cut

Theorem 5.7 (goodRandomCut is rand. 2-approx)
goodRandomCut is a randomized 2-approximation for M��-C��. �

Greedy Max-Cut
Actually, we can achieve the same approximation guarantee by a much more efficient (and

deterministic) method.

1 procedure greedyMaxCut(G � (V, E))
2 V

1
,V2 � ∅

3 for v ∈ V // in arbitrary order
4 n

1
� |N(v) ∩ V

1
|

5 n2 � |N(v) ∩ V2 |
6 if n

1
≤ n2

7 Add v to V
1

8 else

9 Add v to V2

10 return (V
1
,V2)

Theorem 5.8
greedyMaxCut is a (deterministic) 2-approximation for Max-Cut. J

5.3 The Drosophila of Approximation: Set Cover

Definition 5.9 (Weighted Set-Cover)
Given: a number n, S � {S1 , . . . , Sk} of k subsets of U � [n],

and a cost function c : S → N.
Solutions: C ⊆ [k] with

�
i∈C Si � U

Cost:
�

i∈C c(Si)
Goal: min �

Greedy Set Cover

1 procedure greedySetCover(n, S, c)
2 C � ∅, C � ∅
3 // For analysis i � 1
4 while C � [n]
5 i∗ � arg min

i∈[n]
c(Si)
|Si \ C|

6 Add i∗ to C

7 C � C ∪ Si∗

8 // For analysis: αi �
c(Si∗)
|Si∗\C| ; i � i + 1

9 // For analysis: for e ∈ Si∗ \ C set price(e) � αi
10 return C

Lemma 5.10 (Price Lemma)
Let e1 , e2 , . . . , en the order, in which our algorithm covers the elements of U.

Then for all i ∈ {1, . . . , n} we have price(ei) ≤ OPT
n − i + 1 . �

Theorem 5.11 (greedySetCover approx)
greedySetCover is an Hn-approximation for W�������-S��-C����. �

5.4 The Layering Technique for Set Cover

Definition 5.12 (Size-proportional cost function)
A cost function c is called size proportional if there is a constant p so that c(Si) � p|Si |. �

Definition 5.13 (Frequency)
The frequency fe of an element e ∈ [n] is the number of sets in which it occurs:
fe � |{j : e ∈ Sj}|.
The (maximal) frequency of a S��-C���� instance is f � maxe fe. �

Lemma 5.14 (size-proportionality → trivial f -approx)
For a size proportional weight function c we have c({S1 , . . . , Sk}) ≤ f · OPT. �

Layering Algorithm
Idea: Split cost function into sum of

� size proportional part c0 and
� a some residue c1

1 procedure layeringSetCover(n, S, c)

2 p � min
� c(Sj)
|Sj | : j ∈ [k]

�
3 c0(Si) � p · |Si |
4 c1(Si) � c(Si) − c0(Si)
5 C0 �

�
j ∈ [k] : c1(Sj) � 0

�
6 U1 � U \�j∈C0 Sj
7 if U1 � ∅
8 return C0
9 else

10 S1 �
�
S ∈ {S1 , . . . , Sk} | S ∩ U1 � ∅�

11 return C0 ∪ layeringSetCover(U1 , S1 , c1)

Theorem 5.15 (layering yields f -approx)
layeringSetCover is an f -approximation for W�������-S��-C����. �

