Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 18

2017-06-19

5.2 Randomized Approximations

Profid from repetition

Definition 5.3 (Randomized δ -approx.)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem. For $\delta > 1$ a randomized algorithm *A* is called *randomized* δ -approximation algorithm for *U*, if

- ▶ $Pr[A(x) \in M(x)] = 1$ and (always feasible)
- $\left| \Pr[R_A(x) \le \delta] \ge \frac{1}{2} \right|$ (typically within δ)

for all $x \in L_I$.

$$R_{A}(x) = 1 + \frac{1 \cos \left(\frac{1}{x} - O_{P}(x)\right)}{O_{P}(x)}$$

4

N> OSE-MC S-approx

Definition 5.4 (δ -expected approx.)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem. For $\delta > 1$ a randomized algorithm *A* is called *(randomized)* δ *-expected approximation algorithm for U*, if

►
$$\Pr[A(x) \in M(x)] = 1$$
 and (always feasible)
► $\max\left\{\frac{\mathbb{E}[cost(A(x))]}{Opt_{U}(x)}, \frac{Opt_{U}(x)}{\mathbb{E}[cost(A(x))]}\right\} \le \delta$ (expected within δ) \forall_{x}
for all $x \in L_{I}$.
Given an S -expected approx A .
 $= > [E[R_{A}] \le S$
 $\Rightarrow R[R_{A} \ge 2S] \le \frac{1}{2}$ and A a randomized $2S$ -approx.

Randomized Max-Sat Approximation

Recall: k-CNF for an assignment satisfying a maximal number of clauses. Assumption: Each clause contains *exactly* k literals over k different variables.

6=3

- 1 **procedure** randomAssignment(ϕ)
- ² Let φ have variables x_1, \ldots, x_n
- ³ Choose assignment $\alpha \in \{0, 1\}^n$ uniformly at random
- s = number of clauses **in** φ satisfied by *alpha*

```
5 return (s, \alpha)
```

Theorem 5.5 (randomAssignment is approx)

randomAssignment is

1. a $\frac{2^k}{2^{k}-1}$ -expected approximation and $\frac{8}{7}$ 2. a randomized $\frac{2^{k-1}}{2^{k-1}-1}$ -approximation $\frac{4}{3}$ for k-Max-Sat.

Freef: Sinsle clause
$$C = \{l_{1}, ..., l_{k}\}$$
 is not satisfied by random airgument
iff all liferals are false
=> with probability $\left(\frac{1}{2}\right)^{k}$
 \sim satisfied wipt prob $1 - 2^{-k}$
 $Z_{i} = [C_{i} \text{ satisfied}]$
 $E(2_{i}) = 1 - 2^{-k}$
 $Z = Z_{i} = cost$
 $E[2] = m(1 - 2^{-k})$
 $cap. \# satisfied clause
Optimal solution cost $\leq m$
 $E[R_{i_{k}}(p)] = [E[\frac{Opt}{2}] \leq \frac{m}{m(1 - 2^{-k})} = \frac{2^{k}}{2^{k} - 1}$$

 \Box .

Randomized Max-Cut

Simple Example: Approximate a <u>maximal cu</u>t in a graph G = (V, E). Note: Max-Cut is \mathbb{NP} -hard. (much unlike MIN-Cut!)

¹ **procedure** randomCut(G = (V, E))

- 2 $V_1 = \emptyset, V_2 = \emptyset;$ 3 **for** each $v \in V$
- b = random bit
- 5 Add v to V_{b+1}
- 6 return (V_1, V_2) .

Theorem 5.6 (randomCut is 2-expected approx)

randomCut is a <u>2-expected</u> approximation for the *Max-Cut*.

Proofs
$$X_e = [e is in and] e = [u,v] cut = u e V_1 \land v e V_2$$

$$E[X_e] = \frac{1}{2} \qquad X_e \text{ nod independent}$$

$$X = \sum X_e \qquad E[X] = \frac{m}{2}$$

$$Opt \leq m \qquad E[R] = \frac{m}{|F[X]|} = 2$$

Can we also give a randomized 2-approximation?

Problem: Events for edges are only pairwise independent.

~ But doable with amplification

- ¹ **procedure** goodRandomCut(G = (V, E))
- ² **for** i = 1, ..., |E| + 2
- $_{3}$ $C_{i} = randomCut(G)$
- 4 return largest found cut

Theorem 5.7 (goodRandomCut is rand. 2-approx) goodRandomCut is a randomized 2-approximation for MAX-CUT.

$$\begin{aligned} P_{\text{roof}} & \rho = P_{\text{r}}\left[X \geqslant \frac{m}{2}\right] \\ & \frac{m}{2} = IE[X] = \sum_{i=0}^{\frac{m}{2}-4} i \cdot P_{\text{r}}[X=i] + \sum_{i=\frac{m}{2}}^{m} i P_{\text{r}}[X=i] \\ & \leq \left(\frac{m}{2}-1\right)(1-\rho) + m\rho \\ & 1 \leq \rho\left(1+m-\frac{m}{2}\right) \quad <= \rangle \quad \rho \geqslant \frac{\pi}{\frac{m}{2}+1} < \frac{\pi}{2} \end{aligned}$$

4

Expected # Hals with
$$X \ge \frac{1}{2}$$
 is $\frac{1}{p} = \frac{m}{2} + 1$
=> $\Pr[\text{need inone than } m + 2 \text{ trial}] \le \frac{1}{2}$
Morbor

 \square

Greedy Max-Cut

Actually, we can achieve the *same* approximation guarantee by a much more efficient (and deterministic) method.

```
1 procedure greedyMaxCut(G = (V, E))
       V_1, V_2 = \emptyset
2
       for v \in V // in arbitrary order
3
           n_1 = |N(v) \cap V_1|
4
       n_2 = |N(v) \cap V_2|
5
       if n_1 \leq n_2
6
                Add v to V_1
7
           else
8
                Add v to V_2
9
       return (V_1, V_2)
10
```

Theorem 5.8

greedyMaxCut is a (deterministic) 2-approximation for MAX-CUT.

5.3 The Drosophila of Approximation: Set Cover

Definition 5.9 (Weighted Set-Cover)

Given: a number $n, S = \{S_1, \dots, S_k\}$ of k subsets of U = [n], and a cost function $c : S \to \mathbb{N}$. Solutions: $\mathcal{C} \subseteq [k]$ with $\bigcup_{i \in \mathcal{C}} S_i = U$ Cost: $\sum_{i \in \mathcal{C}} c(S_i)$ Goal: min

Greedy Set Cover

Lemma 5.10 (Price Lemma)

Let e_1, e_2, \ldots, e_n the order, in which our algorithm covers the elements of *U*. Then for all $i \in \{1, ..., n\}$ we have $price(e_i) \leq \frac{OPT}{n-i+1}$. Proof: li added in some iteration C:= U/C not-yet-covered elements Observations Can always complete SC with 5 OPT cost P; it added element i-1 = 10 ~ 101 = n-int $price(e_i) = \alpha_i + \left\{ \frac{OPT}{|C|} = \frac{OPT}{n-i+1} \right\}$

 \Box

Theorem 5.11 (greedySetCover approx)

greedySetCover is an H_n -approximation for WEIGHTED-SET-COVER.

Proofs cost of cover =
$$\sum_{i=1}^{n} \text{ price } (e_i)$$

 $\leq \text{ OPT} \cdot \sum_{i=1}^{n} \frac{1}{n - i \cdot 1}$
Lew 5.10 $i = 1$

$$= OPT \sum_{i=1}^{n} \frac{1}{i} = \frac{1}{4} + \frac{1}{6} + \frac{1}{6}$$

Can we do better? T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 3 n T 2 5 n T

5.4 The Layering Technique for Set Cover

Definition 5.12 (Size-proportional cost function)

A cost function *c* is called *size proportional* if there is a constant *p* so that $c(S_i) = p|S_i|$.

Definition 5.13 (Frequency)

The *frequency* f_e of an element $e \in [n]$ is the number of sets in which it occurs: $f_e = |\{j : e \in S_j\}|$. The (maximal) *frequency* of a SET-COVER instance is $f = \max_e f_e$.

Lemma 5.14 (size-proportionality \rightarrow **trivial** *f***-approx)** For a size proportional weight function *c* we have $c(\{S_1, \ldots, S_k\}) \leq f \cdot OPT$.

$$\Pr(\mathcal{OO}\{S_1, \dots, S_k\}) = \sum_{i=1}^k c(S_i) = p \cdot \sum_{i=1}^k |S_i|$$

 \Box

OPT à n.p

Layering Algorithm

Idea: Split cost function into sum of

- ▶ size proportional part *c*⁰ and
- ▶ a some residue *c*¹

1 procedure layeringSetCover(n, S, c)
2
$$p = \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$$

3 $c_0(S_i) = p \cdot |S_i| \leftarrow sc_k properties for t$
4 $c_1(S_i) = c(S_i) - c_0(S_i) // $\ge o$
5 $C_0 = \left\{j \in [k] : \underline{c_1(S_j)} = 0\right\}$
6 $U_1 = U \setminus \bigcup_{j \in C_0} S_j$
7 if $U_1 = \emptyset$
8 return $C_0 \vdash b_{\mathcal{C}}$ observable, frapped cover
9 else
10 $S_1 = \left\{S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset\right\}$
11 return $C_0 \cup$ layeringSetCover $(U_1, S_1, c_1)$$

Theorem 5.15 (layering yields *f*-approx)

layeringSetCover is an *f*-approximation for WEIGHTED-SET-COVER.

4

Proofs o rebulic cover by induction on recursion calls
$$V$$

o approx guarates by induction
base : by Lemma f-approx
hypothesin; G_1 f-approx wind. U_1 , S_1 , C_1
sky: G^* optimal set cover will G
 $G_0^* := Sie G^*$; $S_2 \leq U_0$
 $U \leq 1$
 $U \leq 1$
 $U \leq 1$
 $C_1^* := G \leq C_0^*$
 $U \leq 1$
 $C_2^* := G \leq C_0^*$

- 56

 \square