
Department of Computer Science
Sebastian Wild

Issue Date: 14.06.2017
Version: 2017-06-14 13:12

8th Exercise sheet for
Advanced Algorithmics, Summer 17

Hand In: Until Wednesday, 21.06.2017, 12:00 am, hand-in box in 48-4 or via email.

Problem 20 30 points

Modify the randomized min-cut algorithm from class as follows. Instead of randomly
choosing an edge and contracting it, randomly choose a pair of vertices x and y and
identify them into one vertex.

Prove that for some (infinite class of) graphs, the probability that this modified algorithm
finds a minimal cut is (at most) exponentially small in the number of vertices n.

Problem 21 30 + 40 points

In this exercise, we consider efficient implementations of contractionMinCut.

You may assume that the multigraph is given in one of usual representations for weighted
undirected graphs, i.e., either as adjacency lists with weights assigned to each successor
node or as adjacency matrix where the entry A[i, j] = c(i, j) for {i, j} ∈ E and 0
otherwise.

We assume c(i, j) ≤ n2 for all edges.

a) Give a detailed implementation for contractionMinCut with running time inO(n2).

b) Assume you would like to run the independent repetitions of contractionMinCut
really independently (e.g., in parallel). For that to work smoothly, we require the
original graph representation to remain unchanged.

Give an algorithm to simulate one run of contractionMinCut where the original
input is read-only, and you use only O(n) extra space. (Yep, simply copying the
graph to scratch space is out of the question.)

What is the best running time bound you can achieve?

Hint: Draw an input graph and highlight all edges that have been contracted in
one run of contractionMinCut. Does the result look familiar?


	Problem 20
	Problem 21

