# **Advanced Algorithmics**

# Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

# Lecture 15

2017-06-08

### **Universal Hashing – Efficient Randomized Hashing**

Balls-inb-bins model is ophimistle?  
It assumes that Barn, Bu are multiply intep.  
By = the bin of jth ball  
Bj & Em]  
ISI=n IVI  
For fully random hash function 
$$h: S \rightarrow [m]$$
 we need > ld(m")  
m" different hash function  
m" different hash function  
s her expensive  
all functions

#### **Definition 4.51 (Universal Family)**

Let  $\mathcal{H}$  be a set of hash functions from U to R with |R| = m and  $|U| \ge m$ . Assume  $h \in \mathcal{H}$  is chosen uniformly at random.

Then  $\mathcal{H}$  is called a *universal* if

J

# How good is universal hashing?

Define 
$$X_{ij} = [X_i]$$
 and  $X_j$  land in some bin  

$$X = \sum_{1 \le i \le j \le n} X_{ij} = \# \text{ collisions} \qquad h \in \mathcal{H} \text{ from universal class} \\ \text{ free for our our formely of roundsom our formely of rou$$

# **Perfect Hashing: Random Sampling**

Static Hashings SSU fixed 151=n  
-> build data structure with O(4) search / accoss  
no insert / delete  
-> O(a) space  
16 he H chosen vertermly at random  
Fouriered  
16 m = n<sup>2</sup> Pr[X > 1] = Pr[X > n<sup>2</sup>] = Pr[X > 2/F(X)] \$ 
$$\frac{1}{2}$$
  
*V*  
*Pr[no colliption]* = Pr[X=0] >  $\frac{1}{2}$   
frue, but O(c<sup>2</sup>) space is too unch.

Can we improve? Yes:  

$$y_{1} \dots y_{n}$$
 number balls in  
 $h_{1} - bins$   
 $p_{1} - bins$   
 $p_{2} = 1$   
 $p_{2} = 1$   
 $p_{3} =$ 

$$\binom{l}{2} = \frac{l(l-1)}{2} = \frac{l^2}{2} - \frac{l}{2} = 1 \quad l^2 = 2\binom{l}{2} + l$$
  
=1 space:  $n + \sum_{j=1}^{n} \frac{y_j^2}{j} = n + 2 \sum_{j=1}^{n} \binom{y_j}{2} + \sum_{j=1}^{n} \frac{y_j}{j} \leq 4n$ 

 $\sim$ 

# Random Sampling ; Local Search Warmup: A randomized 2SAT algorithm



#### **Theorem 4.52 (localSearch2SAT is OSE-MC for 2SAT)** Let $\phi$ be a 2SAT formula.

**1.** If  $\phi$  is unsatisfiable, localSearch2SAT always returns "probably not satisfiable".

**2.** If  $\phi$  is satisfiable, localSearch2SAT returns "satisfiable" with probability at least  $1 - 2^{-certainty}$ .

$$\frac{1}{2} \quad (1) \quad \text{trivial from code}$$

$$\frac{2}{2} \quad \phi \quad \text{sahfiable} \quad n \quad \alpha^* \quad \text{that sahfor } \phi$$

$$Define \quad \alpha_{2} \, (\alpha_{2} \, \dots \quad \alpha^*) \quad = \quad \text{that sahfor } \phi$$

$$X_{i} = \mathbf{k} \cdot d_{H} \left(\alpha_{i} \, , \, \alpha^*\right) \quad = \quad \text{the unstable } y \quad \text{variable} \quad \alpha_{2} \, \hat{\alpha}_{3} \, \dots \, \alpha^*$$

$$X_{i} = \mathbf{k} \quad np \quad \text{torminates}$$

$$\text{otherwise} \quad n \quad X_{i+1} \in \{X_{i}-1, X_{i}+1\}$$

$$P_{i} \left[X_{i+1} = 1 \quad |X_{i} = 0\} = \quad 1$$

$$P_{i} \left[X_{i+1} = j+1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j+1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

$$P_{i} \left[X_{i+1} = j-1 \mid X_{i} = j\right] = \quad \frac{1}{2}$$

 $\begin{aligned} \rho_{i} Y_{i} + q_{i} Y_{i} & (z_{i+1} - Y_{i}) = q_{i} (y_{i} - y_{i-1}) - c_{i} \\ & (z_{i+1} - Y_{i}) = q_{i} (y_{i} - y_{i-1}) + b_{i} \\ & (y_{i} - y_{i}) + b_{i}$ 

 $\dot{y}_{\dot{c}} = \left(\frac{\dot{i}}{11}a_{j}\right) \cdot \dot{y}_{o} + \sum_{j=4}^{c} \left(\frac{\dot{i}}{11}a_{k}\right)b_{j}$  $\sum_{\substack{\ell=0\\y_{\ell+1}-y_{\ell}}}^{\underline{i-1}} \frac{y_{\ell}}{y_{\ell}} = y_{\underline{i}} - y_{0}$  $= \begin{array}{c} y_{k} = y_{0} + \sum_{\ell=0}^{k-4} y_{\ell} \\ y_{\ell} \\ 0 \end{array}$  $=) y_0 = - \int y_0$  $a_i = a = \frac{q_i}{p_i} = 1$   $b_i = b = -\frac{c_i}{p_i} = -2$  $y_i = -1 - 2 \sum_{i=1}^{i} 1 = -2i - 1$  $y_0 = \sum_{k=1}^{k-1} (2\ell+1) = k^2 = \sum_{k=1}^{k-1} E_{k} + \sum_{k=1}$ Pr[ # iderations > cartouinty. 2k2] < I Markov

$$\Pr\left[ \# i \text{ terration} > 2k^2 \right] \leq \frac{1}{2}$$
certainty independent repetition ~  $\left(\frac{1}{2}\right)^{\text{curtaily}}$ 

 $\square$ .