
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 14
2017-06-05



Randomized BSTs
Weaknesses of treaps:

� priorities fixed once and for all � never recovers from bad luck
� have to store priorities (at least in a direct implementation), but these are not helpful

algorithmically.
Recall: Key property in random BSTs is that in every subtree of size m, each key value is
the root of the subtree with probability 1/m.

Idea of RBSTs: enforce this property anew after each insertion / deletion!
Store in each node x the size of its subtree S(x).

� Insert: Insert x as new leaf and let y1 , . . . , yd be the nodes on the path from the root.
For each y, x should have a 1/S(y) chance to replace y as the subtree root.

� Delete: After x is gone, one of the remaining S(x) − 1 nodes must become subtree
root. � choose one of x’s children y and z with probabilities S(y)

S(y)+S(z) resp. S(z)
S(y)+S(z) .

Benefits: Tree occasionally rebuilt, subtree sizes useful for rank-based operation.



Insert in RBSTs

1 Node insert(Node root, int x)
2 n = root.size;
3 r = U[0..n] // uniform int between 0 and n
4 if (r == n) return insertAtRoot(root,x)
5 if (x < root.key)
6 root.left = insert(root.left, x)
7 else
8 root.right = insert(root.right, x)
9 return root

10

11 Node insertAtRoot(Node root, int x)
12 (smallerRoot,largerRoot) = split(root, x)
13 return new Node(x, smallerRoot, largerRoot)



Delete in RBSTs

1 Node delete(Node root, int x)
2 if (root == null) return null
3 if (x < root.key)
4 root.left = delete(root.left, x)
5 else if (x > root.key)
6 root.right = delete(root.right, x)
7 else // must delete root
8 return join(root.left, root.right)



Theorem 4.41 (Correctness)
Any sequence of insert and delete operations results in a tree whose shape is that of a
random BST. �

Theorem 4.42 (Operation Costs)
The costs (#visited nodes) of operations in RBSTs on n keys are

� same as in random BSTs for (un)successful search,
i.e., ∼ 2 ln n in expectation and O(log n) w.h.p.;

� insert additionally needs O(1) in expectation during insertAtRoot / split, and
� delete needs O(1) expected cost in join.

�

Remark 4.43
Split and join are also helpful operations in their own right. �







Abundance of Witnesses: Primality Testing





Theorem 4.44 (Fermat’s Little Theorem)
For p a prime and a ∈ [1..p − 1] holds

ap−1 ≡ 1 (mod p) �



Theorem 4.45 (Euler’s Criterion)
Let p > 2 an odd number.

p prime ⇐⇒ ∀a ∈ Zp \ {0} : a
p−1

2 mod p ∈ {1, p − 1} �

Theorem 4.46 (Number of Witnesses)
For every odd n ∈ N, (n − 1)/2 odd, we have:

1. If n is prime then a(n−1)/2 mod n ∈ {1, n − 1}, for all a ∈ {1, . . . , n − 1}.
2. If n is not prime then a(n−1)/2 mod n � {1, n − 1} for at least half of the elements in

{1, . . . , n − 1}.



Simple Solovay-Strassen Primality Test
Input: an odd number n with (n − 1)/2 odd.

1. Choose a random a ∈ {1, 2, . . . , n − 1}.
2. Compute A :� a(n−1)/2 mod n.
3. If A ∈ {1, n − 1} then output “n probably prime” (reject);
4. otherwise output “n not prime” (accept).

Theorem 4.47 (Correctness)
The simple Solovay-Strassen algorithm is a polynomial OSE-MC algorithm to detect
composite numbers n with n mod 4 � 3. �

Corollary 4.48
For positive integers n with n mod 4 � 3 the simple Solovay-Strassen algorithm provides a
polynomial TSE-MC algorithm to detect prime numbers. �



Sampling Primes
R�����P����(� , k) Input: � , k ∈ N, � ≥ 3.

1. Set X �“not found yet”; I � 0;
2. while X � “not found yet” and I < 2�2 do

� generate random bit string a1 , a2 , . . . , a�−2 and

� compute n � 2�−1
+

�−2�
i�1

ai · 2i
+ 1

// This way n becomes a random, odd number of length �
� Realize k independent runs of Solovay-Strassen-algorithm on n;
� if at least one output says “n � PRIMES” then I � I + 1

else X �“PN found”; output n;

3. if I � 2 · �2 then output ”no PN found”.







Fingerprinting: Hashing



Uniform Hashing – Balls into Bins

Theorem 4.49
If we throw n balls into n bins, then the fullest bin has O(log n/log log n) balls w.h.p. �






