Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 14

2017-06-05

Randomized BSTs

Weaknesses of treaps:

- ▶ priorities *fixed once and for all* ~→ never recovers from bad luck
- ► have to store *priorities* (at least in a direct implementation), but these are *not helpful* algorithmically.

Recall: Key property in random BSTs is that in every subtree of size *m*, each key value is the root of the subtree with probability 1/m.

Idea of RBSTs: enforce this property *anew* after *each* insertion / deletion! Store in each node x the size of its subtree S(x).

- ► **Insert:** Insert *x* as new leaf and let y_1, \ldots, y_d be the nodes on the path from the root. For each *y*, *x* should have a 1/S(y) chance to replace *y* as the subtree root.
- ▶ **Delete:** After *x* is gone, one of the remaining S(x) 1 nodes must become subtree root. \rightsquigarrow choose one of *x*'s children *y* and *z* with probabilities $\frac{S(y)}{S(y)+S(z)}$ resp. $\frac{S(z)}{S(y)+S(z)}$.

Benefits: Tree occasionally rebuilt, subtree sizes useful for rank-based operation.

Insert in RBSTs

Delete in RBSTs

- ¹ Node delete(Node root, int x)
- ² if (root == null) return null
- ³ if (x < root.key)
- 4 root.left = delete(root.left, x)
- 5 else if (x > root.key)

- 7 else // must delete root
- 8 return join(root.left, root.right)

$$join\left(\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

update Stroot)

Theorem 4.41 (Correctness)

Any sequence of insert and delete operations results in a tree whose shape is that of a *random BST*.

Skip detailed proof; inductively show that split, join preserve randomness, then induited delite

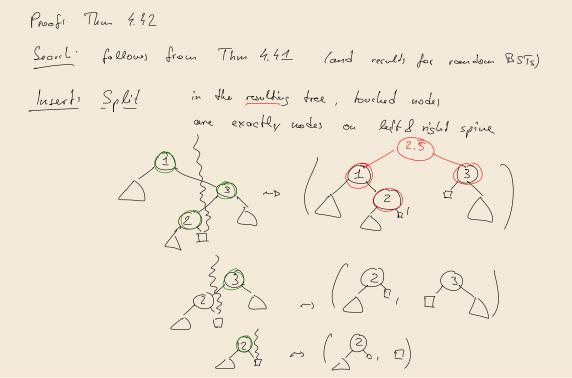
Theorem 4.42 (Operation Costs)

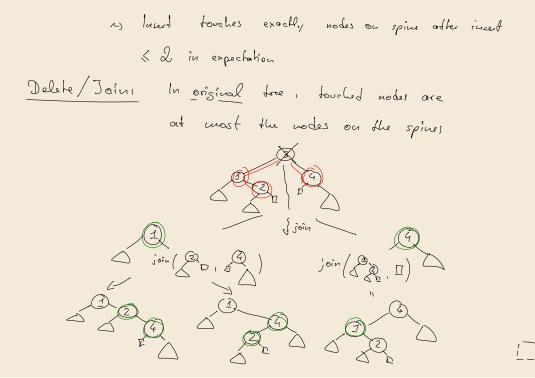
The costs (#visited nodes) of operations in RBSTs on n keys are

- ► same as in random BSTs for (un)successful search, i.e., ~ 2 ln n in expectation and O(log n) w.h.p.;
- ▶ insert additionally needs O(1) in expectation during insertAtRoot / split, and
- ▶ **delete** needs O(1) expected cost in join.

Remark 4.43

Split and join are also helpful operations in their own right.





Abundance of Witnesses: Primality Testing

$$h = p \cdot q \longrightarrow 2$$
 witnesses $\frac{2}{n-2}$ prob.
 $\Rightarrow \Omega(n)$ samples (preduo polynomial)

Theorem 4.44 (Fermat's Little Theorem)

For *p* a prime and $a \in [1..p - 1]$ holds

$$a^{p-1} \equiv 1 \pmod{p}$$
 (4)
Pick random a, if $a^{p-1} \mod p \neq 1 \longrightarrow p$ not prime
Picklem; Carmichael number, also fulfill (20), but are not prime
Low many?

Theorem 4.45 (Euler's Criterion) Let p > 2 an odd number. $p \text{ prime} \iff \forall a \in \mathbb{Z}_p \setminus \{0\} : a^{\frac{p-1}{2}} \mod p \in \{1, p-1\}$

Theorem 4.46 (Number of Witnesses)

For every odd $\underline{n} \in \mathbb{N}$, (n - 1)/2 odd, we have:

- **1.** If *n* is prime then $a^{(n-1)/2} \mod n \in \{1, n-1\}$, for all $a \in \{1, ..., n-1\}$.
- 2. If *n* is not prime then $a^{(n-1)/2} \mod n \notin \{1, n-1\}$ for *at least half* of the elements in $\{1, \ldots, n-1\}$.

 $\frac{\text{Proof Ideg:}}{\text{R(a1)} = \left\{a : a^{\frac{n-1}{2}} \mod n \notin 51, -1\right\}}$ $R(a1 = \left\{1 \dots n \cdot 1\right\} \quad \text{Witness(a)}$

3 injecture forethon his R -> Witness

Simple Solovay-Strassen Primality Test

Input: an odd number n with (n - 1)/2 odd.

- **1.** Choose a random $a \in \{1, 2, ..., n-1\}$.
- **2.** Compute $A := a^{(n-1)/2} \mod n$.
- 3. If $A \in \{1, n 1\}$ then output "*n* probably prime" (reject);
- **4**. otherwise output "*n* not prime" (accept).

Theorem 4.47 (Correctness)

The simple Solovay-Strassen algorithm is a polynomial OSE-MC algorithm to detect composite numbers *n* with $n \mod 4 = 3$.

Corollary 4.48

K drop this is possible, n mod 4=1 shell fully Thun 446 -

For positive integers n with $n \mod 4 = 3$ the simple Solovay-Strassen algorithm provides a polynomial TSE-MC algorithm to detect prime numbers.

Sampling Primes

RandomPrime(ℓ , k) Input: ℓ , $k \in \mathbb{N}$, $\ell \geq 3$.

1. Set X := "not found yet"; I := 0;

2. while X = "not found yet" and $I < 2\ell^2$ do

• generate random bit string $a_1, a_2, \ldots, a_{\ell-2}$ and

• compute
$$n := 2^{\ell-1} + \sum_{i=1}^{\ell-2} a_i \cdot 2^i + 1$$

// This way *n* becomes a random, odd number of length ℓ

- ▶ Realize *k* independent runs of Solovay-Strassen-algorithm on *n*;
- if at least one output says "n ∉ PRIMES" then I := I + 1 else X := "PN found"; output n;
- **3.** if $I = 2 \cdot \ell^2$ then output "no PN found".

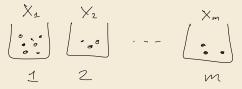
We do
$$d\ell^2$$
 $P_{s}[\# ideations > a] \leq \frac{\mathbb{E}[\#it_{s}] = \ell}{a} = \frac{1}{2\ell}$
 $2\ell^2$

Running time O(es).

Fingerprinting: Hashing

universe U want to store SEU 101>>1R1 function LSU->R 11 m set of bins

Uniform Hashing – Balls into Bins



uniform hashing assumption hash values are ind uniform

Theorem 4.49 $n=m \rightarrow \mathbb{E}[X_i] = \bot$

If we throw *n* balls into *n* bins, then the *fullest bin* has $O(\log n / \log \log n)$ balls w.h.p.

$$\frac{Proof}{Pr[Max X_i \ge M]} \le n Pr[X_1 \ge M]$$

$$Pr[X_1 \ge M] = Pr[\bigcup_{\substack{I \le r_J \\ rI = M}} balls is land in bin 1]$$

$$\le \binom{n}{M} Pr[II] balls land in bin 1]$$

$$\frac{n (u-1) - 1}{M} \leq 1$$

$$\frac{n \cdot n \cdot n \cdot n \cdot n (n-M) (u-M-21 - 1)}{M}$$

$$M! \geq \left(\frac{M}{C}\right)^{M} \frac{1}{2\pi} M$$
Stirlings formula

ho show:
$$\forall d \neq c = O(n^{d})$$

 $\Pr\left[\max X_{i} \geq C \cdot \frac{ln(n)}{ln(ln(n))}\right]$
 $\leq n \cdot \Pr\left[X_{2} \geq C \cdot \frac{lnn}{ln(ln(n))}\right]$
 $\leq n \cdot \Pr\left[X_{2} \geq C \cdot \frac{lnn}{ln(ln(n))}\right]$
 $\leq n \cdot \left(\frac{ln}{c}\right) \cdot \frac{ln(ln(n))}{ln(ln(n))}\right)^{c}$

(*)

$$= \exp\left(lu(n) + c \cdot \frac{lnn}{lnlnn} ln\left(\frac{en0nn}{lnn}\right)\right)$$

$$= \exp\left(lnn + lnn \frac{c \cdot lnlnn}{lnlnn} - c lnn \cdot \frac{lnlnn}{lnlnn}\right)$$

$$= \exp\left((l-c)ln(n) - ln(n) + ln(n) \frac{c lnlnln}{lnlnn}\right)$$

$$= n^{2-c} \exp\left(ln(n)\left(\frac{c lnlnn}{lnlnn} - \frac{1}{l}\right)\right)$$

$$\xrightarrow{o(1)}{0(1)} \xrightarrow{o(1)}{0(1)} \sqrt{lnlnn} + \frac{lnlnn}{lnlnn} + \frac{lnlnn}{lnlnn}\right)$$

 \square