Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 13

2017-06-01

Theorem 4.25 (Expected depth of kth leaf)

The *expected depth* of the *kth external leaf* (for k = 1, ..., n + 1) in a random BST on $n \ge 1$ keys

is $H_{k-1} + H_{n-k+1}$. depth (Th) = # comps for unsuccessful second for x18 which terminates in [k] Proof : left-do-right mining among keys > x total number k-1 left-to-right maxima among beg < X botal number n-k+1

Corollary 4.26 (Depth of typical leaf)

Consider a random BST T_n of n keys.

- **1.** The expected external path length of T_n is $2(n+1)(H_{n+1}-1) = 2n \ln n - 2(1-\gamma)n \pm O(\log n).$ ($\gamma \approx 0.5772$ the Euler-Mascheroni constant)
- **2.** The depth of the αn th leaf in a random BST of n keys $\sim 2 \ln n$ as $n \to \infty$ for any fixed $\alpha \in (0, 1)$.

$$a_3,...,a_n$$
 permulation of (n) \cong $b_1,...,b_n$ $b_i^* = \# \text{ inversion of form } (o,i)$
 $a \text{ randown permulation}$ $= b_i^* \text{ indepe.}$ $b_i^* \cong \text{2LO...n-i}$
 $R2LMax(a) = \sum_{i=1}^{n} [b_i = n-i]$

Remark 4.27 (Concentration of left-to-right minima)

One can show that the number of left-to-right minima in a permutation of length n is in $O(\log n)$ w.h.p. (using general Chernoff bound).

Hence, the above expected results hold with high probability (up to constant factors).

Connection to Quicksort

Previous results sounded familiar?

randomized

Recursion trees of Quicksort are also randomly generated BSTs.

- ▶ random BSTs: all insertion orders equally likely
- ▶ Quicksort trees: value of root uniformly chosen from keys in subtree

positions for left abtre

Are the shape distributions the same? Yes!

subtree
$$\sum_{k=1}^{n} \binom{n-1}{k-1} \binom{k-1}{k-1} \binom{n-k}{n-k}$$

$$= \sum_{k=2}^{n} \frac{(n-1)! (k-1)! (n-k)!}{(k-1)! (n-1)! (n-1)!}$$

$$= n!$$

In both cases holds

$$\Pr[T_n] = \begin{cases} 1 & n = 0 \\ \frac{1}{n} \cdot \Pr[T_L] \cdot \Pr[T_R] & n \ge 1 \end{cases}$$

i.e., the probability of a tree is computed recursively over the tree structure.

Corollary 4.28 (Recycling Quicksort results)

In a random BST holds:

- ► Height is in $O(\log n)$ w.h.p. e.g., $Pr[\text{height} \ge 42 \ln n] \le 2n^{-7.4}$
- ► Expected internal path length (= expected number of comparisons in Quicksort) is $2(n+1)H_n 4n = 2n \ln n 2(2-\gamma)n \pm O(\log n)$.

Depth of Internal Nodes

Previous results mostly for <u>external leaves</u>; how about <u>internal nodes</u>? Similarly possible based on handy notion:

Lemma 4.29 (Ancestor indicators)

Let T_n be a random BST with keys [n] and denote by $A_y^x = [x \text{ is a proper ancestor of } y]$ for $x, y \in [n]$. (This means $A_x^x = 0$ and for $x \neq y$, $A_y^x = 1$ iff x lies on the path from the root to y.) Then holds:

- **1.** $A_y^x = 1$ iff x was the *first* among the keys $[x..y] \cup [y..x]$ that was inserted into T_n .
- **2.** $A_y^x = 1$ iff x and y are *directly compared* by randomized Quicksort during a partitioning step using pivot x.
 - 3. $\Pr[A_y^x = 1] = \Pr[A_x^y = 1] = \frac{1}{|y x| + 1}$ for $x \neq y$.

Remark 4.30 (Common ancestor indicators)

Idea generalizes to $C_{y,z}^x = [x \text{ is common ancestor of } y \text{ and } z]$:

$$\Pr[C^x_{y,z} = 1] \ = \ \frac{1}{\max\{x,y,z\} - \min\{x,y,z\} + 1}.$$

x< y wlog.

which of the keys xixthing y was founded into tree

- o y first as x camed be on path
- " 2 e (x + 1, -7 y -1) first

$$A_{y}^{*} = 0$$

correspond do the same sap

$$\Rightarrow A_y^* = 1$$

Theorem 4.31 (Expected depth of kth node)

The *expected depth* of the *kth internal node* (for k = 1, ..., n) in a random BST on $n \ge 1$ nodes

is
$$\underline{H_k + H_{n-k+1} - 2}$$
. $\underbrace{\text{depth}}_{k} (\textcircled{k}) = \sum_{k=2}^{n} A_k^{\times}$. Recall: $\mathbb{E}[\text{depth of } k \text{th leaf}] = H_{k-1} + H_{n-k+1}$.

$$\mathbb{E} \left[\operatorname{depth} (R) \right] = \sum_{k=1}^{n} \mathbb{E} \left[A_{k}^{\times} \right] = \sum_{k=1}^{n} \operatorname{R}(A_{k}^{\times} = 1) = \sum_{k=1}^{k-1} \frac{1}{k - x + 1} + \sum_{k=k+1}^{n} \frac{1}{x - k + 1} \right]$$

$$= \sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n-k+1} \frac{1}{k} = H_{k} + H_{n-k+1} - 2$$

Remark 4.32 (Expected subtree size)

The *expected size* of the *subtree* rooted at the *k*th internal node is also $H_k + H_{n-k+1} - 2. + 4$

$$\sum_{k=1}^{n} A_{k}^{k}$$

Remark 4.33 (Further Results)

Random BSTs are extremely well-studied. A few more results:

- ► The **expected height** is $\alpha \ln n \beta \ln \ln n \pm O(1)$ with $\alpha \approx 4.311$ and $\beta \approx 1.953$.
- ► The **height** divided by $\ln n$ **converges in probability** to the constant α .
- ▶ The number X_{nk} of external leaves at depth k satisfies $\mathbb{E}[X_{nk}] = \frac{2^k}{n!} {n \brack k}$.
- ▶ The **depth** of a typical **leaf** divided by $\ln n$ **converges in probability** to 2.
- ▶ The standardized **depth** of a random leaf **converges** in distribution to a standard **normal distribution**.
- ▶ The same is true for the standardized depth of a random internal node.
- ▶ Let D_n be the **depth of the** n**th inserted node**. Then $(D_n \ln n)/\sqrt{\ln n}$ converges in distribution to a standard **normal distribution**.

→ plain BSTs have **great** performance **if** insertions come in random order.

Interesting fact: *no longer true* if there are *deletions*!

After long sequence of random inserts and deletes: expected height $\Theta(\sqrt{n})$, not $\Theta(\log n)$ (!)

Reason: <u>Hibbard's deletion</u> algorithm destroys randomness!

Need for Randomization

"Defects" of plain BSTs:

- 1. linear worst case height
- 2. many deletions have negative impact

Classic deterministic strategies to avoid worst case: balanced BSTs

- ▶ height-balanced trees: AVL-trees, 2-3-trees / B-trees, red-black trees, scapegoat trees, . . .
- weight-balanced trees: $BB(\alpha)$ -trees, . . .
- ▶ **self-balancing trees:** splay trees, . . .

All use somewhat sophisticated rotation / rebalancing schemes . . . can we achieve **similar performance** using **simpler randomized** data structure?

Treaps

Observation: The *preorder* (sequence of the keys) is a 1:1 *characterization* of a given BST since

- each BST has unique preorder, and
- each preorder generates a unique tree by inserting keys in preorder into an initially empty tree.

Enforcing the preorder corresponding to a random BST suffices to avoid worst cases. . . . but we have no control over the set of keys to be inserted.

Idea: Separate key values from rank in preorder using random priorities.

Definition 4.34 (Treaps)

Let $S = \{(k_1, p_1), \dots, (k_n, p_n)\}$ be a set of *key-priority pairs* where $k_i \in K$ and $p_i \in [0, 1]$ for K some totally ordered universe.

A *treap* for S is a binary tree with n internal nodes labeled by the key-priority pairs so that

- 1. the search tree property holds w.r.t. the keys, and
- 2. the heap property holds w.r.t. the priorities.

Theorem 4.35 (Treaps are unique)

Let S be a set of n key-priority pairs where all keys and all priorities are distinct. Then there is *exactly one treap* for S.

Definition 4.36 (Randomized Treaps)

A <u>randomized treap</u> is the unique treap that results from given keys $k_1, k_2, ...$ where (upon insertion) we assign k_i a priority $p_i \stackrel{\mathbb{D}}{=} \mathcal{U}(0,1)$ independent of all previous priorities.

Theorem 4.37 (Shape of randomized treaps)

The (random) shape of a randomized treap for n keys has the *same distribution* as random BST with n keys.

 $\Pr[\text{treop shape Tn}] = \begin{cases} 1 & \text{ns.} 1 \\ \frac{1}{n} \cdot \Pr[\text{Te}] \cdot \Pr[\text{Tr}] & \text{ns.} 2 \end{cases}$

Corollary 4.38 (Search Costs)

All results for random BSTs apply, in particular:

- ► Expected search costs (#comparisons) $< 2 \ln n + 1$.
- ► Search costs in $O(\log n)$ w.h.p.

Insertions and Deletions in Randomized Treaps

Up to now: *static* view on treaps.

But can we efficiently turn a randomized treap for $\underbrace{k_1, \ldots, k_n}$ into one for $k_1, \ldots, \underbrace{k_{n+1}}$? And vice versa?

Yes! draw priority

- ▶ **Insert:** Start as in plain BST, then *rotate up* until heap property holds.
- ▶ **Delete:** Rotate node down (as if priority was $-\infty$) until it is a leaf, then remove it.

Conceptually very simple!

 \rightsquigarrow all operations in $O(\log n)$ time w.h.p.!

Spines of Trees

Lemma 4.39 (Bound on Rotations)

The number of *rotations* to insert or delete a node \widehat{x} in a randomized treap is at most LS(x) + RS(x), where LS(x) and RS(x) are the *lengths of the left resp. right spine* of (the subtree of) x in the treap (after insertion resp. before deletion).

Lemma 4.40 (Expected Spine Lengths)

The expected length of the left and right spine of (the subtree of) the \underline{k} th internal node (for k = 1, ..., n) in random BST of n keys are given by

$$\mathbb{E}[LS(k)] = 1 - \frac{1}{k}$$

$$\mathbb{E}[RS(k)] = 1 - \frac{1}{n-k+1}$$

$$LS(k) = \sum_{k=1}^{k-1} \left(A_{k-1}^{\times} - C_{k-1,k}^{\times} \right)$$

$$= \sum_{k=1}^{k-1} \left(A_{k-1}^{\times} - C_{k-1,k}^{\times} \right)$$

$$A_{k}^{k} = 1$$

$$E\left(LS(k) \right) = \sum_{k=1}^{k-1} \frac{1}{1 - \sum_{k=1}^{k-1} \frac{1$$

$$A_{k}^{k} = 1$$

$$A_{k}^{k} = 1$$

$$P_{6}[A_{y}^{x} = 1] = \frac{1}{|x-y|+1}$$

$$= \sum_{i=1}^{k-1} \frac{1}{i} - \frac{1}{i+1}$$

$$E(LS(4)) = \sum_{k=2}^{k-1} \frac{1}{k-x} - \frac{1}{k-x+1}$$

$$P(\zeta) = \sum_{k=2}^{k-1} \frac{1}{k-x} - \frac{1}{k-x+1}$$

$$P(\zeta) = \sum_{k=2}^{k-1} \frac{1}{k-x} - \frac{1}{k-x+1}$$

()<math>

Randomized BSTs

Weaknesses of treaps:

- ▶ priorities *fixed once and for all* → never recovers from bad luck
- ▶ have to store *priorities* (at least in a direct implementation), but these are *not helpful* algorithmically.

Recall: Key property in random BSTs is that in every subtree of size \underline{m} , each key value is the root of the subtree with probability $1/\underline{m}$.

Idea of RBSTs: enforce this property *anew* after *each* insertion / deletion! Store in each node x the size of its subtree S(x).

- ▶ **Insert:** Insert x as new leaf and let y_1, \ldots, y_d be the nodes on the path from the root. For each y, x should have a 1/S(y) chance to replace y as the subtree root.
- ▶ **Delete:** After x is gone, one of the remaining S(x) 1 nodes must become subtree root. \leadsto choose one of x's children y and z with probabilities $\frac{S(y)}{S(y) + S(z)}$ resp. $\frac{S(z)}{S(y) + S(z)}$.

Benefits: Tree occasionally rebuilt, subtree sizes useful for rank-based operation.