Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 13

2017-06-01

Theorem 4.25 (Expected depth of kth leaf)
The expected depth of the kth external leaf (fork =1, ...,n+1) inarandom BST on n > 1keys
is Hy—1 + Hy—g+1.

R P, Z

2 7%
deth (B~ o br wmmeadl vk f.
wlael decotoafos o [%]

&

froels —0
@Q/\‘// By b i

—~>
© O/M/lmﬁ [;U/S ~ s
dolol vunber Lo 1.

QQQCVI ’{‘0 = HS(«T’ WVC(;WQ

\
\
\
[

MOc-j ée‘y < X
bl by frd

/E@*f‘u (DE)}: Hiog Hm/w@

Corollary 4.26 (Depth of typical leaf)
Consider a random BST T, of n keys.

1. The expected external path length of T, is
2(1’1 + 1)(Hn+] - 1) = 2nlnn-— 2(1 -)/)Tl + O(log n). (y ~ 0.5772 the Euler-Mascheroni constant)

The depth of the anth leaf in a random BST of 1 keys ~ 2Inn as n — oo for any fixed

a € (0,1).
&[C)tnfiz
- bﬂ t-° , bn bz #v’wvwﬂ‘om 01[{er (Gr2>
HAvolug Gdf of ¢ flol :
o vandsen e o g e >c
parcbali = b fadpe | @ wloni]

R2LMar (o) = fi Bhe =
Remark 4.27 (Concentration of left-to-right minima)
One can show that the number of left-to-right minima in a permutation of length 7 is in

IR

W

a;, . Gv\ {u,rw‘ozlm-ﬂaq(fm]

O(log n) w.h.p. (using general Chernoff bound).
Hence, the above expected results hold with high probability (up to constant factors).

Connection to Quicksort

Previous results sounded familiar?
G d oAU é

Recursion trees o)fQuicksort are also randomly generated BSTs.

» random BSTs: all insertion orders equally likely peritncs o
» Quicksort trees: value of root uniformly chosen from keys in subtree J
~ 2 ¢ sl
L . 7 | n-dp oy
Are the shape distributions the same? Yes! 7 {k Ny [SEAAY

® . (D384 2 724 s
AR : e
<n % (§.3412,8729¢) kT D) (oot —ti-r)!

2(e) _’\F\/ !
k= Lo = !
In both cases holds
1 rost n=20
Pr[T,] = {14

- -Pr[Tr] - Pr[Tg] n=>1

i.e., the probability of a tree is computed recursively over the tree structure.

Corollary 4.28 (Recycling Quicksort results)
In a random BST holds:
> Height is in O(log n) w.h.p.
e.g., Prlheight > 42Inn] < 2n~74

> Expected internal path length (= expected number of comparisons in Quicksort) is
2(n+1)H, —4n = 2nlnn-2(2—-y)ax O(logn).

PN > E—
AR 5]

/®\ @ 1
,6\

Depth of Internal Nodes

Previous results mostly for external leaves; how about internal nodes?

Similarly possible based on handy notion:

Lemma 4.29 (Ancestor indicators)
Let T, be a random BST with keys [#] and denote b @ [x is a proper ancestor of y] for
x,y € [n]. (This means&z_o\fand for x # y, A = 1 iffxTies on the path from the root to y.)
Then holds: J R P)
1. Ay = 1iff x was the first among the keys [x..y] U [y..x] that was inserted into T,.
(2. Ay =1iff xand y are directly compared by randomized Quicksort during a partitioning
step using pivot x.

1
— — v —

3. PI'[A; = 1] = Pr[AX = 1] = m for x * Y. @
Remark 4.30 (Common ancestor indicators) > Ay Aa %\
Idea generalizes to C;/Z = [x is common ancestor of y and z]: €)

kL\

1
max{x,y,z} — min{x,y,z} + 1

Pr[C, =1] =

X

o

X<yl

whicd of L hegs X(;qz,,,,,y

Loa ¢ ,"c‘,wké frbo Yreg

o g (gwu% D x ca,‘M@Q/ be o qu[
by = A =0

“2e(aitigy-a) finl

=3 @ =
/ \ ~> A';/' =0
¥ >

x Sesbe ol P fw,e,a/fo-ﬂ, L\xdﬂmyj

Cor My r)&u Qj JO :%[»(SQuiene SQ/J

~ gﬂ,@ fx-«d /C/} ;"‘ @; y,jjaf Jﬂs‘k\‘(

®
= A, = 4

Theorem 4.31 (Expected depth of kth node)
The expected depth of the kth internal node (for k = 1, ...,n) in arandom BST on 7 > 1 nodes

DL =0 L @® - 7oA
Recall: E[depth of kth leaf] = Hi_1 + H,— k+1 I)\\
PR /
Lepits (K1) B
— 2 - N & - A-4 4 A
Eldet (@3 - BLAL) ~ L RCAL=4) = fom e s] 2
X=g Rr=a X =4 oA x=kid IS T PAN
3 Z_ - k<1 1
- c=2L i ¢ = Hk A Hn»kd 'Z

Remark 4.32 (Expected subtree size)
The expected size of the subtree rooted at the kth internal node is also Hy + H;,—j+1 — 2.4

2 AL

Remark 4.33 (Further Results)

Random BSTs are extremely well-studied. A few more results:
» The expected heightis aInn — flnlnn + O(1) with @ ~ 4.311 and g ~ 1.953.
» The height divided by In# converges in probability to the constant «.

The number X, of external leaves at depth k satisfies E[X,] = %—,k;- [Z]

The depth of a typical leaf divided by In# converges in probab\ilit7tg2,

The standardized depth of a random leaf converges in distribution to a standard normal distribution.
The same is true for the standardized depth of a random internal node.

Let D), be the depth of the nth inserted node. Then (D), — Inn)/VInn converges in distribution to a
standard normal distribution.

vV V. VY VY

~ plain BSTs have great performance if insertions come in random order.

Interesting fact: no longer e if there are deltons._
After long sequence of random inserts and deletes: expected height ©(+/11), hot ©(log 1) (1)
Reason: Hibbard’s deletion algorithm destroys randomness!

Animations: http://algs4.cs.princeton.edu/32bst

Need for Randomization
“Defects” of plain BSTs:

1. linear worst case height

2. many deletions have negative impact

Classic deterministic strategies to avoid worst case:W
> height-balanced trees: AVL-trees, 2-3-trees / B-trees, red-black trees, scapegoat trees, . ..
» weight-balanced trees: BB(a)-trees, ...
» self-balancing trees: splay trees, ...

All use somewhat sophisticated rotation / rebalancing schemes ...
can we achieve similar performance using simpler randomized data structure?

Treaps
Observation: The preorder (sequence of the keys) is a 1:1 characterization of a given BST
since

» each BST has unique preorder, and

» each preorder generates a unique tree by inserting keys in preorder into an initially
empty tree.

~~ Enforcing the preorder corresponding to a random BST suffices to avoid worst cases.
... but we have no control over the set of keys to be inserted.

« 21 J‘MJG/?‘LJIB\-‘ or é* -
Idea: Separate key values from rank in preorder using random priorities.

Definition 4.34 (Treaps)

LetS = {(kl,pl), ., (kn,pn)} be a set of key-priority pairs where k; € K and p; € [0, 1] for K
some totally ordered universe.
A treap for S is a binary tree with 7 internal nodes labeled by the key-priority pairs so that

1. the search tree property holds w.r.t. the keys, and
2. the heap property holds w.r.t. the priorities.

RS

Theorem 4.35 (Treaps are unique)
Let S be a set of n key-priority pairs where all keys and all priorities are distinct.
Then there is exactly one treap for S.
froofs Brtorces hwed kegs i diowaky pdodly order
o an fenthelly ety BT & wek by,
— BST eocd. 1:4:71

s L‘”“f ol /QI/AEK//‘/\?L
(/m’?wwn 5 LJ(/ l’ac[,uﬂlfox S 0

m7/2 \Fﬁ){ uw"7N0y debe s @S /<(~ c,u’n"q’

Pz - b p)

~\ suéiruj Uc,m“?m
Py

Definition 4.36 (Randomized Treaps)
A randomized treap is the unique treap that results from given keys ki, k2, ... where (upon
insertion) we assign k; a priority p; 2 U(0, 1) independent of all previous priorities.

Theorem 4.37 (Shape of randomized treaps)

The (random) shape of a randomized treap for n keys has the same distribution as random
_BST with n keys. P

F(Z*Afﬂﬁ S[AQPQ’E’S = {i@[nd
LT) T,
Corollary 4.38 (Search Costs) (1T s
All results for random BSTs apply, in particular:
» Expected search costs (#comparisons) < 2Inn + 1.

» Search costs in O(logn) w.h.p.

Insertions and Deletions in Randomized Treaps

Up to now: static view on treaps.

But can we efficiently turn a randomized treap for ki, ..., k, into one for ky, . . ., k417
. _/
And vice versa?

d a Aonys
Yes! riw f /

v
> Insert: Start as in plain BST, then rotate up until heap property holds.
> Delete: Rotate node down (as if priority was —co) until it is a leaf, then remove it.

Conceptually very simple!

P %

S B i

.
S A R

VARE

N

~ all operations in O(log n) time w.h.p.!

©\

@b/O

B~
SN
@/

7
Spines of Trees < Z \

ah” Sﬁv«

Lemma 4.39 (Bound on Rotations) TN

The number of rotations to insert or delete a node(X)in a randomized treap is at most
LS(x) + RS(x), where LS(x) and RS(x) are the lengths of the left resp. right spine of (the
subtree of) x in the treap (after insertion resp. before deletion).

Lemma 4.40 (Expected Spine Lengths)
The expected length of the left and right spine of (the subtree of) the kth internal node (for
k=1,...,n)in random BST of 1 keys are given by -
1
=gl

E[LS(K)] = 1- E[RS(K)] = 1- -

> =

[S(R)

\

E {£s06)) =

Randomized BSTs

Weaknesses of treaps:
» priorities fixed once and for all ~~ never recovers from bad luck

> have to store priorities (at least in a direct implementation), but these are not helpful

algorithmically.
Recall: Key property in random BSTs is that in every subtree of size m, each key value is
the root of the subtree with probabilit};l/in./ P o5
Idea of RBSTs: enforce this property anew after each insertion / deletion! ~

Store in each node x the size of its subtree S(x).

> Insert: Insert x as new leaf and let 1, . . ., /s be the nodes on the path from>the root.
For each y, x should have a 1/5(y) chance to replace y as the subtree root.

> Delete: After x is gone, one of the remaining S(x) — 1 nodes must become subtree

root. ~» choose one of x’s children y and z with probabilities S(;(ers)(z) resp. S(;;(f;(z).

Benefits: Tree occasionally rebuilt, subtree sizes useful for rank-based operation.)

GO)

