
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 13
2017-06-01

Theorem 4.25 (Expected depth of kth leaf)
The expected depth of the kth external leaf (for k � 1, . . . , n+ 1) in a random BST on n ≥ 1 keys
is Hk−1 + Hn−k+1. �

0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

Corollary 4.26 (Depth of typical leaf)
Consider a random BST Tn of n keys.

1. The expected external path length of Tn is
2(n+ 1)(Hn+1 − 1) � 2n ln n− 2(1− γ)n±O(log n). (γ ≈ 0.5772 the Euler-Mascheroni constant)

2. The depth of the αnth leaf in a random BST of n keys ∼ 2 ln n as n → ∞ for any fixed
α ∈ (0, 1).

Remark 4.27 (Concentration of left-to-right minima)
One can show that the number of left-to-right minima in a permutation of length n is in
O(log n) w.h.p. (using general Chernoff bound).
Hence, the above expected results hold with high probability (up to constant factors). �

Connection to Quicksort
Previous results sounded familiar?

Recursion trees of Quicksort are also randomly generated BSTs.
� random BSTs: all insertion orders equally likely
� Quicksort trees: value of root uniformly chosen from keys in subtree

Are the shape distributions the same? Yes!

In both cases holds

Pr[Tn] �




1 n � 0
1
n
· Pr[TL] · Pr[TR] n ≥ 1

i.e., the probability of a tree is computed recursively over the tree structure.

Corollary 4.28 (Recycling Quicksort results)
In a random BST holds:

� Height is in O(log n) w.h.p.
e.g., Pr[height ≥ 42 ln n] ≤ 2n−7.4

� Expected internal path length (= expected number of comparisons in Quicksort) is
2(n + 1)Hn − 4n � 2n ln n − 2(2 − γ) ± O(log n).

Depth of Internal Nodes
Previous results mostly for external leaves; how about internal nodes?
Similarly possible based on handy notion:

Lemma 4.29 (Ancestor indicators)
Let Tn be a random BST with keys [n] and denote by Ax

y � [x is a proper ancestor of y] for
x, y ∈ [n]. (This means Ax

x � 0 and for x � y, Ax
y � 1 iff x lies on the path from the root to y.)

Then holds:
1. Ax

y � 1 iff x was the first among the keys [x..y] ∪ [y..x] that was inserted into Tn.
2. Ax

y � 1 iff x and y are directly compared by randomized Quicksort during a partitioning
step using pivot x.

3. Pr[Ax
y � 1] � Pr[Ay

x � 1] �
1

|y − x| + 1
for x � y.

Remark 4.30 (Common ancestor indicators)
Idea generalizes to Cx

y,z � [x is common ancestor of y and z]:

Pr[Cx
y,z � 1] �

1
max{x, y, z} − min{x, y, z} + 1

.
�

Theorem 4.31 (Expected depth of kth node)
The expected depth of the kth internal node (for k � 1, . . . , n) in a random BST on n ≥ 1 nodes
is Hk + Hn−k+1 − 2. �

Recall: E[depth of kth leaf] � Hk−1 + Hn−k+1.

Remark 4.32 (Expected subtree size)
The expected size of the subtree rooted at the kth internal node is also Hk + Hn−k+1 − 2. �

Remark 4.33 (Further Results)
Random BSTs are extremely well-studied. A few more results:

� The expected height is α ln n − β ln ln n ± O(1) with α ≈ 4.311 and β ≈ 1.953.
� The height divided by ln n converges in probability to the constant α.

� The number Xnk of external leaves at depth k satisfies E[Xnk] � 2k
n!
�n
k
�
.

� The depth of a typical leaf divided by ln n converges in probability to 2.
� The standardized depth of a random leaf converges in distribution to a standard normal distribution.
� The same is true for the standardized depth of a random internal node.
� Let Dn be the depth of the nth inserted node. Then (Dn − ln n)/√ln n converges in distribution to a

standard normal distribution.

� plain BSTs have great performance if insertions come in random order.

Interesting fact: no longer true if there are deletions!
After long sequence of random inserts and deletes: expected heightΘ(√n), notΘ(log n) (!)

Reason: Hibbard’s deletion algorithm destroys randomness!

Animations: http://algs4.cs.princeton.edu/32bst

Need for Randomization
“Defects” of plain BSTs:

1. linear worst case height
2. many deletions have negative impact

Classic deterministic strategies to avoid worst case: balanced BSTs
� height-balanced trees: AVL-trees, 2-3-trees / B-trees, red-black trees, scapegoat trees, . . .

� weight-balanced trees: BB(α)-trees, . . .

� self-balancing trees: splay trees, . . .

All use somewhat sophisticated rotation / rebalancing schemes . . .
can we achieve similar performance using simpler randomized data structure?

Treaps
Observation: The preorder (sequence of the keys) is a 1:1 characterization of a given BST
since

� each BST has unique preorder, and
� each preorder generates a unique tree by inserting keys in preorder into an initially

empty tree.

� Enforcing the preorder corresponding to a random BST suffices to avoid worst cases.
. . . but we have no control over the set of keys to be inserted.

Idea: Separate key values from rank in preorder using random priorities.

Definition 4.34 (Treaps)
Let S �

�(k1 , p1), . . . , (kn , pn)
�

be a set of key-priority pairs where ki ∈ K and pi ∈ [0, 1] for K
some totally ordered universe.
A treap for S is a binary tree with n internal nodes labeled by the key-priority pairs so that

1. the search tree property holds w.r.t. the keys, and
2. the heap property holds w.r.t. the priorities.

Theorem 4.35 (Treaps are unique)
Let S be a set of n key-priority pairs where all keys and all priorities are distinct.
Then there is exactly one treap for S. �

Definition 4.36 (Randomized Treaps)
A randomized treap is the unique treap that results from given keys k1 , k2 , . . . where (upon
insertion) we assign ki a priority pi

D
� U(0, 1) independent of all previous priorities. �

Theorem 4.37 (Shape of randomized treaps)
The (random) shape of a randomized treap for n keys has the same distribution as random
BST with n keys. �

Corollary 4.38 (Search Costs)
All results for random BSTs apply, in particular:

� Expected search costs (#comparisons) < 2 ln n + 1.
� Search costs in O(log n) w.h.p.

�

Insertions and Deletions in Randomized Treaps
Up to now: static view on treaps.
But can we efficiently turn a randomized treap for k1 , . . . , kn into one for k1 , . . . , kn+1?
And vice versa?

Yes!
� Insert: Start as in plain BST, then rotate up until heap property holds.
� Delete: Rotate node down (as if priority was −∞) until it is a leaf, then remove it.

Conceptually very simple!

� all operations in O(log n) time w.h.p.!

Spines of Trees

Lemma 4.39 (Bound on Rotations)
The number of rotations to insert or delete a node x in a randomized treap is at most
LS(x) + RS(x), where LS(x) and RS(x) are the lengths of the left resp. right spine of (the
subtree of) x in the treap (after insertion resp. before deletion). �

Lemma 4.40 (Expected Spine Lengths)
The expected length of the left and right spine of (the subtree of) the kth internal node (for
k � 1, . . . , n) in random BST of n keys are given by

E[LS(k)] � 1 − 1
k

E[RS(k)] � 1 − 1
n − k + 1

�

Randomized BSTs
Weaknesses of treaps:

� priorities fixed once and for all � never recovers from bad luck
� have to store priorities (at least in a direct implementation), but these are not helpful

algorithmically.
Recall: Key property in random BSTs is that in every subtree of size m, each key value is
the root of the subtree with probability 1/m.

Idea of RBSTs: enforce this property anew after each insertion / deletion!
Store in each node x the size of its subtree S(x).

� Insert: Insert x as new leaf and let y1 , . . . , yd be the nodes on the path from the root.
For each y, x should have a 1/S(y) chance to replace y as the subtree root.

� Delete: After x is gone, one of the remaining S(x) − 1 nodes must become subtree
root. � choose one of x’s children y and z with probabilities S(y)

S(y)+S(z) resp. S(z)
S(y)+S(z) .

Benefits: Tree occasionally rebuilt, subtree sizes useful for rank-based operation.

