
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 12
2017-05-29

Error Bounds Matter

Remark 4.17 (Success Probability)
From the point of view of complexities, the success probability bounds are flexible:

� BPP only requires success probability 1
2 + ε, but using Majority Voting, we can also

obtain any fixed success probability δ ∈ (1
2 , 1), so we could also define BPP to

require, say, Pr
�
A(x) � [x ∈ L]� ≥ 2

3 .
� Similarly for ZPP, we can use probability amplification on Las Vegas algorithms to

obtain any success probability δ ∈ (1
2 , 1).

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result.

Theorem 4.18 (PP can simulate nondeterminism)
NP ∪ co-NP ⊆ PP. �

� Useful algorithms must avoid unbounded errors.

One-sided errors
In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT
Guess assignment, output [φ satisfied].
(NB: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable φ always yield 0.
. . . does this help?

Definition 4.19 (One-sided error Monte Carlo algorithms)
A randomized algorithm A for language L (i.e., for f (x) � [x ∈ L]) is a one-sided-error
Monte-Carlo (OSE-MC) algorithm if we have

1. Pr[A(x) � 1] ≥ 1
2 for all x ∈ L, and

2. Pr[A(x) � 0] � 1 for all x � L.

Definition 4.20 (RP, co-RP)
The classes RP and co-RP are the sets of all languages L with a poly-time OSE-MC
algorithm for L resp. L. �

Theorem 4.21 (Complementation feasible → errors avoidable)
RP ∩ co-RP � ZPP. �

Note the similarly to the open problem NP ∩ co-NP ?
� P;

. . . a first hint that randomization might not help too much?

Derandomization
Trivial observation: If RandomA(n) ≤ c ld n, there are only 2RandomA(n) � nc different
computations.
� We can simply execute all of them sequentially in poly-time!

We can extend this to more randomized bits using pseudorandom generators, i.e., algorithms
that use a limited amount of real randomness and compute from this a much longer
sequence of bits that look random (pseudorandom) to every efficient algorithm.

It is not proven that such a method exists, but under widely believed assumptions on
circuit complexity lower bounds, there is such a pseudorandom generator that allows to
derandomize BPP.

� Current belief is BPP � P . . . and hence BPP � RP � co-RP � ZPP � P (!)
For solving hard problems in theory, randomization does not help at all!
(or: no sufficiently strong lower bound techniques known!)

4.5 Examples of Randomized Algorithms

� Focus on practical benefits of randomization

Randomized approaches can be grouped into categories:

1. Coping with adversarial inputs
Randomized Quicksort, randomized BSTs, Treaps, skip lists

2. Abundance of Witnesses
Solovay-Strassen primality test

3. Fingerprinting
universal hashing

4. Random Sampling
Perfect hashing

5. LP Relaxation & Randomized Rounding
Set-Cover Approximation (next chapter)

Naturally Grown BSTs
Naturally grown / Random BST: all n! insertion orders equally likely.

Lemma 4.22 (Random insertion yields random BST)
Let n ≥ 0 be arbitrary and let Tn be a random BST over n keys. Inserting an element
equally likely in one of the n + 1 gaps in Tn (external leaves) results in a new BST Tn+1 that
has the same shape as a random BST of n + 1 keys. �

Corollary 4.23
A BST built by inserting n i. i.d. U(0, 1) r.v. has the shape of a random BST. �

Theorem 4.24 (Expected Depth of leftmost leaf)
The expected depth (number of edges from root) of the leftmost external leaf (leaf for −∞) in
a random BST on n ≥ 1 nodes is Hn. �

