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Error Bounds Matter

Remark 4.17 (Success Probability)

From the point of view of complexities, the success probability bounds are flexible:

» BPP only requires success probability  + ¢, but using Majority Voting, we can also
obtain any fixed success probability 6 € (%, 1), so we could also define BP?P to
require, say, Pr [A(x) =[xe L]] > %

» Similarly for ZPP, we can use probability amplification on Las Vegas algorithms to
obtain any success probability 6 € (1,1).

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result.

Theorem 4.18 (PP can simulate nondeterminism)
NP U co-NP € PP.

~ Useful algorithms must avoid unbounded errors.



SAT

SAT

TAvT

&MOEUS i(;( PGCC/N[]FM oanaé

vse @ty [3007*%"“*1 RJ;}LA\OM
[ﬂtg‘é)V‘Q e, s‘gm/v‘% U”'\ﬁc‘ RA
KNP -cowplib ~»  SAT e P

LedF a>

as qpl‘ﬁp foujj'(rtxs

= A¥c P

P05\ € SATwix e/

L S
e TP TAUT @-dV —cowplife =5 comgPe TR

N STy GQ/(

Gr‘vw ‘TO c“(‘ QLMSVMA (7N W"CLL [:

A (VE-MC palomfioes)

(GO

(2)

Berorale o rmc(@w a)m”ju%v/

u-«.\“é\e(wjy aé 7 cen 40%

17[\ < szxﬁzx 70 ~0 aoczf?‘ / d/’w-«-l z"w:wm

\/QV;L:%S

SR Y0 4Jk
. j k (Clmrzovm Q)ybfj

(f"’a/”%"bu/



4 bid  condocn &)

(3J Offienenrlsn aCch‘g !‘&g %[P)

&

4 < N
P= 2 = _hed — = ald fncle
b P 2 b e
(\—fm/\,g 5 L"NQ,( (o A Mc[ k /
Cswecpwsi § L\(A') = SAT
LE-MC
. 4l
° QP e SAT ~D P([ O((T) = iz ‘Z 7 /Qq[ @ajz ol yaL.arr:’fv,‘,)

v
23 2

?([/_\{:M:Oj = ?{[(x[ﬂ:()]- @r[%(p):oxajrp

(4 -2y 7+, L
;g“) (2 ka)

//\

o & SAT s Plate)cd] =0






One-sided errors

In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT
Guess assignment, output [¢ satisfied].
(NB: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ¢ always yield 0.
... does this help?

Definition 4.19 (One-sided error Monte Carlo algorithms)
A randomized algorithm A for language L (i.e., for f(x) = [x € L]) is a one-sided-error
Monte-Carlo (OSE-MC) algorithm if we have

1. Pr[A(x) = 1]\24% forall x € L, and

e:zu?mﬁw(‘ A /X) = j oﬁumc/g (‘@rmo%
2. Pr[A(x)=0]=1forallx ¢ L.
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Definition 4.20 (RP, co-RP)
The classes RP and co-RP are the sets of all languages L with a poly-time OSE-MC

algorithm for L resp. L.

Theorem 4.21 (Complementation feasible — errors avoidable)

RPN co-RP = ZPP. spes - canhifiante R
v 7 e

Note the similarly to the open problem NP N co-NP = P; PRIMES = §n o]
... a first hint that randomization might not help too much?

PRIMES € co- prp

(Lvivec)
PRiMES « pp
( Cmr(;,@)oqk P/J

PRIMES ¢ ¢ Lp. rew&)
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Derandomization B

O(tos..
Trivial observation: If Random(n) < c1d n, there are only 28#%0ma(") = ¢ different
computations.

~» We can simply execute all of them sequentially in poly-time!
a2 OF VICIT sequentidly.
o&:ﬁw Ve Qﬂwﬂhé mew o~ radmen Mo gunlbor  pocll vowréaw {9—,”/5”

We can extend this to more randomized bits using pseudorandom generators, i.e., algorithms
that use a limited amount of real randomness and compute from this a much longer
sequence of bits that look random (pseudorandom) to every efficient algorithm.

It is not proven that such a method exists, but under widely believed assumptions on

circuit complexity lower bounds, there is such a pseudorandom generator that allows to
derandomize BPP.

~» Current belief i BPP = P ...and hence BPP = RP = co-RP = ZPP =P (!)

For solving hard problems in theory, randomization does not help at all!

(or: no sufficiently strong lower bound techniques known!)
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4.5 Examples of Randomized Algorithms

~ Focus on pr/acticalﬁbeneﬁts of randomization

Randomized approaches can be grouped into categories:
@ Coping with adversarial inputs (alsoriblunic oo pludly atlels)
Randomized Quicksort, randomized BSTs, Treaps, skip lists
2. Abundance of Witnesses  ~ GJ&-u¢ svesr a candon can ke oo corlifpeate
Solovay-Strassen primality test & cleet
3. Fingerprinting reduse outront and  acept 0o lisrons
universal hashing
4. Random Sampling  kwow ‘soed” sdnchon exdbis, e Jdros oun o scseeds >0 prob.
Perfect hashing . 3sSAT ofse by SlSuwieg  Kagu) Aoe-Ct oo
5. LP Relaxation & Randomized Rounding
Set-Cover Approximation (next chapter)
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Naturally grown / Random BST: all n! insertion orders equally likely.
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Lemma 4.22 (Random insertion yields random BST) .

Let n > 0 be arbitrary and le@)e arandom BST over 7 keys. Inserting an element

equally likely in one of the n +1 gaps in T}, (external leaves) results in a new BST T,,.1 that
has the same shape as a random BST of 2 + 1 keys.
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Corollary 4.23 indpomdant [ any coskrumon ded edd o

A BST built by 1nsert1ng niid. uo,1 [ r.v. has the shape of a random BST.
\Mﬂ,_k—o{

Theorem 4.24 (Expected Depth of leftmost leaf)

The expected depth (number of edges from root) of the leftmost external leaf (leaf for —co) in
a random BST on 7 > 1 nodes is H,,.
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