

Issue Date: 31.05.2017 Version: 2017-05-31 12:45

6th Exercise sheet for Advanced Algorithmics, Summer 17

Hand In: Until Wednesday, 07.06.2017, 12:00 am, hand-in box in 48-4 or via email.

Problem 15 20 points

A one-sided-error Monte Carlo algorithm A might give a wrong answer ever other time. We could use majority voting to amplify the probability, but that would not exploit the one-sidedness.

Describe how we can reduce the error probability to an arbitrary given constant $\delta > 0$, and compute the running time of the resulting method.

What is the running time to obtain a correct result with high probability? Compare your result to the majority-voting result from class for two-sided error Monte Carlo methods.

Problem 16 20 + 30 points

Recall the randomized complexity classes from class.

Prove the following relations.

- a) $\mathcal{P} \subseteq ZPP \subseteq RP \subseteq BPP \subseteq PP$
- b) $RP \subseteq \mathcal{NP}$

Hint: Recall the probabilistic method.

Problem 17 10 + 30 points

a) Prove that every algorithm that randomly shuffles a given list of n items so that afterwards all possible orderings are equally likely must use $\Theta(n \log n)$ random bits.

- b) Design a (randomized) algorithm A that generates a random permutation of the numbers $1, \ldots, n$. Each permutation is to have the same probability.
 - Argue that your algorithm has the desired property and determine \mathbb{E} -Time_A(n) as well as the *expected* number of random bits to generate a permutation of length n.
 - Can you find a method with optimal number of random bits (asymptotically and in expectation)?