Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 12

2017-05-29

Error Bounds Matter

Remark 4.17 (Success Probability)

From the point of view of complexities, the success probability bounds are flexible:

- ▶ \mathfrak{BPP} only requires success probability $\frac{1}{2} + \varepsilon$, but using *Majority Voting*, we can also obtain any fixed success probability $\delta \in (\frac{1}{2}, 1)$, so we could also define \mathfrak{BPP} to require, say, $\Pr[A(x) = [x \in L]] \ge \frac{2}{3}$.
- ▶ Similarly for \mathfrak{ZPP} , we can use probability amplification on Las Vegas algorithms to obtain any success probability $\delta \in (\frac{1}{2}, 1)$.

But recall: this is *not* true for unbounded errors and class \mathcal{PP} . In fact, we have the following result.

Theorem 4.18 (PP can simulate nondeterminism)

 $\mathcal{NP} \cup \text{co-}\mathcal{NP} \subseteq \mathcal{PP}$.

→ Useful algorithms must avoid unbounded errors.

Proof: JP allows for poly-time Lo use any poly-time reduction as preprocuring Show; SATEPP suffers MP = PP TAUT e PP similar coups e PP Given 4 of leasth in with k variables A (1) Generate vandour assignment $\alpha \in \{0,1\}^k$ without from $\{0,1\}^k$ k rb vuitoruly from {0,1} (2) If a salisfies & ~ accept) linear in n (3) Otherwise accept iff $B(\rho) = 1$ where $\rho = \frac{1}{2} - \frac{1}{2^{k+1}} = \frac{2^k - 1}{2^{k+1}} < \frac{1}{2}$ k+1 r5 Times linear A poly-time UE-Me

o
$$\varphi \in SAT$$
 $\sim P([\alpha(\varphi) = 1]) \ge \frac{1}{2^{k}}$ (at least 1 set. osa's.)

$$P([A(\gamma) = 0] = P([\alpha(\gamma) = 0], (1-\rho))$$

$$\langle \left(1 - \frac{1}{2^{k}}\right) \cdot \left(\frac{1}{2} + \frac{1}{2^{k+1}}\right)$$

$$= \frac{1}{2} - \frac{1}{2^{k+1}} \langle \frac{1}{2}$$

$$P_{\epsilon}[\Delta/\psi] = 1 \rangle > \frac{1}{2}$$

$$Pr[A(\varphi) = 0] = 1 \cdot (1-\rho) > \frac{1}{2}$$

 \Box

One-sided errors

In many cases, errors of MC algorithm are only *one-sided*.

Example: (simplistic) randomized algorithm for SAT

Guess assignment, output [ϕ satisfied].

(NB: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ϕ always yield 0.

... does this help?

Definition 4.19 (One-sided error Monte Carlo algorithms)

A randomized algorithm A for language L (i.e., for $f(x) = [x \in L]$) is a one-sided-error Monte-Carlo (OSE-MC) algorithm if we have

- **1.** $\Pr[A(x) = \underline{1}] \ge \frac{1}{2}$ for all $x \in L$, and
- **2.** Pr[A(x) = 0] = 1 for all $x \notin L$.

Definition 4.20 (RP, co-RP)

The classes $\Re P$ and $\operatorname{co-} \Re P$ are the sets of all languages L with a poly-time OSE-MC algorithm for L resp. \overline{L} .

Theorem 4.21 (Complementation feasible → errors avoidable)

$$\mathcal{RP} \cap \text{co-}\mathcal{RP} = \mathcal{ZPP}.$$

Note the similarly to the open problem $NP \cap co-NP \stackrel{?}{=} P$; ... a first hint that randomization might not help too much?

Proof Then 421 " >" trivial : LV also ~ our-siled error method $A(x) = ? \sim 0$ for RP co-RP · s Le RPA co-RP ~ A, A OSE-Mc poly-time Sor Land I Bs Ruy A(x), A(x) · A(x)=1, Ā(x)=0 -> accept \circ A(x)=0 , $\overline{A}(x)=1$ -> reject · A(x)=0, A(x)=0 -) 2 pro5 5 5 5 (A(K)=1= A(x) & cannot hoppen) B: LV for L, poly-time -> LEZPP

IJ.

Derandomization

Trivial observation: If $Random_A(n) \le c \operatorname{ld} n$, there are only $2^{Random_A(n)} = n^c$ different computations.

- → We can simply execute all of them sequentially in poly-time!
 - o limited independence

We can extend this to more randomized bits using *pseudorandom generators*, i.e., algorithms that use a limited amount of real randomness and compute from this a much longer sequence of bits that look random (pseudorandom) to *every* efficient algorithm.

It is not proven that such a method exists, but under widely believed assumptions on circuit complexity lower bounds, there is such a pseudorandom generator that allows to derandomize \mathfrak{BPP} .

```
\sim Current belief is \mathcal{BPP} = \mathcal{P} ... and hence \mathcal{BPP} = \mathcal{RP} = \text{co-}\mathcal{RP} = \mathcal{ZPP} = \mathcal{P} (!)
```

For solving hard problems in theory, randomization does not help at all!

(or: no sufficiently strong lower bound techniques known!)

4.5 Examples of Randomized Algorithms

→ Focus on practical benefits of randomization

Randomized approaches can be grouped into categories:

- Coping with adversarial inputs Randomized Quicksort, randomized BSTs, Treaps, skip lists
- 2. Abundance of Witnesses many certificates no goess one and check Solovay-Strassen primality test
- 3. Fingerprinting reduce universe and accept collisions universal hashing
- 4. Random Sampling know good structures exist, can draw one with sulfident prob. Perfect hashing
- LP Relaxation & Randomized Rounding Set-Cover Approximation (next chapter)

Coping with worst-case inputs

Naturally Grown BSTs First: I guare adversaries.

Naturally grown / Random BST: all *n*! insertion orders *equally likely*.

Example
$$n=3$$

$$1 = 2 = 3$$

$$1 = 2 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1 = 3 = 3$$

$$1$$

Lemma 4.22 (Random insertion yields random BST)

Let $n \ge 0$ be arbitrary and let T_n be a random BST over n keys. Inserting an element equally likely in one of the n+1 gaps in T_n (external leaves) results in a new BST T_{n+1} that has the same shape as a random BST of n + 1 keys.

Corollary 4.23

A BST built by inserting n i.i.d. $\mathcal{U}(0,1)$ r.v. has the shape of a random BST.

ho 6 0 0 0 1

Theorem 4.24 (Expected Depth of leftmost leaf)

The *expected depth* (number of edges from root) of the leftmost external leaf (leaf for $-\infty$) in a random BST on n > 1 nodes is H_n .

a random BST on
$$n \ge 1$$
 nodes is H_n .

$$\sum_{i=1}^{n} \frac{1}{i} \qquad h|_0 = 0 \qquad h|_3 = 1 + \frac{4}{2} + \frac{4}{3} = \frac{6+3+2}{6} = \frac{14}{6}$$
Proofs

depth = # left-right minima

labels on path = left-h-right uninima

luduchon on n to show $F[\# \text{left-ho-righ unin}] = H_n$

$$n = 1 \quad 1 = 1 \qquad \text{left-ho-righ unin} = \frac{1}{n}$$

$$F[\# \text{left-ho-right unin}] = \frac{1}{n}$$

$$F[\# \text{left-ho-right unin}] = H_{n-1} + \frac{1}{n} = H_n \quad 1$$

BSTs have O(logn) height whip.

(because Quicksort's recursion trees = random BSTs)