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Error Bounds Matter

Remark 4.17 (Success Probability)

From the point of view of complexities, the success probability bounds are flexible:

» BPP only requires success probability  + ¢, but using Majority Voting, we can also
obtain any fixed success probability 6 € (%, 1), so we could also define BPP to
require, say, Pr [A(x) =[xe L]] > %

» Similarly for ZPP, we can use probability amplification on Las Vegas algorithms to
obtain any success probability 6 € (1,1).

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result.

Theorem 4.18 (PP can simulate nondeterminism)
NP U co-NP € PP.

~ Useful algorithms must avoid unbounded errors.
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One-sided errors

In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT
Guess assignment, output [¢ satisfied].
(NB: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ¢ always yield 0.
... does this help?

Definition 4.19 (One-sided error Monte Carlo algorithms)
A randomized algorithm A for language L (i.e., for f(x) = [x € L]) is a one-sided-error
Monte-Carlo (OSE-MC) algorithm if we have

1. PrlA(x)=1] > % forallx € L, and
2. Pr[A(x)=0]=1forallx ¢ L.



Definition 4.20 (RP, co-RP)
The classes RP and co-R?P are the sets of all languages L with a poly-time OSE-MC

algorithm for L resp. L.

Theorem 4.21 (Complementation feasible — errors avoidable)
RPN co-RP = ZPP.

Note the similarly to the open problerr{ NP N co-NP = P;
... a first hint that randomization might not help too much?
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Derandomization

Trivial observation: If Random(n) < cld n, there are only QRandoma(n) — pe different
computations.
~» We can simply execute all of them sequentially in poly-time!

o Liihd iudepacndaen

We can extend this to more randomized bits using pseudorandom generators, i.e., algorithms
that use a limited amount of real randomness and compute from this a much longer
sequence of bits that look random (pseudorandom) to every efficient algorithm.

It is not proven that such a method exists, but under widely believed assumptions on
circuit complexity lower bounds, there is such a pseudorandom generator that allows to
derandomize BPP.

~» Current belief is BPP = P ...and hence BPP = RP = co-RP = ZPP =P (!)
For solving hard problems in theory, randomization does not help at all!

(or: no sufficiently strong lower bound techniques known!)



4.5 Examples of Randomized Algorithms

~~ Focus on practical benefits of randomization

Randomized approaches can be grouped into categories:
1. Coping with adversarial inputs
Randomized Quicksort, randomized BSTs, Treaps, skip lists

2. Abundance of Witnesses momg  cexhfreaks v guess o and cleck
Solovay-Strassen primality test

3. Fingerprinting reduce  wedrerse and  aacepd  ao@lsleu
universal hashing

4. Random Sampling kuew ‘gesd sfnclimes exif, can dmws owe bl soBokad prob.
Perfect hashing

5. LP Relaxation & Randomized Rounding
Set-Cover Approximation (next chapter)
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Lemma 4.22 (Random insertion yields random BST)
Let n > 0 be arbitrary and let T), be a random BST over 7 keys. Inserting an element

equally likely in one of the 7 + 1 gaps in T), (external leaves) results in a new BST T}, that
has the same shape as a random BST of 2 + 1 keys.
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Corollary 4.23
A BST built by inserting 7 i.i.d. U(0, 1) r.v. has the shape of a random BST.
)‘.—“._e—g-e—ﬁ—{

Theorem 4.24 (Expected Depth of leftmost leaf)
The expected depth (number of edges from root) of the leftmost external leaf (leaf for —co) in

a random BST on 7 > 1 nodes is H,,.
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