
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 11
2017-05-25



Application 1: Can we trust Quicksort’s expectation?

Definition 4.11 (With high probability)
We say

� an event X � X(n) happens with high probability (w.h.p.) when
∀c : Pr[X(n)] � 1 ± O(n−c) as n → ∞.

� a random variable X � X(n) is in O(f (n)) with high probability (w.h.p.) when
∀c∃d : Pr[X ≤ df (n)] � 1 ± O(n−c) as n → ∞.
(This means, the constant in O(f (n)) may depend on c.)

�

Theorem 4.12 (Quicksort Concentration)
The height of the recursion tree of (randomized) Quicksort is in O(log n) w.h.p. �

Hence the number of comparisons are in O(n log n) w.h.p.













Application 2: Majority Voting for Monte Carlo
Monte Carlo algorithms are allowed to err half the time.
That sound unusable in practice . . . can we improve upon that?

Idea: Use t independent repetitions of A on x.
If at least �t/2� runs (i.e., an absolute majority) yield result y, return y, otherwise return ?

Theorem 4.13 (Majority Voting)
Let A be a Monte Carlo algorithm for f with bounded error. Then, a majority vote of
t � ω(log n) repetitions of A is correct with high probability. �





Theorem 4.14 (Majority Voting with unbounded error)
There are Monte Carlo algorithms A with unbounded error that use only a linear number of
random bits (RandomA(n) � Θ(n) as n → ∞), so that a guarantee for successful majority
votes with fixed probability δ ∈ ( 1

2 , 1) requires the number of repetitions t to satisfy
t � ω(nc) for every constant c as n → ∞. �

That means, probability amplification for unbounded error Monte Carlo methods requires
a superpolynomial number of repetitions and is thus not feasible.







4.4 Randomized Complexity Classes

Does randomization extend the range of problems solvable by poly-time algorithms?
� back to decision problems.
Some simplifications:

� Only 3 sensible output values: 0, 1, ?.
� To allow full power of randomization, always allow RandomA(c) � timeA(c), i.e., every

step may use a random bit.

Definition 4.15 (ZPP)
ZPP (zero-error probabilistic poly-time) is the class of all languages L with a poly-time Las
Vegas algorithm A, i.e., Pr

�
A(x) � [x ∈ L]� ≥ 1

2 (and A(x) � [x ∈ L] implies A(x) � ?), and
timeA(n) � O(nc) as n → ∞ for some fixed c. �

Definition 4.16 (BPP and PP)
BPP (bounded-error probabilistic poly-time) and PP (probabilistic poly-time) is the class
of languages with a poly-time bounded-error resp. unbounded-error Monte Carlo algorithm. �



Error Bounds Matter

Remark 4.17 (Success Probability)
From the point of view of complexities, the success probability bounds are flexible:

� BPP only requires success probability 1
2 + ε, but using Majority Voting, we can also

obtain any fixed success probability δ ∈ ( 1
2 , 1), so we could also define BPP to

require, say, Pr
�
A(x) � [x ∈ L]� ≥ 2

3 .
� Similarly for ZPP, we can use probability amplification on Las Vegas algorithms to

obtain any success probability δ ∈ ( 1
2 , 1).

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result.

Theorem 4.18 (PP can simulate nondeterminism)
NP ∪ co-NP ⊆ PP. �

� Useful algorithms must avoid unbounded errors.


