Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 11

2017-05-25

Application 1: Can we trust Quicksort's expectation?

Definition 4.11 (With high probability)

We say

- ▶ an event X = X(n) happens with high probability (w.h.p.) when $\forall c : \Pr[X(n)] = 1 \pm O(n^{-c})$ as $n \to \infty$.
- ▶ a random variable X = X(n) is in $\mathcal{O}(f(n))$ with high probability (w.h.p.) when $\forall c \exists d : \Pr[X \leq df(n)] = 1 \pm \mathcal{O}(n^{-c})$ as $n \to \infty$. (This means, the constant in $\mathcal{O}(f(n))$ may depend on c.)

Theorem 4.12 (Quicksort Concentration)

The height of the recursion tree of (randomized) Quicksort is in $O(\log n)$ w.h.p.

Hence the number of comparisons are in $O(n \log n)$ w.h.p.

Proof: v : node in recurrion free n(v) s # class in the subtree of V J(v) s size of the left child 1 2 v balanced (=) $n(v) \le 1$ $v = \frac{3}{6} \le \frac{3(v)}{n(v)} \le \frac{3}{6}$ Ly reduces subtree size of its child to < 3 n(v) (*) Any recurdor tree for a element row coctain. at most log 3/4 (1/n) = los 4/8 (n) & 3.5 ln (n) balanced nodes:

X1 O

X2 O boland?

X3 O balanced? ×5 0 1 ×6 0 Problem: to apply Chermff to X= X1+ 1.4 Xn we need that X1,... Xn unhally independent of [

$$P_{1}[X_{i} = 1] \text{ depends on } n(v_{i})$$

$$n(v) = 4 \qquad \frac{Y^{i}}{n^{i}(1)} \in \left[\frac{1}{4}, \frac{3}{4}\right] \iff J(v) \in [1..3] \qquad P_{1}[X_{i} = 1) = \frac{3}{4}$$

$$n(v) = 5 \qquad in \qquad C=3 \ J(v) \in [2.33] \qquad P_{1}[X_{i} = 1] = \frac{2}{5}$$

$$n(v) = 8 \qquad \qquad J(v) \in [2.6) \qquad \frac{5}{8}$$

$$P_{1}[X_{1} = 1 \land X_{2} = 1] = P_{1}(X_{3} = 1) \cdot P_{1}[X_{2} = 1]$$

$$P_{2}[N] = P_{1}[v \text{ balanced } 1 \text{ } n(v) = n] \qquad P_{3}[N] = \frac{2}{5} \qquad p = \frac{2}{5}$$

$$V \text{ good } c=3 \text{ } v \text{ balanced } and \qquad B(\frac{p}{P_{2}(n)}) = 1$$

$$G_{1}^{2} = [v_{1}^{2} \text{ sood}] \qquad P_{1}[V_{2}^{2} \text{ sood}] = P_{1}[C_{1}^{2} = 1] \times P_{1}[X_{1} = 1] = p$$

Pr[free height
$$\geq$$
 d ln (n)] = Pr[3 path of length \geq d ln (n)]

In leaves in free

where $V_1 = V_1 = V_2 = V_3 = V_4 = V_$

$$\left\{ \begin{array}{l} \left\{ \left(\left| \frac{\times}{h} - \rho \right| \right) \right\} \right\} \right\} \qquad \text{assome } 8 \ge 0$$

$$\left\{ \begin{array}{l} \left\{ 2 \times \rho \left(-28^2 h \right) \right\} \right\} \\ \left\{ \left(\text{herw} f \right) \right\} \\ \left\{ h = d \ln(n) \right\} \right\} \qquad \delta = \frac{2}{5} - \frac{3.5}{d} > 0 \qquad \text{for } d \geqslant 8.25 \end{array}$$

$$\left\{ \begin{array}{l} \left\{ 1 \times \rho \left(-28^2 h \right) \right\} \right\} \\ \left\{ 1 \times \rho \left(-24 \times \rho \left($$

e.s. height > 42 lu(u) with pob O(n-7.4)

randomized =) We can rely on Buickrost.

(In prochice; lutrosort keep count of recursion depth)

Application 2: Majority Voting for Monte Carlo

Monte Carlo algorithms are allowed to err half the time. That sound unusable in practice . . . can we improve upon that?

Idea: Use t *independent* repetitions of A on x.

If at least $\lceil t/2 \rceil$ runs (i.e., an absolute majority) yield result y, return y, otherwise return?

Theorem 4.13 (Majority Voting)

Let *A* be a Monte Carlo algorithm for *f* with *bounded* error. Then, a *majority vote* of $t = \omega(\log n)$ repetitions of *A* is correct *with high probability*.

$$los^{2} n = (los(n))^{2} \neq los(n) = los(los(n))$$

$$\underbrace{Proof}^{3} \times_{2} \dots \times_{\ell} \times_{\ell} = [idh \text{ we correct}] \stackrel{\mathcal{D}}{=} \mathcal{B}(p) \qquad p = \frac{1}{2} + \varepsilon$$

$$\times = \times_{1} + \dots + \times_{\ell} \stackrel{\mathcal{D}}{=} \mathcal{B}in(\ell, p)$$

$$majority \text{ vote fails} \qquad \text{es} \times < \lceil \frac{\ell}{2} \rceil \qquad \text{es} \times < \lceil \frac{\ell}{2} \rceil - 1$$

$$P_{i}\left[X < \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right] \leq P_{i}\left[X \leq \frac{1}{2}\right] = P_{i}\left[P - \frac{X}{t} > P - \frac{1}{2}\right]$$

$$\leq P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right]$$

$$\leq P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right]$$

$$\leq P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right]$$

$$\leq P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right]$$

$$\leq P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right] + P_{i}\left[X \leq \frac{1}{2}\right]$$

$$\leq P_{i}\left[X \leq \frac{1}{$$

Theorem 4.14 (Majority Voting with unbounded error)

There are Monte Carlo algorithms A with *unbounded* error that use only a linear number of random bits $(Random_A(n) = \Theta(n) \text{ as } n \to \infty)$, so that a guarantee for successful *majority* votes with fixed probability $\delta \in (\frac{1}{2}, 1)$ requires the number of repetitions t to satisfy $t = \omega(n^c)$ for *every* constant c as $n \to \infty$.

That means, probability amplification for *unbounded* error Monte Carlo methods requires a *superpolynomial* number of repetitions and is thus not feasible.

Proofs success prob >
$$\frac{1}{2}$$
 Randon, (n) < ∞

A has op h 2 Randon, (x)

a cach we has probability 2 Randon, (x)

P = $\frac{1}{2} + 2^{-n}$

MV fails \rightleftharpoons X \leq $\frac{1}{2}$ X \leq $\frac{1}{2}$ X $=$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

We show
$$P([X \in (\frac{1}{2}, \mathbb{E}[X]]) \leq \varepsilon t 3^{\varepsilon t}$$

Since Bin is symmetric: $P([X \leq \mathbb{E}[X]) \geqslant \frac{1}{2}$
=> $P([MV \text{ fails}) = P([X \leq \frac{1}{2}] \geqslant P([X \leq \frac{1}{2}]) \Rightarrow P([X \leq \frac{1}{2}])$
= $P([X \leq \mathbb{E}[X]] - P([X \in (\frac{1}{2}, \mathbb{E}[X]])$
 $\Rightarrow \frac{1}{2} - \varepsilon t 3^{\varepsilon t} \Rightarrow \frac{1}{2}$

$$\frac{7}{2} - \varepsilon t 3 \longrightarrow \frac{1}{2}$$

$$\xi = n \longrightarrow \varepsilon = 2$$

$$\varepsilon t \longrightarrow 0$$

$$\varepsilon t 3 \longrightarrow 0$$

$$\varepsilon t 3 \longrightarrow 0$$

$$\varepsilon t 3 \longrightarrow 0$$

to show; $P_{\delta} \left(\frac{1}{2} < \times \left(\frac{1}{2} + \varepsilon \right) \right) \leq \varepsilon + 3^{\varepsilon t}$

$$\begin{array}{lll}
& = \sum_{i=\frac{t}{2}+2t} \left(\frac{t}{i}\right)\left(\frac{1}{2}+\epsilon\right)^{i}\left(\frac{1}{2}-\epsilon\right)^{t-i} \\
& = \sum_{i=\frac{t}{2}+1} \left(\frac{t}{2}+\epsilon\right)^{i}\left(\frac{1}{2}-\epsilon\right)^{t-i} \\
& \leq \sum_{i=\frac{t}{2}+1} \left(\frac{1}{2}+\epsilon\right)^{i}\left(\frac{1}{2}-\epsilon\right)^{t-i} \\
& = \epsilon t \cdot \left(4\left(\frac{1}{2}+\epsilon\right)\left(\frac{1}{2}-\epsilon\right)\right) & = \epsilon t \\
& \leq t \cdot 3 & \epsilon t & > \frac{1}{3} \quad \text{for } n \geq 3
\end{array}$$

=> unbounded error is not usable in practice.

4.4 Randomized Complexity Classes

Does randomization extend the range of problems solvable by poly-time algorithms?
→ back to *decision* problems.

Some simplifications:

- ▶ Only 3 sensible output values: 0,1,?.
- ▶ To allow full power of randomization, always allow $Random_A(c) = time_A(c)$, i.e., every step may use a random bit.

Definition 4.15 (ZPP)

 \mathcal{LPP} (zero-error probabilistic poly-time) is the class of all languages L with a poly-time Las Vegas algorithm A, i.e., $\Pr[A(x) = [x \in L]] \ge \frac{1}{2}$ (and $A(x) \ne [x \in L]$ implies A(x) = ?), and $time_A(n) = \mathcal{O}(n^c)$ as $n \to \infty$ for some fixed c.

Definition 4.16 (BPP and PP)

 \mathfrak{BPP} (bounded-error probabilistic poly-time) and \mathfrak{PP} (probabilistic poly-time) is the class of languages with a poly-time *bounded-error resp. unbounded-error Monte Carlo* algorithm. \blacktriangleleft

Error Bounds Matter

Remark 4.17 (Success Probability)

From the point of view of complexities, the success probability bounds are flexible:

- ▶ \mathfrak{BPP} only requires success probability $\frac{1}{2} + \varepsilon$, but using *Majority Voting*, we can also obtain any fixed success probability $\delta \in (\frac{1}{2}, 1)$, so we could also define \mathfrak{BPP} to require, say, $\Pr[A(x) = [x \in L]] \geq \frac{2}{3}$.
- ▶ Similarly for \mathfrak{ZPP} , we can use probability amplification on Las Vegas algorithms to obtain any success probability $\delta \in (\frac{1}{2}, 1)$.

But recall: this is *not* true for unbounded errors and class \mathcal{PP} . In fact, we have the following result.

Theorem 4.18 (PP can simulate nondeterminism)

 $\mathcal{NP} \cup \text{co-}\mathcal{NP} \subseteq \mathcal{PP}$.

→ Useful algorithms must avoid unbounded errors.