

Issue Date: 24.05.2017 Version: 2017-05-24 22:40

5th Exercise sheet for Advanced Algorithmics, Summer 17

Hand In: Until Wednesday, 31.05.2017, 12:00 am, hand-in box in 48-4 or via email.

Problem 10 15 points

Prove that it is impossible to perfectly simulate a roll of a fair 6-sided die using random bits in finite worst-case time, i.e., with $t = time_A < \infty$.

Problem 11 15 points

Prove that the set $C = \{000, 111\}^{\omega}$, i.e., the set of infinite bit sequences on with dieRoll does not terminate is in the σ -algebra \mathcal{F} generated by the cylinder sets $\pi_x = \{xy : y \in \{0,1\}^{\omega}\} \subseteq \{0,1\}^{\omega}$ for $x \in \{0,1\}^{\star}$. Show, by computing along the construction for C, that $\Pr[C] = 0$ in the probability measure induced by $\Pr[\pi_w] = 2^{-|w|}$.

Problem 12 10 points

Let $P \stackrel{\mathcal{D}}{=} \mathcal{U}(0,1)$ be a random variable uniformly distributed in (0,1) and let X be a random variable with a Bernoulli $\mathcal{B}(p)$ distribution *conditional* on P = p. We also write this as $X \stackrel{\mathcal{D}}{=} \mathcal{B}(P)$. Compute $\mathbb{E}[X]$.

Problem 13 20 + 30 points

We consider the two definitions for Las Vegas algorithms.

a) Prove Theorem 4.2 from class:

Every Las Vegas algorithm A for $f: \Sigma^* \to \Gamma^*$ can be transformed into a randomized algorithm B for f so that for all $x \in \Sigma^*$ holds

- (i) Pr[B(x) = f(x)] = 1 (always correct)
- (ii) \mathbb{E} -time_B $(x) \leq 2 \cdot time_A(x)$
- b) Prove Theorem 4.3 from class:

Every randomized algorithm B for $f: \Sigma^* \to \Gamma^*$ with $\Pr[B(x) = f(x)] = 1$ can be transformed into a Las Vegas algorithm A for f so that for all $x \in \Sigma^*$ holds

$$time_A(x) \leq 2 \cdot \mathbb{E} - time_B(x)$$
.

Hint: Recall the Markov's inequality.

Problem 14 20 + 30 points

Let us consider the model of flipping a fair coin n times and denote by $X \in [0:n]$ the total number of "heads" among the n coin flips.

- a) For the concrete value n = 100, compute
 - (i) the exact probability $Pr[X \ge 66]$ (use computer algebra!),
 - (ii) an upper bound for $Pr[X \ge 66]$ using Markov's inequality,
 - (iii) an upper bound for $\Pr[X \geq 66]$ using Chebychev's inequality, (recall the formula for $\operatorname{Var}[X]$), and
 - (iv) an upper bound for $\Pr[X \ge 66]$ using the Chernoff bound for the binomial distribution.
- b) Prove that we have for any $\varepsilon > 0$ that $X = \mathbb{E}[X] \pm \mathcal{O}(n^{1/2+\varepsilon})$ w. h. p. as $n \to \infty$.