
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 10
2017-05-22

4.2 Classification of Randomized Algorithms

Consider here the general problem to compute some function f : Σ�→ Γ�.

� Covers decision problems L ⊆ Σ� by setting Γ � {0, 1} and f (w) �
�

1 w ∈ L
0 w � L

Definition 4.1 (Las Vegas Algorithm)
A randomized algorithm A is a Las-Vegas (LV) algorithm for a problem f : Σ�→ Γ�
if for all x ∈ Σ� holds

1. Pr
�
timeA(x) < ∞�

� 1 (finite number of computations)
2. A(x) ∈ {f (x), ?} (answer always correct or “don’t know”)
3. Pr

�
A(x) � f (x)� ≥ 1

2 (correct half the time)
�

Theorem 4.2 (Don’t know don’t needed)
Every Las Vegas algorithm A for f : Σ�→ Γ� can be transformed into a randomized
algorithm B for f so that for all x ∈ Σ� holds

1. Pr[B(x) � f (x)] � 1 (always correct)
2. E-timeB(x) ≤ 2 · timeA(x)

�

Theorem 4.3 (Termination Enforcible)
Every randomized algorithm B for f : Σ�→ Γ� with Pr[B(x) � f (x)] � 1 can be
transformed into a Las Vegas algorithm A for f so that for all x ∈ Σ� holds

timeA(x) ≤ 2 · E-timeB(x). �

� Can trade expected time bound for worst-case bound by allowing “don’t know” and vice versa!

Both types are called LV algorithms.

Las Vegas Examples
rollDie by rejection sampling is Las Vegas of unbounded worst-case type.

Easy to transform into Las Vegas according to Definition 4.1:

1 procedure rollDieLasVegas:
2 Draw 3 random bits b2 , b1 , b0
3 n �

�2
i�0 2ibi // Interpret as binary representation of a number in [0 : 7]

4 if (n � 0 ∨ n � 7)
5 return ?
6 else
7 return n

Other famous examples: Quicksort and Quickselect
� always correct and
� time(n) � O(n2) < ∞
� much better average:

� E-timeQSort(n) � Θ(n log n)
� E-timeQSelect(n) � Θ(n)

To Err is Algorithmic
Sometimes sensible to allow wrong/imprecise answers . . . but random should not mean
arbitrary.

Definition 4.4 (Monte Carlo Algorithm)
A randomized algorithm A is a Monte Carlo algorithm for f : Σ�→ Γ�

� with bounded error if ∃ε > 0∀x ∈ Σ� : Pr[A(x) � f (x)] ≥ 1
2 + ε.

� with unbounded error if ∀x ∈ Σ� : Pr[A(x) � f (x)] > 1
2 .

�

Seems like a minuscule difference? We will see it is vital!

4.3 Tail Bounds and Concentration of Measure

Theorem 4.5 (Markov’s Inequality)
Let X ∈ R≥0 be a r.v. that assumes only weakly positive values. Then holds

∀a > 0 : Pr[X ≥ a] ≤ E[X]
a �

Since X ≥ 0 implies EX ≥ 0, nicer equivalent form: ∀a > 0 : Pr
�
X ≥ aE[X]� ≤ 1

a

Definition 4.6 (Moments, variance, standard deviation)
For random variable X, E[Xk] is the kth moment of X.
The variance (second centered moment) of X is given by Var[X] � E

�(X − E[X])2� and its
standard deviation is σ[X] �

�
Var[X]. �

Theorem 4.7 (Chebychev’s Inequality)
Let X be a random variable. We have

∀a > 0 : Pr
�|X − E[X]| ≥ a

� ≤ Var[X]
a2 �

Corollary 4.8 (Chebychev Concentration)
Let X1 ,X2 , . . . be a sequence of random variables and assume

� E[Xn] and Var[Xn] exist for all n and
� σ[Xn] � o(E[Xn]) as n → ∞.

Then holds

∀ε > 0 : Pr

����� Xn
E[Xn] − 1

���� ≥ ε
�

→ 0 (n → ∞),

i.e., X
E[X] converges in probability to 1. �

Chernoff Bounds
For specific distribution, much stronger tail concentration inequalities are possible.

Theorem 4.9 (Chernoff Bound for Poisson trials)
Let X1 , . . . ,Xn ∈ {0, 1} be (mutually) independent with Xi

D
� B(pi). Define X � X1 + · · · + Xn

and µ � E[X1] + · · · + E[Xn] � p1 + · · · + pn. Then holds

∀δ > 0 : Pr[X ≥ (1 + δ)µ] <
�

eδ

(1 + δ)1+δ
�µ

∀δ ∈ (0, 1] : Pr[X ≥ (1 + δ)µ] ≤ exp(−µδ2/3) �

Corollary 4.10 (Chernoff Bound for Binomial Distribution)
Let X D

� Bin(n, p). Then

∀δ ≥ 0 : Pr

�����Xn − p
���� ≥ δ

�
≤ 2 exp(−2δ2n)

�

Application 1: Can we trust Quicksort’s expectation?

Definition 4.11 (With high probability)
We say

� an event X � X(n) happens with high probability (w.h.p.) when
∀c : Pr[X(n)] � 1 ± O(n−c) as n → ∞.

� a random variable X � X(n) is in O(f (n)) with high probability (w.h.p.) when
∀c∃d : Pr[X ≤ df (n)] � 1 ± O(n−c) as n → ∞.
(This means, the constant in O(f (n)) may depend on c.)

�

Theorem 4.12 (Quicksort Concentration)
The height of the recursion tree of (randomized) Quicksort is in O(log n) w.h.p. �

Hence the number of comparisons are in O(n log n) w.h.p.

