Advanced Algorithmics

Strategies for Tackling Hard Problems
Sebastian Wild
Markus Nebel

2017-05-22

4.2 Classification of Randomized Algorithms

Consider here the general problem to compute some function $f: \Sigma^{\star} \rightarrow \Gamma^{\star}$.
\rightsquigarrow Covers decision problems $L \subseteq \Sigma^{\star}$ by setting $\Gamma=\{0,1\}$ and $f(w)= \begin{cases}1 & w \in L \\ 0 & w \notin L\end{cases}$

Definition 4.1 (Las Vegas Algorithm)

A randomized algorithm A is a Las-Vegas (LV) algorithm for a problem $f: \Sigma^{\star} \rightarrow \Gamma^{\star}$ if for all $x \in \Sigma^{\star}$ holds

1. $\operatorname{Pr}\left[\right.$ time $\left._{A}(x)<\infty\right]=1$ (finite number of computations)
2. $A(x) \in\{f(x)$, ?\} (answer always correct or "don't know")
3. $\operatorname{Pr}[A(x)=f(x)] \geq \frac{1}{2} \quad$ (correct half the time)

Theorem 4.2 (Don't know don't needed)

Every Las Vegas algorithm A for $f: \Sigma^{\star} \rightarrow \Gamma^{\star}$ can be transformed into a randomized algorithm B for f so that for all $x \in \Sigma^{\star}$ holds

1. $\operatorname{Pr}[B(x)=f(x)]=1 \quad$ (always correct)
2. $\mathbb{E}-$ time $_{B}(x) \leq 2 \cdot$ time $_{A}(x)$

Theorem 4.3 (Termination Enforcible)

Every randomized algorithm B for $f: \Sigma^{\star} \rightarrow \Gamma^{\star}$ with $\operatorname{Pr}[B(x)=f(x)]=1$ can be transformed into a Las Vegas algorithm A for f so that for all $x \in \Sigma^{\star}$ holds

$$
\text { time }_{A}(x) \leq 2 \cdot \mathbb{E}-\text { time }_{B}(x) .
$$

\rightsquigarrow Can trade expected time bound for worst-case bound by allowing "don't know" and vice versa!
Both types are called LV algorithms.

Las Vegas Examples

rollDie by rejection sampling is Las Vegas of unbounded worst-case type.
Easy to transform into Las Vegas according to Definition 4.1:

```
procedure rollDieLasVegas:
```

Draw 3 random bits b_{2}, b_{1}, b_{0}
$n=\sum_{i=0}^{2} 2^{i} b_{i} \quad / /$ Interpret as binary representation of a number in $[0: 7]$
if $(n=0 \vee n=7)$
return?
else
return n
Other famous examples: Quicksort and Quickselect

- always correct and
- time $(n)=\mathcal{O}\left(n^{2}\right)<\infty$
- much better average:

$$
\begin{aligned}
& \begin{array}{r}
\mathbb{E} \text { over } \\
\text { inputs }
\end{array}\left\{\begin{array}{c}
\text { Quichsort with pivot } \\
\text { say } A[0] \\
\text { on random permutations }
\end{array} \sim 2 n \ln n\right. \\
& \text { E over } \quad\left\{\begin{array}{c}
\text { Quicloudoon bits } \\
\text { saith } A[P]
\end{array} \quad \sim 2 n \ln n\right. \\
& \text { input does not matter, I }
\end{aligned}
$$

- $\mathbb{E}^{-t i m e}{ }_{Q S o r t}(n)=\Theta(n \log n)$
- $\mathbb{E}^{- \text {time }_{Q S e l e c t}}(n)=\Theta(n)$

To Err is Algorithmic

Sometimes sensible to allow wrong/imprecise answers . . . but random should not mean arbitrary.

Definition 4.4 (Monte Carlo Algorithm)

A randomized algorithm A is a Monte Carlo algorithm for $f: \Sigma^{\star} \rightarrow \Gamma^{\star}$

- with bounded error if $\exists \varepsilon>0 \forall x \in \Sigma^{\star}: \operatorname{Pr}[A(x)=f(x)] \geq \frac{1}{2}+\varepsilon$.
- with unbounded error if $\forall x \in \underset{\substack{\text { 人 }}}{\star}: \sin$. $\operatorname{Pr}[A(x)=f(x)]>\frac{1}{2}$.

Seems like a minuscule difference? We will see it is vital!
4.3 Tail Bounds and Concentration of Measure

Theorem 4.5 (Markov's Inequality)
Let $X \in \mathbb{R}_{\geq 0}$ be a r.v. that assumes only weakly positive values. Then holds

$$
\forall a>0: \operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}
$$

Proofs Let $a>0$ define $I=\mathbb{1}\{x \geqslant a\}=[x \geqslant a\}=\left\{\begin{array}{cc}1 & x \geqslant a \\ 0 & d \text { see }\end{array}\right.$

$$
\begin{align*}
& \left.I \leqslant \frac{X}{a} \right\rvert\, \mathbb{E} \quad \cdot x<a \quad-1=0 \quad \text { but } X, a \geqslant 0 \\
& \text { - } X \geqslant a \quad \rightarrow I=1 \quad \frac{X}{a} \geqslant 1 \\
& \operatorname{Pr}[X \geqslant a\}=\mathbb{E}[I] \leqslant \mathbb{E}\left[\frac{X}{a}\right]=\frac{\mathbb{E}[x)}{a}
\end{align*}
$$

Since $X \geq 0$ implies $\mathbb{E} X \geq 0$, nicer equivalent form $/ \forall a>0: \operatorname{Pr}[X \geq a \mathbb{E}[X]] \leq \frac{1}{a} /$

Markhor Mnemonic:
If $X \in \mathbb{N} N_{0}$ rr. $\quad \Rightarrow \quad \mathbb{E}[x]=\sum_{n \geqslant 0} n \cdot \operatorname{Pr}[X=n]=\sum_{n \geqslant 0} \operatorname{Pr}[x \geqslant n]=\mathbb{E}[x]$

$$
\mathbb{I}[x \geqslant a) \cdot a \leqslant \mathbb{E}[x]
$$

Markov's inequality is often giving weak bounds, but can often apply if some $f(x) \geqslant 0$

Definition 4.6 (Moments, variance, standard deviation)
For random variable $X, \mathbb{E}\left[X^{k}\right]$ is the k th moment of X. is $\mathbb{E}[X)$
The variance (second centered moment) of X is given by $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$ and its standard deviation is $\sigma[X]=\sqrt{\operatorname{Var}[X]}$.

Theorem 4.7 (Chebychev's Inequality)
Let X be a random variable. We have

$$
\begin{aligned}
\forall a>0 & : \operatorname{Pr}[|X-\mathbb{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}} \\
\text { Proofs } \operatorname{Pr}[|X-\mathbb{E}[X]| \geqslant a] & =\operatorname{Pr}[\overbrace{(X-\mathbb{E}[X])^{2}}^{\geqslant 0} \geqslant a^{2}] \\
& \leqslant \frac{\mathbb{E}\left[(X-\mathbb{E} x)^{2}\right]}{a^{2}}=\frac{\operatorname{Var}[X]}{a^{2}}
\end{aligned}
$$

"Trek", Centering (-IE $[x]$) and tation power made variable "more variable" as stronger bound from Martor.

Corollary 4.8 (Chebychev Concentration)

Let X_{1}, X_{2}, \ldots be a sequence of random variables and assume

- $\mathbb{E}\left[X_{n}\right]$ and $\operatorname{Var}\left[X_{n}\right]$ exist for all n and
- $\sigma\left[X_{n}\right]=o\left(\mathbb{E}\left[X_{n}\right]\right)$ as $n \rightarrow \infty$.

Then holds

$$
\forall \varepsilon>0: \operatorname{Pr}\left[\left|\frac{X_{n}}{\mathbb{E}\left[X_{n}\right]}-1\right| \geq \varepsilon\right] \rightarrow 0 \quad(n \rightarrow \infty)
$$

i.e., $\frac{X_{n}}{\mathbb{E}[X]}$ converges in probability to 1.

Chernoff Bounds
For specific distribution, much stronger tail concentration inequalities are possible.
Theorem 4.9 (Chernoff Bound for Poisson trials) $\rho_{1}==p_{h} \leadsto$ Bernoulli trials
Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be (mutually) independent with $X_{i} \stackrel{\mathcal{D}}{=} \mathrm{B}\left(p_{i}\right)$. Define $X=X_{1}+\cdots+X_{n}$ and ${\underset{" \prime}{\mu}}_{\mu}=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=p_{1}+\cdots+p_{n}$. Then holds

正 $[x]$

$$
\begin{aligned}
& \forall \delta>0: \operatorname{Pr}[X \geq(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}< \\
& \forall \delta \in(0,1]: \operatorname{Pr}[X \geq(1+\delta) \mu] \leq \exp \left(-\mu \delta^{2} / 3\right)<-{ }^{\top} \text { follows }
\end{aligned}
$$

Proof: Let $t>0$

$$
\begin{array}{rl}
\text { Let } t>0 \\
\operatorname{Pr}[x \geqslant(1+\delta) \mu] & =\operatorname{Pr}\left[e^{t x}\right.
\end{array} \overbrace{}^{20} \geqslant e^{t(1+\delta) \mu}] \quad \text { Markov } \frac{\mathbb{E}\left[e^{t x}\right]}{e^{t(1+\delta) \mu}} \quad \begin{aligned}
& e^{t(1+\delta \delta \mu} \cdot \mathbb{E}\left[\exp \left(\sum_{i=1}^{n} t X_{i}\right)\right] \\
&=\cdots \cdot \mathbb{E}\left[\prod_{i=1}^{n} \exp \left(t X_{i}\right)\right]
\end{aligned}
$$

$\underset{\text { mut. index. }}{=} \quad \prod_{i=1}^{n} \mathbb{E}\left[e^{t x_{i}}\right]$

$$
\begin{aligned}
& ={ }^{n} \prod_{i}\left(p_{i} e^{t}+\left(1-p_{i}\right) 1\right) \\
& =\pi_{i}\left(1+p_{i}\left(e^{t}-1\right)\right) \\
& \leqslant \prod_{i} e^{p_{i}\left(e^{t}-1\right)} \\
& =\frac{e^{\mu\left(e^{t}-1\right)}}{e^{t(1+\delta)} \mu}(\left(e^{t}-1\right) \overbrace{i}^{\mu} p_{i}) \\
& =\frac{e^{\mu(1+\delta-1)}}{(1+\delta)^{(1+\delta) \mu}} \\
& =\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)
\end{aligned}
$$

"convex fundion lice above its tangents"

$$
\forall t>0
$$

good choice $t=\ln (1+\delta)>0$

Corollary 4.10 (Chernoff Bound for Binomial Distribution)

Let $X \xlongequal{\underline{D}} \underline{\operatorname{Bin}(n, p)}$. Then $\quad \mathbb{E}[X)=n \cdot p$
$\begin{aligned} & X=X_{1}+\cdots+X_{n} \\ & X_{i} \stackrel{D}{=} B(p)\end{aligned} \quad \forall \delta \geq 0: \operatorname{Pr}\left[\left|\frac{X}{n}-p\right| \geq \delta\right] \leq 2 \exp \left(-2 \delta^{2} n\right)$

Application 1: Can we trust Quicksort's expectation?

Definition 4.11 (With high probability)

We say

- an event $X=X(n)$ happens with high probability (w.h.p.) when $\forall c: \operatorname{Pr}[X(n)]=1 \pm \mathcal{O}\left(n^{-c}\right)$ as $n \rightarrow \infty$.
- a random variable $X=X(n)$ is in $\mathcal{O}(f(n))$ with high probability (w.h.p.) when $\forall c \exists d: \operatorname{Pr}[X \leq d f(n)]=1 \pm \mathcal{O}\left(n^{-c}\right)$ as $n \rightarrow \infty$. (This means, the constant in $\mathcal{O}(f(n))$ may depend on c.)

Theorem 4.12 (Quicksort Concentration)

The height of the recursion tree of (randomized) Quicksort is in $\mathcal{O}(\log n)$ w.h.p.
Hence the number of comparisons are in $\mathcal{O}(n \log n)$ w.h.p.

Proof, v; node in recursion trees
$n(v) s$ \#elems in the subtre of v
$J(v) s$ size of the left child
v balanced $\Leftrightarrow n(v) \leqslant 1 \quad v \quad \frac{1}{4} \leqslant \frac{J(v)}{n(v)} \leqslant \frac{3}{4}^{\prime}$

\rightarrow reduces sobtree size of its child to $\leqslant \frac{3}{4} n(v)$
(*) Any recurstor tree for n elements can cocitain at most $\log _{314}(1 / n)=\log _{413}(n) \leqslant 3.5 \ln (n)$ balanced nodes.:

$$
\begin{equation*}
n \cdot\left(\frac{3}{4}\right)^{\log _{3 n}(1 / n)}=1 \tag{t}
\end{equation*}
$$

Problem; to apply Chermoff to $x=x_{1}+\cdots+x_{n}$

we need that X_{1}, \ldots, X_{n} untually independent

