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4.2 Classification of Randomized Algorithms

Consider here the general problem to compute some function f : ©* — I'*.

1 eL
~+ Covers decision problems L C =* by setting I' = {0, 1} and f(w) = {0 w .
w

Definition 4.1 (Las Vegas Algorithm)
A randomized algorithm A is a Las-Vegas (LV) algorithm for a problem f : ©* — I'*
if for all x € ©* holds

1. Pr[timeA(x) < oo] = 1 (finite number of computations)
2. Alx) € {f(x),2} (answer always correct or “don’t know”)

3. Pr [A(x) = (x)] > % (correct half the time)



Theorem 4.2 (Don’t know don’t needed)
Every Las Vegas algorithm A for f : ©* — I'* can be transformed into a randomized
algorithm B for f so that for all x € Z* holds

1. Pr[B(x) =f(x)] =1 (always correct)

2. [E-timep(x) < 2-timea(x)

Theorem 4.3 (Termination Enforcible)
Every randomized algorithm B for f : ©* — I'* with Pr[B(x) = f(x)] = 1 can be
transformed into a Las Vegas algorithm A for f so that for all x € £* holds

timea(x) < 2 - [E-timep(x).

~+ Can trade expected time bound for worst-case bound by allowing “don’t know” and vice versa!

Both types are called LV algorithms.



Las Vegas Examples

rollDie by rejection sampling is Las Vegas of unbounded worst-case type.

Easy to transform into Las Vegas according to Definition 4.1:

1 procedure rollDieLasVegas:

2 Draw 3 random bits by, by, by

3 n= 212:0 2'b; // Interpret as binary representation of a number in [0 : 7]
4 ifn=0vn=7)

5 return ?

6 else

7 return n
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To Err is Algorithmic
Sometimes sensible to allow wrong/imprecise answers . . . but random should not mean

arbitrary.

Definition 4.4 (Monte Carlo Algorithm)
A randomized algorithm A is a Monte Carlo algorithm for f : * — T'*

» with bounded errorif Je > 0Vx e Z* : Pr[A(x) =f(x)] > = +e.
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» with unbounded errorif Vx € £* : Pr[A(x) =f(x)] >
2
¢=5(x)

Seems like a minuscule difference? We will see it is vital!



4.3 Tail Bounds and Concentration of Measure
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Theorem 4.5 (Markov’s Inequality)

Let X € R>¢ be a r.v. that assumes only weakly positive values. Then holds

YVa>0 : Pr[X>a] < —
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Definition 4.6 (Moments, variance, standard deviation)
For random variable X, E[X*] is the kth moment of X. 1 ENX)
The wvariance (second centered moment) of X is given by Var[X] = E [(X E[ ])2] and its

standard deviation is o[ X] = «/Var[X].

Theorem 4.7 (Chebychev’s Inequality)

Let X be a random variable. We have

Var[X]
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Corollary 4.8 (Chebychev Concentration)

Let X1, X5, ... be a sequence of random variables and assume
» [E[X,]and Var[X,] exist for all n and
> o[X;,] =o(E[X;]) as n — oo.
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ie., [E[X] converges in probability to 1.



Chernoff Bounds

For specific distribution, much stronger tail concentration inequalities are possible.

Theorem 4.9 (Chernoff Bound for Poisson trials) = “f. = Dot &0

LetXq,...,X, €{0,1} be wﬂe_@wim X; 2 B(pi). Deﬁne@: X1+ + X,
and p = E[Xq] +--- + E[X,,] =p1 + - - + pn. Then holds
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Corollary 4.10 (Chernoff Bound for Binomial Distribution)
Let X gBi‘n(n’,’;z). Then E[x) = o-p
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Application 1: Can we trust Quicksort’s expectation?

Definition 4.11 (With high probability)
We say
» an event X = X(n) happens with high probability (w.h.p.) when
Ve @ Pr[X(n)] = 1+ 0(n°) asn — oo.
» arandom variable X = X(n) is in O(f(n)) with high probability (w.h.p.) when
Vead @ Pr[X <df(n)] = 1+ 0(n°)asn — oo.
(This means, the constant in O(f(1)) may depend on c.)

Theorem 4.12 (Quicksort Concentration)
The height of the recursion tree of (randomized) Quicksort is in O(logn) w.h.p.

Hence the number of comparisons are in O(n log ) w.h.p. L 9 ENASSNENEI Moty
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