Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 10

2017-05-22

4.2 Classification of Randomized Algorithms

Consider here the general problem to compute some *function* $f : \Sigma^* \to \Gamma^*$.

 $\rightsquigarrow \text{Covers decision problems } L \subseteq \Sigma^* \text{ by setting } \Gamma = \{0, 1\} \text{ and } f(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L \end{cases}$

Definition 4.1 (Las Vegas Algorithm)

A randomized algorithm *A* is a *Las-Vegas* (*LV*) *algorithm* for a problem $f : \Sigma^* \to \Gamma^*$ if for all $x \in \Sigma^*$ holds

- **1.** $\Pr[time_A(x) < \infty] = 1$ (*finite* number of computations)
- **2.** $A(x) \in \{f(x), \underline{?}\}$ (answer always *correct or "don't know"*)
- 3. $\Pr[A(x) = f(x)] \ge \frac{1}{2}$ (correct half the time)

Theorem 4.2 (Don't know don't needed)

Every Las Vegas algorithm *A* for $f : \Sigma^* \to \Gamma^*$ can be transformed into a randomized algorithm *B* for *f* so that for all $x \in \Sigma^*$ holds

- **1.** Pr[B(x) = f(x)] = 1 (always correct)
- **2.** \mathbb{E} -time_B(x) $\leq 2 \cdot time_A(x)$

Theorem 4.3 (Termination Enforcible)

Every randomized algorithm *B* for $f : \Sigma^* \to \Gamma^*$ with $\Pr[B(x) = f(x)] = 1$ can be transformed into a Las Vegas algorithm *A* for *f* so that for all $x \in \Sigma^*$ holds

 $time_A(x) \leq 2 \cdot \mathbb{E}$ -time_B(x).

-

→ Can trade expected time bound for worst-case bound by allowing "don't know" and vice versa!
 Both types are called LV algorithms.

Las Vegas Examples

rollDie by rejection sampling is Las Vegas of unbounded worst-case type.

Easy to transform into Las Vegas according to Definition 4.1:

procedure rollDieLasVegas:Draw 3 random bits b_2, b_1, b_0 $n = \sum_{i=0}^{2} 2^i b_i$ // Interpret as binary representation of a number in [0:7]**if** $(n = 0 \lor n = 7)$ **return** ?else**return** n

randomized

Other famous examples: *Quicksort* and *Quickselect*

- always correct and
- ▶ $time(n) = O(n^2) < \infty$
- much better average:
 - \mathbb{E} -time_{QSort} $(n) = \Theta(n \log n)$
 - \mathbb{E} -time_{QSelect} $(n) = \Theta(n)$

Ē

10

IF o

rando

To Err is Algorithmic

Sometimes sensible to allow *wrong/imprecise* answers . . . but random should not mean *arbitrary*.

4

Definition 4.4 (Monte Carlo Algorithm)

A randomized algorithm *A* is a *Monte Carlo algorithm* for $f : \Sigma^* \to \Gamma^*$

• with bounded error if $\exists \varepsilon > 0 \ \forall x \in \Sigma^*$: $\Pr[A(x) = f(x)] \ge \frac{1}{2} + \varepsilon$.

• with *unbounded error* if
$$\forall x \in \Sigma^*$$
: $\Pr[A(x) = f(x)] > \frac{1}{2}$.

Seems like a minuscule difference? We will see it is vital!

4.3 Tail Bounds and Concentration of Measure

Theorem 4.5 (Markov's Inequality)

Let $X \in \mathbb{R}_{\geq 0}$ be a r.v. that assumes only *weakly positive* values. Then holds

$$\forall a > 0 : \Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

$$\underbrace{\operatorname{Pico}[i \quad Let \quad a > 0 \quad define \quad I = \underbrace{\operatorname{I}_{[X > a]}}_{[X > a]} = [X > a] \le \begin{cases} \underline{1} \quad X > a \\ 0 \quad d_{Le} \end{cases}$$

$$I \le \overset{X}{a} \mid E \quad \begin{array}{c} \cdot X < a \quad -1 \quad I = 0 \quad bot \quad \underline{X}, a \ge 0 \\ \circ \times \ge a \quad -1 \quad I = 1 \quad \underbrace{X}_{a} \ge 1 \end{cases}$$

$$i([X \ge a] = \mathbb{E}[I] \le \mathbb{E}[\overset{X}{a}] = \underbrace{\mathbb{E}[\lambda]}{a}$$

Since $X \ge 0$ implies $\mathbb{E}X \ge 0$, nicer equivalent form $\forall a > 0 : \Pr[X \ge a\mathbb{E}[X]] \le \frac{1}{a}$

Definition 4.6 (Moments, variance, standard deviation)

For random variable X, $\mathbb{E}[X^k]$ is the *kth moment* of X. $\mathcal{I}_{\mathcal{N}} \not \in \mathbb{D}X$ The *variance* (second centered moment) of X is given by $\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$ and its *standard deviation* is $\sigma[X] = \sqrt{\operatorname{Var}[X]}$.

Theorem 4.7 (Chebychev's Inequality)

Let *X* be a random variable. We have

$$\forall a > 0 : \Pr[|X - \mathbb{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$$

$$\Pr[|X - \mathbb{E}[X]| \ge a] = \Pr[\left(\overline{|X - \mathbb{E}[X]}\right)^2 \ge a^2]$$

$$\leqslant \frac{\mathbb{E}[(X - \mathbb{E}X)^2]}{a^2} = \frac{\operatorname{Var}[X]}{a^2}$$

"Trick" & Centering (-IE(X)) and taking power made variable "more variable" no stronger bound from Markor.

Corollary 4.8 (Chebychev Concentration)

Let X_1, X_2, \ldots be a sequence of random variables and assume

• $\mathbb{E}[X_n]$ and $\operatorname{Var}[X_n]$ exist for all n and

•
$$\sigma[X_n] = o(\mathbb{E}[X_n])$$
 as $n \to \infty$.

Then holds

$$\forall \varepsilon > 0 : \Pr\left[\left|\frac{X_n}{\mathbb{E}[X_n]} - 1\right| \ge \varepsilon\right] \to 0 \qquad (n \to \infty),$$

-

i.e., $\frac{X_n}{\mathbb{E}[X]}$ converges in probability to 1.

Chernoff Bounds

For specific distribution, much stronger tail concentration inequalities are possible.

Pa==p ~ Bernoulli tools **Theorem 4.9 (Chernoff Bound for Poisson trials)** Let $X_1, \ldots, X_n \in \{0, 1\}$ be (*mutually*) independent with $X_i \stackrel{\mathcal{D}}{=} B(p_i)$. Define $\widehat{X} = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = p_1 + \cdots + p_n$. Then holds $\begin{array}{lll} \forall \delta > 0 & : & \Pr[X \ge (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} & \longleftarrow \\ \forall \delta \in (0,1] & : & \Pr[X \ge (1+\delta)\mu] \le \exp(-\mu\delta^2/3) & \longleftarrow \\ \end{array}$ ELX Proof: Let t > 0 $P(X > (1+S)_{M}) = P([e^{X} > e^{t(1+S)_{M}}])$ Konkov pt (1+8) M $= \frac{1}{f(1+\delta)m} \cdot \mathbb{E}\left[\exp\left(\sum_{i=1}^{n} t X_{i}\right)\right]$ = $F[\tilde{\pi} \exp(tX_i)]$

$$= \prod_{i=1}^{n} \prod_{i=1}^{n} \mathbb{E} \left[e^{t \times i} \right]$$

$$= \prod$$

Corollary 4.10 (Chernoff Bound for Binomial Distribution) Let $X \stackrel{\mathcal{D}}{=} \underline{\operatorname{Bin}(n, p)}$. Then $[\mathcal{F}[X] = r^{2}\rho]$ $X = X_{2} + r^{2} + X_{n}$ $X \stackrel{\mathcal{D}}{=} \mathbb{K}(\rho)$ $\forall \delta \ge 0 : \Pr\left[\left|\frac{X}{n} - p\right| \ge \delta\right] \le 2\exp(-2\delta^{2}n)$

Application 1: Can we trust Quicksort's expectation?

Definition 4.11 (With high probability)

We say

- ▶ an event X = X(n) happens with high probability (w.h.p.) when $\forall c : \Pr[X(n)] = 1 \pm O(n^{-c})$ as $n \to \infty$.
- ► a random variable X = X(n) is *in* O(f(n)) *with high probability (w.h.p.)* when $\forall c \exists d : \Pr[X \leq df(n)] = 1 \pm O(n^{-c})$ as $n \to \infty$. (This means, the constant in O(f(n)) may depend on *c*.)

Theorem 4.12 (Quicksort Concentration)

The height of the recursion tree of (randomized) Quicksort is in $O(\log n)$ w.h.p.

Proofs
$$v$$
 ; node in recursion true
 $h(v)$ s # elems in the abtra of v
 $J(v)$ s size of the left cliftd
 v balanced (=> $n(v) \leq 1$ $v = \frac{1}{q} \leq \frac{J(v)}{n(v)} \leq \frac{3}{q}$
 L reduces subtree size of its clift to $\leq \frac{3}{q} n(v)$
(#) Any verifies tree for n elements can contain
at most $\log_{3/4} (1/n) = \log_{4/3} (n) \leq 3.5 \ln (n)$
 $\sum_{x_0} \int \log_{3/4} (1/n) = 1 \leq 1.6$
 $n \cdot (\frac{3}{q}) \int \log_{3/4} (1/n) = 1 \leq 1.6$
Problem : to apply Chernoft to $\chi = \chi_1 + \cdots + \chi_n$ χ_0
 $we need that χ_{1,\dots,χ_n} unitivally independent $\zeta_1$$