Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

2017-05-15

Scann ary of Sugularly Avalysis Excursion
World A World B
sequence of womber Tr Generating Tweetour

$$T(z) = \sum_{n=2}^{\infty} Tn z^n$$

 $A_1A_1 \dots$, $T(z) = \frac{2}{d \cdot z}$
• verevence equations
• verevence equations
• creat solution
 $f(z) = \frac{2}{d \cdot z}$
• verevence equations
• creat solution
 $f(z) = \frac{2}{d \cdot z}$
• verevence equations
• (functional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$
• (for clional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$
• (for clional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$
• (for clional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$
• (for clional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$
• (for clional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$
• (for clional) equation for $T(z)$
 $f(z) = \frac{2}{d \cdot z}$

Possible Extensions

- ► (constant) coefficients c_j · T_{n-dj} in recurrence → different characteristic polynomial, same ideas
- *any* recurrence that leads to a representation of the generating function as a *singular expansion* around the dominant singularity.

$$f(z) = c(1 - z/z_0)^{-m} \pm \mathcal{O}((1 - z/z_0)^{-m+1}) \quad (z \to z_0)$$

$$\rightsquigarrow [z^n]f(z) = \frac{c}{(m-1)!} z_0^{-n} n^{m-1} \cdot \left(1 \pm \mathcal{O}(n^{-1})\right) \quad (n \to \infty)$$

• other powers α in $1/(1-z)^{\alpha}$:

$$[z^n]\frac{1}{(1-\frac{z}{z_0})^{\alpha}} = \frac{z_0^{-n}n^{\alpha-1}}{\Gamma(\alpha)} \left(1 \pm \mathcal{O}(n^{-1})\right) \qquad (n \to \infty) \qquad \frac{-\alpha \notin \mathbb{N}_0}{z_0 > 0}$$

▶ much more! ~→ *analytic combinatorics*

Interloaning helps ... really'

$$k \ge 2$$

 k^{-2}
 $k^{$

B same interleaved

3.6 Lower Bounds by ETH

Definition 3.47 (Exponential-Time Hypothesis)

The *Exponential-Time Hypothesis (ETH)* asserts that there is a constant $\varepsilon > 0$ so that every algorithm for *p*-3SAT requires $\Omega(2^{k})$ time, where *k* is the number of variables.

Alternative formulations:

$$c^{k} = (1+8)^{k}$$

- There is a $\delta > 0$ so that every 3-SAT algorithm needs $\Omega((1 + \delta)^k)$ time.
- There is no $2^{o(k)}$ -time algorithm for 3-SAT.
- There is no subexponential-time algorithm for 3-SAT.

Idea: Show that solving *X* in time f(k, n) implies a $O(2^{\varepsilon k} n^c)$ algorithm for 3SAT for all $\varepsilon > 0$. \rightsquigarrow unless ETH fails, no such f(k, n)-time algorithm for *X* exists.

Problem: Need a reduction that preserves parameter *k*.

Recap: Reduction from 3SAT to Vertex Cover

$$\varphi = \begin{cases} \{l_{11}, l_{12}, l_{13}\}, \{l_{21}, l_{22}, l_{23}\}, \dots \end{cases}$$

Gadsets Variables (2)
Clauses (2)
 $\varphi = (l_{12}, l_{12}, l_{13}), (l_{12}, l_{13}), \dots \end{cases}$
Clauses (2)
 $\varphi = (l_{13}, l_{13}), (l_{13}, l_{13}), \dots \end{pmatrix}$
 $\varphi = (l_{13}, l_{13}), (l_{13}, l_{13}), \dots)$
 $\varphi = (l_{13}, l_{13}), (l_{13}, l_{13}), \dots)$
 $\varphi = (l_{13}, l_{13}), (l_{13}, l_{13}), \dots)$
 $\varphi = (l_{13}, l_{13$

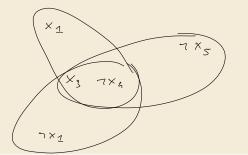
Lemma 3.48 (Sparsification Lemma)

For all $\varepsilon > 0$, there is a constant *K* so that we can compute for every formula φ in 3-CNF with *n* clauses over *k* variables an equivalent formula $\bigvee_{i=1}^{t} \psi_i$ where each ψ_i is in 3-CNF and over the same *k* variables and has $\leq Kk$ clauses. Moreover, $t \leq 2^{\varepsilon k}$ and the computation takes $O(2^{\varepsilon k}n^c)$ time.

Rough Idea:

Iteratively remove sunflowers by retaining only the heart or only the petals.

$$\Psi = \left\{ \left\{ x_{1}, x_{3}, 7x_{5} \right\}, \left\{ y_{7}, x_{5}, 7x_{4} \right\}, \left\{ y_{7}, x_{5}, 7x_{4} \right\} \right\}$$



Theorem 3.49 (Lower Bound by Size)

Unless ETH fails, there is a constant c > 0 so that every algorithm for *p*-3SAT needs time $\Omega(2^{c(n+k)})$ where *n* is the number of clauses and *k* is the number of variables.

Proofs Assume
$$\forall e = 0$$
 then A_c that solve, SSAT in
 $O(2^{c(n+k)}n^b)$.
Let $S > 0$ give. to show: B_S that solves $SSAT$
 $O(2^{SK} \cdot n^b) \notin ETH$
 $B_S = \frac{8}{2} \longrightarrow K$ from sparsification lemma
(1) $\varphi \longrightarrow \sqrt{\psi}$; with $e = \frac{5}{2}$
 $|\psi_i| \leq Kk$
(2) For each ψ_i A_c with $c = \frac{S}{2(K+1)}$
(3) Reform Yes iff $\exists i \ \psi_i$ solutional

Time: (1)
$$O(2^{\varepsilon k} n^{\delta}) = O(2^{\varepsilon k} n^{\delta})$$

(2) $2^{\varepsilon k} O(2^{\varepsilon (14/4k)} n^{\delta}) = O(2^{\varepsilon k} + \frac{s}{2(k\pi)} \cdot (4\pi\pi)k) n^{\delta})$
 $= O(2^{\delta k} n^{\delta})$
total $O(2^{\delta k} n^{\delta})$

Theorem 3.50 (No Subexponential Algorithm Vertex Cover)

Unless ETH fails, there is a constant c > 0 so that every algorithm for *p*-VERTEX-COVER needs time $\Omega(2^{ck})$.

-

Proof: Assume Ac solves Vertex Cover in
$$O(2^{ck}n^{b})$$
 time $\forall c>O$
 $S>O$ given
 B_{S} (11 Construct (6.6) from φ (poly-time)
(2) Use Ac $c = \frac{S}{B}$
 $K = O(n)$
 B_{S} solves $3-SAT$
 $Time: O(n^{b}) + O(2^{ck}n^{b}) = O(2^{\frac{S}{B}Bn}n^{b}) = O(2^{\frac{Sn}{b}n^{b}})$
 $=)$ "subexponential" also (B_{S}) for $3-SAT$ & Then $3.49n$ ETH \Box

Theorem 3.51 (Lower Bound Closest String)

Unless ETH fails, there is a constant c > 0 so that every algorithm for *p*-CLOSEST-STRING needs time $\Omega(2^{c(k \ln d k)}) = \Omega(k^{ck})$.

-

Worst-Case Time

1