Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 7

2017-05-11

Depth-Bounded Search for Closest String

```
closes & Strius Fet (S1, K)
1 procedure closestStringFpt(s, d):
       if d < 0 then return "not found"
       if d_H(s, s_i) > k + d for an i \in \{1, ..., m\} then
            return "not found"
       if d_H(s, s_i) \le k for all i = 1, ..., m then return s
5
       Choose i \in \{1, ..., m\} arbitrarily with d_H(s, s_i) > k
            P := \{p : s[p] \neq s_i[p]\}
            Choose arbitrary P' \subseteq P with |P'| = k + 1
8
            for p in P' do
                 s' := s
10
                 s'[p] := s_i[p]
11
                 s_{ret} := closestStringFpt(s', d - 1)
12
                 if s_{ret} \neq "not found" then return s_{ret}
13
       return "not found"
14
```

Lemma 3.42 (Pair Too Different \rightarrow No)

Let $S = \{s_1, s_2, \dots, s_m\}$ a set of strings and $k \in \mathbb{N}$. If there are $i, j \in \{1, \dots, m\}$ with $d_H(s_i, s_j) > 2k$, then there is no string s with $\max_{1 \le i \le m} d_H(s, s_i) \le k$.

Theorem 3.43 (Search Tree for Closest String)

There is a search tree of size $O(k^k)$ for problem p-Closest-String. & solves the problem.

```
i procedure closesiStringFpt(s, d):

i if d < 0 then return "not found"

i if d_H(s,s_l) > k + d for an i \in \{1, \ldots, m\} then

return "not found"

if d_H(s,s_l) > k + d for an i \in \{1, \ldots, m\} then return s

Choose i \in \{1, \ldots, m\} arbitrarily with d_H(s,s_l) > k

P := \{p : s|p| \neq s_l[p]\}

Choose arbitrary P' \subseteq P with |P'| = k + 1

for p in P' do

s' := s

ii s'[p] := s_l[p]

s_{ret} := \text{closestStringFpt}(s', d - 1)

ii s_{ret} \neq s_{ret} = \text{contourly}

s_{ret} := \text{closestStringFpt}(s', d - 1)

ii s_{ret} \neq s_{ret} = \text{contourly}
```

return "not found"

```
Facts s can differ at at most k positions
      from cency input.
       If any coundidates has too many
      differences to any 5: 15 &
Wilog. L & mrk and all columns dirty
Sino of Search Troos
      depth < 6
     fan-out & k+1
     = search spoce s (k+1) = O(k*)
                        (k+1) = (1+ = ) = e
```

if we return a string of Correctives if we about : to show & conserver Assumes so is not directly a concensus, but of comeson is => \forall i dH(s1,si) \le 24 s: with dulsi.s2) > k P:= {j : s2[i] + s:[i]} 1P1 < 2k |P'| = k+1 $P' \leq P$ We call j correct if je P1 = { p: s1[p] x si[p] n si[p] = 3[p]} otherwise je P2 = { p e P : si[p] # S[p]} P=P1 iP2 du (ŝ. s.) < k ~ 1/2/< k = s at Rest one ; in P' is correct. (P'nP1 + Ø) =) There is a path of modification to 5.

Corollary 3.44 (Closest String is FPT)

p-Closest-String can be solved in time $O(mL + mk \cdot k^k)$.

"preprocessing deliting non-dirty columns

and cheek & m. k coleuns remain

3.5 Interleaving

Up to now, considered two-phase algorithms

- **1.** Reduction to problem kernel
- 2. Solve kernel by depth-bounded exhaustive search

Idea: Apply kernelization in each recursive step.

Setting for Interleaving

Assumptions: (more restrictive than general kernelization!)

- ▶ *K* kernelization that
 - ▶ produces $\underline{kernel\ of\ size} \le q(k)$ for q a $\underline{polynomial}$

(closest string and)

- ▶ in time $\leq p(n)$ for p a polynomial
- ▶ Branch in depth-bounded search tree
 - ▶ into *i* subproblems with branching vector $\vec{d} = (d_1, \dots, d_i)$ (i. e.parameter in subproblems $k d_1, \dots, k d_i$)
 - ▶ Branching is computed in time $\leq r(n)$ for r a polynomial
- search space has size $\mathcal{O}(\alpha^k)$.

 \rightarrow Running time of two-phase approach on input x with n = |x| and $k = \kappa(x)$:

$$O\left(\frac{p(n)}{p(n)} + \frac{r(q(k)) \cdot \alpha^k}{p(n)}\right)$$
fine per # (consider calls)

With Interleaving

Now replace splitting by:

c huius parameter

- 1 **if** $|I| > c \cdot q(k)$ **then**
- (I,k) := (I',k') where (I',k') forms a problem kernel // Conditional Reduction
- з end;
- 4 replace (I, k) with $(I_1, k d_1), (I_2, k d_2), \dots, (I_i, k d_i)$. // Branching

 \rightarrow Running time of interleaved approach on input x with n = |x| and $k = \kappa(x)$ is at most T_k :

Thus 3.99
$$T_{\ell} = T_{\ell-d_1} + \dots + T_{\ell-d_i} + \underbrace{p(q(\ell)) + r(q(\ell))}_{\text{polynomial in } \ell}$$

Compare to non-interleaved version:
$$T_{e} = T_{e-d_{2}} + \cdots + T_{e-d_{i}} \implies T_{e}' = \mathcal{O}(\alpha^{e})$$

$$T_{\ell} = T_{\ell-d_{1}} + \cdots + T_{\ell-d_{i}} + r(q(k)) \qquad T_{e} = (r_{\ell}(k) \cdot \alpha^{k})$$

Here the inhomogeneous term is constant w.r.t. ℓ , but depends on $k \rightsquigarrow$ cannot ignore constant factors

Theorem 3.45 (Linear Recurrences II)

Let $d_1, \ldots, d_i \in \mathbb{N}$ and $d = \max d_i$.

Consider the *inhomogeneous linear recurrence equation*

$$T_n = T_{n-d_1} + T_{n-d_2} + \dots + T_{n-d_i} + \underline{f_n}, \qquad (n \ge d)$$

with $(f_n)_{n \in \mathbb{R}_{>0}}$ a known sequence of positive numbers and d initial values $T_0, \ldots, T_{d-1} \in \mathbb{R}_{>0}$.

Let $\underline{z_0}$ be the root with largest absolute value of $z^d - \sum_{j=1}^i z^{d-d_j}$ and assum $\underline{ef_n = O((z_o - \varepsilon)^n)}$ for some fixed $\varepsilon > 0$.

Then $T_n = \mathcal{O}(T_n^0)$ where T_n^0 is defined as T_n with $f_n \equiv 0$.

$$T(2) = \sum_{n\geq 0} T_n e^n = T_0 e^n + T_0 T_0 e^{d-2} + \sum_{j=1}^{i} \sum_{n\geq d_i} e^n T_{n-d_j} + \sum_{n\geq d_i} e^n f_n$$

$$= P(2) + T(2) + \left(\sum_{j=1}^{i} e^{d_j}\right) T(2) - Q(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

$$T(2) = \frac{P(2) + G(2) + T(2)}{1 - \sum_{j=1}^{i} e^{d_j}} = D(2)$$

A Little Excursion: Singularity Analysis

A Little Excursion: Singularity Analysis

$$f(z) = \frac{N(z)}{D(z)}$$

$$= N(2) \left(\text{ parkal fractions of } \frac{z}{D(2)} \right) \qquad \text{ is singulanty of } \int_{(p)}^{(p)}$$

$$= N(2) \left(\text{ parkal fractions of } \frac{z}{D(2)} \right) \qquad \text{ (point when complex driveline)}$$

$$= \left[N(2_0) \pm O\left(\left(1 - \frac{2}{z_0} \right)^4 \right) \right] \cdot \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \pm O\left(\left(1 - \frac{2}{z_0} \right)^{4/3} \right) \right] \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2}{z_0} \right)^4} \right) \left(\frac{C_0 \cdot \mu}{\left(1 - \frac{2$$

(point where complet drivelled)

opproximate
$$f(2)$$

for a near z_0

$$f(2) = \sum_{i=0}^{\infty} \frac{f(i)}{i!} (z-z_0)^i$$

analytic

$$f(2) = \int_{z_0}^{\infty} \frac{f(z_0)}{i!} (z-z_0)^i$$

$$f(2) = \int_{z_0}^{\infty} \frac{f(z_0)}{i!} (z-z_0)^i$$

$$f(2) = \int_{z_0}^{\infty} \frac{f(z_0)}{i!} (z-z_0)^i$$

$$f(2) = \frac{f(z_0)}{i!} (z-z_0)^i$$

$$\left(\frac{1-\frac{2}{2}}{1-\frac{2}{2}}\right)^{\frac{1}{2}} = \left(\frac{1-\frac{2}{2}}{1-\frac{2}{2}}\right)^{\frac{1}{2}} = 0$$

$$\left(\frac{1-\frac{2}{2}}{1-\frac{2}{2}}\right)^{\frac{1}{2}} = \left(\frac{1-\frac{2}{2}}{1-\frac{2}{2}}\right)^{\frac{1}{2}} = 0$$

$$\left(\frac{1-\frac{2}{2}}{1-\frac{2}{2}}\right)^{\frac{1}{2}} = 0$$

$$\left(\frac{1-\frac{2}{2}}{1-\frac{2}{2}}\right)^{\frac{1}{2}} = 0$$

$$= 0\left(\left(\frac{1-\frac{2}{2}}{2}\right)^{\frac{1}{2}}\right)$$

Theorem 3.46 (Transfer-Theorem of Singularity Analysis)

Assume f(z) is Δ -analytic and admits the singular expansion

$$f(z) = g(z) \pm \mathcal{O}((1-z)^{-\alpha}) \qquad (z \to 1)$$

with
$$\alpha \in \mathbb{R}$$
. Then f_n if $f(z) = \sum_{n} f_n z^n$

Then
$$f_n \text{ if } f(z) = \sum_n f_n z^n$$

$$[z^n] f(z) = [z^n] g(z) \pm \mathcal{O} \left(n^{\alpha - 1} \right) \qquad (n \to \infty).$$

$$f(z) = [z^n]g(z) \pm O(n^{\alpha-1}) \qquad (n \to \infty).$$

$$f(z) = N(z_0) \cdot C_{0,\mu} \frac{1}{(1 - \frac{2}{z_0})^{\mu}} \pm O((1 - \frac{2}{z_0})^{-\mu + 1})$$

$$\frac{1}{3(5)}$$

$$\frac{1}{3(5)}$$

$$(1-2)^{n} = \sum_{n=0}^{\infty} {\binom{-n}{n}} (-2)^{n} (1)^{n-n}$$

$$(a+b)^{n} = \sum_{n=0}^{\infty} {\binom{n}{n}} a^{n} b^{m-n}$$

$$(2^{-s})^{n} = {\binom{-n}{n}}^{n}$$

$$(2^{-s})^{n} = {\binom{-n}{n}}^{n}$$

$$(3+b)^{n} = \sum_{n=0}^{\infty} {\binom{n}{n}} a^{n} b^{m-n}$$

$$(4+b)^{n} = \sum_{n=0}^{\infty} {\binom{n}{n}} a^{n} b^{m-n} a^{n} b^{m-n} a^{n} b^{m-n} a^{n} b^{m-n} a^{m} b^{m-n} a^{n} b^{m-n} a^{n} b^{m-n} a^{m} a^{m} a^{m} a^{m} b^{m-n} a^{m} a^{m}$$