
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 7
2017-05-11

Depth-Bounded Search for Closest String

1 procedure closestStringFpt(s, d):
2 if d < 0 then return "not found"
3 if dH(s, si) > k + d for an i ∈ {1, . . . ,m} then
4 return "not found"
5 if dH(s, si) ≤ k for all i � 1, . . . ,m then return s
6 Choose i ∈ {1, . . . ,m} arbitrarily with dH(s, si) > k
7 P :�

�
p : s[p] � si[p]

�
8 Choose arbitrary P� ⊆ P with |P� | � k + 1
9 for p in P� do

10 s� :� s
11 s�[p] :� si[p]
12 sret :� closestStringFpt(s�, d − 1)
13 if sret � "not found" then return sret
14 return "not found"

Lemma 3.42 (Pair Too Different → No)
Let S � {s1 , s2 , . . . , sm} a set of strings and k ∈ N. If there are i, j ∈ {1, . . . ,m} with
dH(si , sj) > 2k, then there is no string s with max1≤i≤m dH(s, si) ≤ k. �

Theorem 3.43 (Search Tree for Closest String)
There is a search tree of size O(kk) for problem p-C������-S�����. �

1 procedure closestStringFpt(s, d):
2 if d < 0 then return "not found"
3 if dH(s, si) > k + d for an i ∈ {1, . . . ,m} then
4 return "not found"
5 if dH(s, si) ≤ k for all i � 1, . . . ,m then return s
6 Choose i ∈ {1, . . . ,m} arbitrarily with dH(s, si) > k
7 P :�

�
p : s[p] � si[p]

�
8 Choose arbitrary P� ⊆ P with |P� | � k + 1
9 for p in P� do

10 s� :� s
11 s�[p] :� si[p]
12 sret :� closestStringFpt(s�, d − 1)
13 if sret � "not found" then return sret
14 return "not found"

Corollary 3.44 (Closest String is FPT)
p-C������-S����� can be solved in time O(mL + mk · kk). �

3.5 Interleaving

Up to now, considered two-phase algorithms
1. Reduction to problem kernel
2. Solve kernel by depth-bounded exhaustive search

Idea: Apply kernelization in each recursive step.

Setting for Interleaving
Assumptions: (more restrictive than general kernelization!)

� K kernelization that
� produces kernel of size ≤ q(k) for q a polynomial
� in time ≤ p(n) for p a polynomial

� Branch in depth-bounded search tree
� into i subproblems with branching vector �d � (d1 , . . . , di)

(i.e.parameter in subproblems k − d1 , . . . , k − di)
� Branching is computed in time ≤ r(n) for r a polynomial

� search space has size O(αk).

� Running time of two-phase approach on input x with n � |x| and k � κ(x):

O

�
p(n) + r

�
q(k)� · αk

�

With Interleaving
Now replace splitting by:

1 if |I| > c · q(k) then
2 (I, k) :� (I�, k�) where (I�, k�) forms a problem kernel // Conditional Reduction
3 end;
4 replace (I, k) with (I1 , k − d1), (I2 , k − d2), . . . , (Ii , k − di). // Branching

� Running time of interleaved approach on input x with n � |x| and k � κ(x) is at most Tk:

T� � T�−d1 + · · · + T�−di + p
�
q(�)� + r

�
q(�)�

Compare to non-interleaved version:

T� � T�−d1 + · · · + T�−di + r
�
q(k)�

Here the inhomogeneous term is constant w.r.t. �, but depends on k
� cannot ignore constant factors

Theorem 3.45 (Linear Recurrences II)
Let d1 , . . . , di ∈ N and d � max dj.
Consider the inhomogeneous linear recurrence equation

Tn � Tn−d1 + Tn−d2 + · · · + Tn−di + fn , (n ≥ d)

with (fn)n∈R>0 a known sequence of positive numbers and d initial values
T0 , . . . , Td−1 ∈ R>0.
Let z0 be the root with largest absolute value of zd −�i

j�1 zd−dj and assume fn � O((z − ε)n)
for some fixed ε > 0.
Then Tn � O(T0

n) where T0
n is defined as Tn with fn ≡ 0. �

A Little Excursion: Singularity Analysis

Theorem 3.46 (Transfer-Theorem of Singularity Analysis)
Assume f (z) is Δ-analytic and admits the singular expansion

f (z) � g(z) ± O
�(1 − z)−α � (z → 1)

with α ∈ R. Then

[zn] f (z) � [zn]g(z) ± O
�
nα−1� (n → ∞). �

