Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 5

2017-05-04

3.1 Problem Kernels

Preprocessing

I dea! Reduce size of the instance (in poly-time) without changing the outrome

heuristics CNF-SAT : clause one literal

-> reduces the stee, but in we ust

Example: Vertex Cover (VC)

- o isolated vertices
- . vertices of degree 1

0-0

Assume p-Vertex-Corer

0 H= {v e V ; dos(v) > k}

Remore H from G Adjust parameter k- 1H/

Buss' reduction for VC

G'= resulting graph all vertices have degree

= s k nodes can only < k2 edges; if m > k2 & No instance \sim can assume $m \le k^2$ $n \le m \le k^2$

ap size of remaining instance is O(62)

Definition 3.27 (Kernalization)

Let (L, κ) be a parameterized problem. A function $K : \Sigma^* \to \Sigma^*$ is *kernelization* of L w.r.t. κ if it maps any $x \in L$ to an instance x' = K(x) with $k' = \kappa(x')$ so that

- **1.** (self-reduction) $x \in L \iff x' \in L$
- **2.** (poly-time) *K* is computable in poly-time.
- 3. (kernel-size) $|x'| \le g(k)$ for some computable function g

We call x' the (problem) kernel of x and g the size of the problem kernel.

◂

Theorem 3.28 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for *p*-Vertex-Cover with kernel size $O(k^2)$.

see above

Theorem 3.29 (FPT \leftrightarrow kernel)

A computable, parameterized problem (L, κ) is fixed-parameter tractable if and only if there is a kernelization for L w.r.t. κ .

Proof: "=" We have hernelization
$$K$$
, A decider for L in time T

FPT-also

We have hernelization K , A decider for L in time T

We have hernelization K , A decider for L in time T

We have hernelization K , A decider for L in time T

We have hernelization K , A decider for L in time T

We have hernelization K , A decider for L in time T

We have hernelization K , A decider for L in time T

We have hernelization K , A decider for L in time T

We have T

We have hernelization K , A decider for L in time T

We have T

We have hernelization T

We have hernelization T

We have T

Thene T

We have T

We have T

We have T

We have T

Thene T

We have T

Thene T

We have T

We have T

We have T

We have T

Thene T

We have T

Thene T

We have T

We have T

We have T

We have T

We

Care 15 A terminated ~ Know ausuer Rehern some small trivial Ves / No - lustance

 \rightarrow n < f(k)

 $n^{c+1} < n^{c} f(k)$ =) Original instance is a bornel

Theorem 3.30 (Kernel for Max-SAT)

p-Max-SAT has a problem kernel of size $O(k^2)$ which can be constructed in linear time.

Proof:
$$(x \vee y \vee \overline{z}) \wedge (x \vee y \vee \overline{z}) \wedge (\overline{x} \vee \overline{z}) \wedge (\overline{y} \vee \overline{z})$$

at $\{(x, y, \overline{z}), (x, y, \overline{z}), (\overline{x}, z), (\overline{y}, z)\}$

(4) Assumption: Each variable shows up at most once per clause

Observation: $m = \# \text{clause}$:

assume $k \leq \lfloor \frac{m}{2} \rfloor$

alway: possible: choose any arrigument

check if fulfills > k channes

if not nosake it $\sim \lceil \frac{m}{2} \rceil$ salisfied.

~ only interesting case is k> [2] m< 2k (***) We partition the clauses $F_2 = \{ \text{ clauses } : \ge k \text{ literals } \}$ $F_3 = \{ \text{ constants}$ $F_4 = \{ \text{ clauses } : \ge k \text{ literals } \}$ If IFI =: L > k Yes-lustance since we can pick k variables from k los claus to make k clouses fore ~ remains L 2 k

consider (\overline{f}_{S} , k-L)

(\overline{f}_{S} , k-L) Yes \Longrightarrow (\overline{f}_{C}) Yes

(\Longrightarrow) If (\overline{f}_{S} , k-L) is Yes \Longrightarrow assignment k-L short clauses

this count for more than k-L variables for I long clauses, find I "free" variables 'a' trivial.

For has only claries with 2k literals $=> < k \cdot m < 2k^2$

composable in poly-time

Corollary; p-Maix-Sat & FST

Vertex Cover as (Integer) Linear Program

Consider optimization version of Vertex-Cover:

Given: Graph G = (V, E)

Goal: Vertex cover of *G* with minimal cardinality.

→ equivalent to the following linear program

$$\min \sum_{v \in V} x_v$$
s. t. $x_u + x_v \ge 1$ for all $\{u, v\} \in E$

$$\underline{x_v} \in \{0, 1\}$$
 for all $v \in V$

Consider relaxation to $x_v \in \mathbb{R}$, $x_v \ge 0$. → LP that can by solved in poly-time.

For an *optimal* solution \vec{x} of the *relaxation*, we define

$$\sum x_{v} \leq \sum x_{v}^{I}$$

$$I_0 = \{v \in V : x_v < \frac{1}{2}\}$$

$$V_0 = \{v \in V : x_v = \frac{1}{2}\}$$

$$C_0 = \{v \in V : x_v > \frac{1}{2}\}$$

Theorem 3.31 (Kernel for Vertex Cover)

Let (G = (V, E), k) an instance of *p*-Vertex-Cover.

- **1.** There exists a minimal vertex cover *S* with $C_0 \subseteq S$ and $S \cap I_0 = \emptyset$.
- **2.** V_0 implies a problem kernel $(G[V_0], k |C_0|)$ with $|V_0| \le 2k$.

Here $G[V_0]$ is the induced subgraph of V_0 in G.

Proof: ad 1 Assume S is optimal VC for G

$$S' = (S \setminus T_0) \cup C_0 \quad \text{is also optimal VC}$$

$$= (S \setminus S_T) \cup S_C$$

$$S_T = S \cap T_0 \quad S_C = C_0 \setminus S$$

$$"S' VC" \quad \text{only edges with } T_0 \quad \text{endpoints could remain our oversel}$$

$$e = \{v_1 \omega\}, \quad v \in T_0 \quad \Rightarrow \quad \times_V < \frac{1}{2}$$

$$\Rightarrow \quad \times_W > \frac{1}{2} \quad \text{since} \quad \times_{V^+} \times_{W^+} / 1$$

$$\Rightarrow \quad \omega \in C_0 \quad S' \supseteq C_0 \quad \text{e covered}.$$

"|S'| opt"
$$|S_c| \stackrel{?}{\leq} |S_I|$$

Define $e:=\min\{x_v - \frac{1}{2}: v \in C_0\} > 0$

Define $\chi' = \chi = \max\{x_u + \varepsilon\}$
 $v \in S_I \quad \chi'_u := \chi_u + \varepsilon$
 $v \in S_C \quad \chi'_v := \chi_v - \varepsilon \qquad \frac{1}{2}$
 χ' also folfuls constraints of IP
 $\forall e = \{u,v\} \quad \chi'_u + \chi'_v \geq 1 \quad C_0 \setminus S$

only interesting edges have $v \in S_c = (for other \chi'_u \geq \chi_u)$

(1) $u \in I_0 \setminus S$
 $\Rightarrow u \notin S$, $v \notin S = \emptyset \leq VC$

(2) $u \in S_I \quad \Rightarrow \chi'_v + \chi'_u = \chi_v + \chi_u \geq 1$

(3) $u \notin I_0 \implies \chi'_u \geq \frac{1}{2}, \quad \chi'_v \geq \frac{1}{2}, \quad \chi'_v + \chi'_u \geq 1$

Since χ' optimal, $\chi'_v \neq \chi'_v = \chi_v = \chi'_v + \chi'_u \geq 1$
 $\chi'_v + \varepsilon(IS_I - |S_c|) = 1 \cdot |S_c| \leq |S_I|$

ad 2	LP objective & ILP objective for reduced instance	:
	$\Rightarrow S \geqslant \sum_{v \in V_0} x_v = \frac{1}{2} V_0 $ $\text{We apply the above reduction iteratively,}$ Verbs core	
	We apply the above reduction iteratively,	
	See G[V _o] until the <u>optimal</u> $x = (0.5,,0.5)$	
	If now IVoI > 2k, we know for sure that is no VC (with	h k nodes)
	-> return us - instance	
	otherwise IVol & 2k as bernel.	□.

3.2 Depth-Bounded Exhaustive Search

After a bornelization, we still have solve the bornel

Example: VC

for every edge : either take v or w remore v from graph

solve reclting problem recoursively. Sv, zwi : - solution gets V \sim S_v - solution with w remore w rewree on ~ Sw return smaller Sv, San