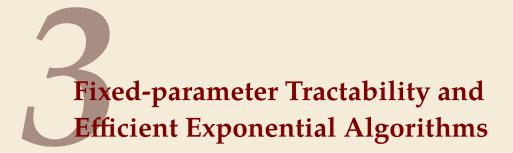
Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

2017-04-27



MAX- (NF-SAT ; threshold k

Definition 3.1 (Parametrization)

Let Σ a (finite) alphabet. A *parametrization* (of Σ^*) is a mapping $\kappa : \Sigma^* \to \mathbb{N}$ that is poly-time computable.

Definition 3.2 (Parametrized problem)

A *parameterized (decision) problem* is a pair (L, κ) of a language $L \subset \Sigma^*$ and a parametrization κ of Σ^* .

Definition 3.3 (Canonical Parametrizations)

We can often specify a parametrized problem conveniently as a language of *pairs* $L \subset \Sigma^* \times \mathbb{N}$ with

$$(x,k) \in L \land (x,k') \in L \rightarrow k = k'$$

using the *canonical parametrization* $\kappa(x, k) = k$.

Examples

As before: Typically leave encoding implicit. **Naming convention:** Add prefix *p*-SAT.

Definition 3.4 (p-SAT)

Given: formula boolean ϕ (same as before) Parameter: number of variables Question: Is there a satisfying assignment $v : [n] \rightarrow \{0, 1\}$?

4

4

Definition 3.5 (p-Clique)

Given: graph G = (V, E) and $k \in \mathbb{N}$ **Parameter:** kQuestion: $\exists V' \subset V$: $|V'| \ge k \land \forall u, v \in V' : \{u, v\} \in E$?

Definition 3.6 (Canonically Parametrized Optimization Problems)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ be an optimization problem. Then *p*-*U* denotes the *(canonically) parameterized (decision) problem* given by the threshold problem $Lang_U$.

Recall: Lang_{*U*} is the set of pairs (x, k) of all instances $x \in L_I$ that **are** weakly "better" than *k*.

Examples:

- ► *p*-Clique
- ► *p*-Vertex-Cover
- ► *p*-Graph-Coloring
- ▶ ...

Naming convention for other parameters:

*p-clause-*CNF-SAT: CNF-SAT with parameter "number of *clauses*"

Examples of Running Times
only consider broke-force methods

$$p - SAT$$
, k variables, n length for sornula
 d^{k} candidates each can be checked in linear time
 $-> O(2k^{k}n)$ $k=O(logn)$ $\frac{k=2k_{0}c_{0}n}{2^{2k_{0}c_{0}n}} = n^{log(n)} \frac{c^{-1}}{n(n-1)\cdots(n-k+1)}$
 $p - Cliqpe: k threshold n vertices m edges $\binom{n}{k}$ candidates check $O(k^{n})$ $\binom{n}{k} = \frac{n^{k}}{k!} \leq n^{k}$
 $p - Varter Core $\binom{n}{k}$ candidates check $O(m)$ $k=O(2)$
 $p - Greph-Coloring k colors n n m $k = O(m)$ $\rightarrow O(k^{k} \cdot m)$$$$

3.1 Fixed-Parameter Tractability

Definition 3.7 (fpt-algorithm)

Let κ be a parametrization for Σ^* .

A (deterministic) algorithm *A* (with input alphabet Σ) is a *fixed-parameter tractable algorithm* (*fpt-algorithm*) w.r.t. κ if its running time on $x \in \Sigma^*$ with $\kappa(x) = k$ is at most

 $f(k) \cdot p(|x|) = \mathcal{O}(f(k) \cdot |x|^c)$

where p is a polynomial of degree c and f is an arbitrary computable function.

Definition 3.8 (FPT)

A parametrized problem (L, κ) is *fixed-parameter tractable* if there is an fpt-algorithm that decides it.

-

The complexity class of all such problems is denoted by FPT.

Intuitively, \mathcal{FPT} plays the role of \mathcal{P} .

Theorem 3.9 (p-variables-SAT is FPT)

 \Box

p-variables-SAT ∈ FPJ. p-SAT bute-Socce method does the frick 2^k p(n) 11 f(k)

... but #variables not usually small

Theorem 3.10 (k never decreases \rightarrow FPT)

Let $g : \mathbb{N} \to \mathbb{N}$ weakly increasing, unbounded and computable, and κ a parametrization with

 $\forall x \in \Sigma^{\star} : \kappa(x) \ge g(|x|).$

-

Then $(L, \kappa) \in \mathcal{FPT}$ for *any* decidable *L*.

g weakly increasing: $n \le m \to g(n) \le g(m)$ *g* unbounded: $\forall t \exists n : g(n) \ge t$

Proof I L decidable ~ 3T :
$$x \in L$$
 decidable in $\leq T(|x|) s k_{ps}$
 $w \log T$ weakly increasing
 $T(|x|) \geq |x|$
Ideas hide $T(|x|)$ inf(k) part of tot - running time bound
 $h(n) = \begin{cases} max \ line(N) : g(m) \leq n \ line(L) \\ 1 & o Hurrice \end{cases}$

(1) 5 weakly increasing
and unbounded
=sh well-defined
(2) h weakly increasing
(3) 5 computeble
=sh computable
(4) h(g(n))
$$\geq n$$

time to deade $x \in \mathbb{Z}$
 $T(1x1) \leq T(h(g(1x1))) \leq T(h(k)) = s f(k)$ I7.

k= 25 (x)

17

Some problems seen & FPE ; but how to prove that. 7 ° ZZE ° S => Reductions, hardness

(G)

3.2 Parametrized Reductions and Hardness

 $L_1 \leq_{\rho} L_2$ xe $L_1 \iff A(x) \in L_2$ A $\in \mathbb{S}^{2}$

Definition 3.11 (Parametrized Reduction)

Let (L_1, κ_1) and (L_2, κ_2) be two parametrized problems (over alphabets Σ_1 resp. Σ_2). An *fpt-reduction (fpt many-one reduction)* from (L_1, κ_1) to (L_2, κ_2) is a mapping $A : \Sigma_1^* \to \Sigma_2^*$ so that for all $x \in \Sigma_1^*$

- **1.** (equivalence) $x \in L_1 \iff A(x) \in L_2$,
- **2.** (fpt) *A* is computable by an fpt-algorithm (w.r.t. to κ_1), and
- 3. (parameter-preserving) $\kappa_2(A(x)) \leq g(\kappa_1(x))$ for a computable function $g : \mathbb{N} \to \mathbb{N}$.

does not depend (x)

-

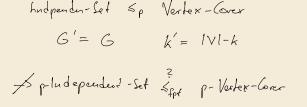
We then write $(L_1, \kappa_1) \leq_{fpt} (L_2, \kappa_2)$.

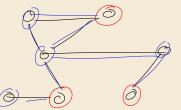
Not all reductions are fpt.

Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEX-COVER Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$ INDEPENDENT SET Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$





What's the equivalent of NS?

Parametrized NP: Non-deterministic NP

 ${\mathbb P}$ corresponds to ${\mathbb FPT}\ldots$ but what is the analogue for ${\mathbb NP}?$

Definition 3.12 (para-NP)

The class *para*- \mathcal{NP} consists of all parametrized decision problems that are solved by a *non-deterministic* fpt-algorithm.

 $\leq f(k) - p(|x|)$

-

Some nice properties:

- **1.** para- \mathcal{NP} is closed under fpt-reductions.
- **2.** $\mathcal{FPT} = \text{para-}\mathcal{NP} \iff \mathcal{P} = \mathcal{NP}$
- 3. an analogue for *kernalization* in FPT holds for para-NP (discussed later)

 \rightsquigarrow Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 3.13 (para-NP-hard)

 (L, κ) is para- \mathbb{NP} -hard if $(L', \kappa') \leq_{fpt} (L, \kappa)$ for all $(L', \kappa') \in \text{para-}\mathbb{NP}$.

... is too strict

-]6

Theorem 3.14 (para-NP-complete \rightarrow **NP-complete for finite parameter)** Let (L, κ) be a nontrivial ($\emptyset \neq L \neq \Sigma^*$) parametrized problem that is para- \mathbb{NP} -complete. Then $L_{\leq d} = \{x \in L : \kappa(x) \leq d\}$ is \mathbb{NP} -hard.

The converse is essentially also true.

$$\frac{2}{100} \int para = 0NS - complete (L, \chi)$$
Let L' NS - complete => (L', χ_{one}) \in para - NS
Kom (x) = 1
=> (L', χ_{one}) $\leq f_{pt}$ (L, κ)
i.e. $A(x) \in L$ => $x \in L'$
A $f_{pt} - also rl. \leq f(k) \cdot n^{c} = poly - bime$
 $k = \chi_{one}(\kappa) = 1$
 $\chi (A(x)) \leq g(\chi_{one}(\kappa)) = g(1) =: d$