Advanced Algorithmics

Strategies for Tackling Hard Problems
Sebastian Wild
Markus Nebel

Lecture 2

2017-04-24

Do $\mathcal{N} \mathcal{P}$-complete problems exist at all? Yes!

Definition 1.13 (SAT)

For \mathcal{F} the set of formulæ from propositional logic and code $: \mathcal{F} \rightarrow \Sigma^{\star}$ a corresponding encoding over alphabet Σ the satisfiability problem (of propositional logic), SAT for short, is defined by following language:

$$
\text { SAT }:=\left\{\operatorname{code}(F) \in \Sigma^{\star} \mid F \text { is a satisfiable formula }\right\} .
$$

Theorem 1.14 (Cook-Levin)
SAT is $\mathcal{N P}$-complete.

- SATENS=VS $\sqrt{ }$ certificate $=$ sal. assignment
- $\forall L \in N \rho \quad L \leq p S A T$
\rightarrow nondel. TM that sous poly-fime $p(n)$
- state at file t
- symbol an tope at time l and pos i forgot position of head on tape (oops)

Observation: \leq_{p} is transitive, so SAT $\leq_{p} X \rightsquigarrow X$ is $\mathcal{N P}$-complete.

Further hard problems

Definition 1.15 (3SAT)

Given: formula ϕ in 3-CNF, i.e., $n, m \in \mathbb{N}$ and $l_{i j} \in\left\{x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\}$ for $i \in[m], j \in[3]$ Question: Is there a satisfying assignment $v:[n] \rightarrow\{0,1\}$?

Definition 1.16 (Vertex Cover)

Given: graph $G=(V, E)$ and $k \in \mathbb{N}$
Question: $\exists V^{\prime} \subset V:\left|V^{\prime}\right| \leq k \wedge \forall\{u, v\} \in E:\left(u \in V^{\prime} \vee v \in V^{\prime}\right)$

Definition 1.17 (Dominating Set)

Given: graph $G=(V, E)$ and $k \in \mathbb{N}$
Question: $\exists V^{\prime} \subset V:\left|V^{\prime}\right| \leq k \wedge \forall v \in E:\left(v \in V^{\prime} \vee \exists u \in N(v): u \in V^{\prime}\right)$

Definition 1.18 (Hamiltonian Cycle)

Given: graph $G=(V, E) \quad$ (directed and undirected version)
Question: Is there a vertex-simple cycle in G of length $|V|$?

Further hard problems [2]

Definition 1.19 (Clique)

Given: graph $G=(V, E)$ and $k \in \mathbb{N}$
Question: $\exists V^{\prime} \subset V:\left|V^{\prime}\right| \geq k \wedge \forall u, v \in V^{\prime}:\{u, v\} \in E$

Definition 1.20 (Independent Set)

Given: graph $G=(V, E)$ and $k \in \mathbb{N}$
Question: $\exists V^{\prime} \subset V:\left|V^{\prime}\right| \geq k \wedge \forall u, v \in V^{\prime}:\{u, v\} \notin E$

Definition 1.21 (Traveling Salesperson (TSP))

Given: distance matrix $D \in \mathbb{N}^{n \times n}$ and $k \in \mathbb{N}$
Question: Is there a permutation $\pi:[n] \rightarrow[n]$ with $\sum_{i=1}^{n-1} D_{\pi(i), \pi(i+1)}+D_{\pi(n), \pi(1)} \leq k$?
Definition 1.22 (Graph Coloring)
Given: graph $G=(V, E)$ and $k \in \mathbb{N}$
Question: $\exists c: V \rightarrow[k]: \forall\{u, v\} \in E: c(u) \neq c(v)$?

Further hard problems [3]

Definition 1.23 (Set Cover)

Given: $n \in \mathbb{N}$, sets $S_{1}, \ldots, S_{m} \subseteq[n]$ and $k \in \mathbb{N}$
Question: $\exists I \subseteq[m]: \bigcup_{i \in I} S_{i}=[n] \wedge|I| \leq k$?

Definition 1.24 (Weighted Set Cover)

Given: $n \in \mathbb{N}$, sets $S_{1}, \ldots, S_{m} \subseteq[n]$, costs $c_{1}, \ldots, c_{m} \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$
Question: $\exists I \subseteq[m]: \bigcup_{i \in I} S_{i}=[n] \wedge \sum_{i \in I} c_{i} \leq k$?

Definition 1.25 (Closest String)

Given: $s_{1}, \ldots, s_{n} \in \Sigma^{m}$ and $k \in \mathbb{N}$
Question: $\exists s \in \Sigma^{m}: \quad \forall i \in[n]: d_{H}\left(s, s_{i}\right) \leq k \quad\left(d_{H}\right.$ Hamming-distance)

Definition 1.26 (Max Cut)

Given: graph $G=(V, E)$ and $k \in \mathbb{N}$
Question: $\exists C \subset V:|E \cap\{\{u, v\} \mid u \in C, v \notin C\}| \geq k$

Further hard problems [4]

Definition 1.27 (Subset Sum)

Given: $x_{1}, \ldots, x_{n} \in \mathbb{Z}$
Question: $\exists I \subseteq[n]: I \neq \emptyset \wedge \sum_{i \in I} x_{i}=0$?
(missing in lecture)
Definition 1.28 ($(0 / 1)$ Knapsack)
Given: $w_{1}, \ldots, w_{n} \in \mathbb{N}, v_{1}, \ldots, v_{n} \in \mathbb{N}$ and $b, k \in \mathbb{N}$
Question: $\exists I \subseteq[n]: \sum_{i \in I} w_{i} \leq b \wedge \sum_{i \in I} v_{i} \geq k$?

Definition 1.29 (Bin Packing)

Given: $w_{1}, \ldots, w_{n} \in \mathbb{N}, b \in \mathbb{N}, k \in \mathbb{N}$
Question: $\exists a:[n] \rightarrow[k]: \overline{\forall j \in[k]:} \sum_{\substack{i=1, \ldots, n \\ a[i]=j}} w_{i} \leq b$?

Definition 1.30 (0/1 Integer Programming)

Given: integer linear program (ILP) $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$ and $c \in \mathbb{Z}^{n}$ and $k \in \mathbb{Z}$
Question: Is there $x \in\{0,1\}^{n}$ with $A x \leq b$ and $c^{T} x \geq k$?

1.1 Optimization Problems

Definition 1.31 (Optimization Problem)

An optimization problem is given by 7 -tuple $U=\left(\Sigma_{I}, \Sigma_{O}, L, L_{I}, M\right.$, cost, goal $)$ with

1. Σ_{I} an alphabet (called input alphabet),
2. Σ_{O} an alphabet (called output alphabet),
3. $L \subseteq \Sigma_{I}^{\star}$ the language of allowable problem instances (for which U is well-defined),
4. $L_{I} \subseteq L$ the language of actual problem instances for U (for those we want to determine U's complexity),
5. $M: L \rightarrow 2^{\Sigma_{O}^{\star}}$ and with $x \in L, M(x)$ is the set of all feasible solutions for x.
6. cost is a cost function, which assigns for $x \in L$ each pair (u, x) with $u \in M(x)$ a positive real number,
7. goal $\in\{\min , \max \}$.

Definition 1.32 (Optimal Solutions, Solution Algorithms)

Let $U=\left(\Sigma_{I}, \Sigma_{O}, L, L_{I}, M, \operatorname{cost}\right.$, goal $)$ an optimization problem. For each $x \in L_{I}$ a feasible solution $y \in M(x)$ is called optimal for x and U, if

$$
\operatorname{cost}(y, x)=\operatorname{goal}\{\operatorname{cost}(z, x) \mid z \in M(x)\}
$$

An algorithm A is consistent with U if $A(x) \in M(x)$ for all $x \in L_{I}$. We say algorithm B solves U, if

1. B is consistent with U and
2. for all $x \in L_{I}, B(x)$ is optimal for x and U.

Examples

Natural examples: Problems above with an input parameter k.
Less immediate example:

Definition 1.33 (MAX-SAT)

Given: CNF-Formula $\phi=C_{1} \wedge \cdots \wedge C_{m}$ over variables x_{1}, \ldots, x_{n} Allowable (=Actual) Instances: encodings of ϕ $M(\phi)=\{0,1\}^{n}$ (variable assignments)
$\operatorname{cost}(u, x)$: \# of satisfied clauses in u under given assignment x
goal $=\max$

$$
\max \operatorname{cost}(u, x)=m
$$

Definition 1.34 (NPO)

$\mathcal{N P O}$ is the class if optimization problems $U=\left(\Sigma_{I}, \Sigma_{O}, L, L_{I}, M\right.$, cost, goal $)$ with

1. $L_{I} \in \mathcal{P}$,
2. there is a polynomial p_{U} with
a) $\forall x \in L_{I} \forall y \in M(x):|y| \leq p_{U}(|x|)$ and
b) there is a polynomial time algorithm which for all $y \in \Sigma_{O}^{\star}, x \in L_{I}$ with $|y| \leq p_{U}(|x|)$ decides whether $y \in M(x)$ holds, and
3. function cost can be computed in polynomial time.

$$
b
$$

only integral
cost functions

$$
\begin{aligned}
M A X-S A T & \in \text { IPO } \\
|x| \geqslant n & =1 \text { solution }
\end{aligned}
$$

Definition 1.35 (PO)

$\mathcal{P} \mathcal{O}$ is the class of optimization problems $U=\left(\Sigma_{I}, \Sigma_{O}, L, L_{I}, M\right.$, cost, goal $)$ with

1. $U \in \mathcal{N P} \mathcal{O}$, and
2. there is an algorithm of polynomial time complexity which for all $x \in L_{I}$ computes an optimal solution for x and U.

Glossary of Problem Types
$\left.\begin{array}{l|l|c|} & \text { check value threshold } & \text { fund value } \\ \hline \begin{array}{c}\text { single } \\ \text { answer }\end{array} & \text { decision problem } & \text { evaluation probleen } \\ \hline \begin{array}{c}\text { solution, } \\ \text { witless }\end{array} & \text { search problem } & \text { optimization problem }\end{array}\right]$

Complexities?
Update: Indeed possible for any NP problem!
(see Aroma, Barak 2007)
1 decision to search often easy, unclear in general
\curvearrowright threshed to evaluation: binary search $V \cos t s \in \mathbb{N}$

Definition 1.36 (Threshold Languages)

Let $U=\left(\Sigma_{I}, \Sigma_{O}, L, L_{I}, M\right.$, cost, goal $)$ an optimization problem, $U \in \mathcal{N P} \mathcal{O}$.
For $\operatorname{Opt} t_{U}(x)$ the cost of an optimal solutions for x and U we define the threshold language for U as

$$
\operatorname{Lang}_{U}= \begin{cases}\left\{(x, k) \in L_{I} \times\{0,1\}^{\star} \mid \text { Opt }_{U}(x) \leq k_{2}\right\}, & \text { if goal }=\text { min } \\ \left\{(x, k) \in L_{I} \times\{0,1\}^{\star} \mid \operatorname{Opt}_{U}(x) \geq k_{2}\right\}, & \text { if goal }=\text { max }\end{cases}
$$

We say U is $\mathcal{N P}$-hard, if Lang_{U} is $\mathcal{N P}$-hard.

Corollary 1.37 (Optimization is harder than Threshold)
Let U an optimization problem.
If Lang is $\mathcal{N P}$-hard and if $\mathcal{P} \neq \mathcal{N P}$ holds, we have $U \notin \mathcal{P} \mathcal{O}$.
Assume $U \in S O$
$\rightarrow \exists$ poly-time also A that computes optimal y of any instance $x \in U$
\rightarrow Optu (x) can be computed in poly-time

$$
\rightarrow \operatorname{Opf}_{U}(x) \leq \text { threshold } \quad \text { - }-
$$

\rightarrow polytiur alga Lang $\underset{N P-h a r d}{\Rightarrow} \quad P=\mathcal{N} \rho$

Lemma 1.38 (MAX-SAT)
MAX-SAT is $\mathcal{N P}$-hard.

$$
\begin{aligned}
& 3- \\
& C N F-S_{A T}
\end{aligned} \leqslant_{p} \text { Lang MAX-SAT }
$$

x is an enooding of ϕ in CNF, with m clanses 'compate' $(x, m) \in$ Lang raxisest ?

Summary

- We have formalized the classic notion of intractable problems.
- What is running time, what is "poly-time"?
- Decision problems \leftrightarrow (formal) languages
- $\mathcal{P}, \mathcal{N P}$ via Turing machines \leftrightarrow certificates and verifiers
- For the typical case of optimization problems, there are different versions of the problem, but (in)tractability typically carries over.
\rightsquigarrow We can mathematically prove a problem is intractable ($\mathcal{N P}$-hard).
... but how can we tackle hard problems anyway?

Definition 2.1 (Integer-Input Problem)

A U for which we can encode any input as a sequence of integers is called an integer-input problem.
For any instance x of an integer-input problem, we write MaxInt (x) for the largest integer occurring in the input encoding.
(As before, integers are encoded in binary.)
TSP, Knopsock, Bin Padsing, ILP

Definition 2.2 (Pseudopolynomial algorithm)
Let U be an integer-input problem and A an algorithm that solves U. A has p seudopolynomial time for U, if there is a polynomial p in two variables with

$$
\operatorname{Time}_{A}(x)=\mathcal{O}(p(|x|, \operatorname{Max} \operatorname{lnt}(x)))
$$

for every instance x to U.

$$
\begin{aligned}
& \text { If Maxlut|x|} \leqslant h(|x|) \text { polyuocinal } h \\
& \rightarrow \text { poly-tive! }
\end{aligned}
$$

Definition 2.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let $h: \mathbb{N} \rightarrow \mathbb{N}$ be weakly increasing.
The h-bounded subproblem of U (notation Value $\left.(h)_{U}\right)$ is the problem which results from U by allowing only inputs x with $\operatorname{Max\operatorname {lnt}}(x) \leq h(|x|)$.

Theorem 2.4 (Pseudopolynomial is polynomial for small h)
Let U be an integer-input problem and A a pseudopolynomial algorithm for U. Then for every polynomial h there is a polynomial algorithm for Value $(h)_{U}$.

Hence if U is a decision problem then Value $(h)_{U} \in \mathcal{P}$,
if U is an optimization problem then Value $(h)_{U} \in \mathcal{P} \mathcal{O}$.
prendeoplaynonial $\rightarrow A$ has tine $O(p(|x|$, Market $(x \mid))$
for $\left.x \in \operatorname{Value}(h) u \leadsto \operatorname{Mar} \ln t(x) \leqslant h(|x|)=\left.O| | x\right|^{c}\right) \quad c \in \mathbb{X}$
$\Rightarrow p(|x|, \operatorname{Mar} \operatorname{lat}(x))=O\left(p\left(|x|,|x|^{c}\right)\right)=O\left(|x|^{d}\right) \quad d \in \mathbb{N}$

Definition 2.5 (Knapsack (Optimization Version))
Let a tuple $\left(w_{1}, \ldots, w_{n}, v_{1}, \ldots, v_{n}, b\right)$ of $2 n+1$ positive integers be given, $n \in \mathbb{N}$. We call b the capacity of the knapsack, w_{i} the weight and v_{i} the profit (value) of the i-th object, $1 \leq i \leq n$.
The optimization problem KNAPSACK asks to find a subset $T \subseteq\{1,2, \ldots, n\}$ of items with maximal total cost $\operatorname{cost}(T)=\sum_{i \in T} v_{i}$ such that T fits into the knapsack, i.e., $\sum_{i \in T} w_{i} \leq b$.

This presentation was unnecessarily cluttered;
Dquanic Programming Algorithm see end of file for improved version without storing T

$$
\begin{aligned}
& A[(i, k)]=\left(\omega^{2}, T\right) \\
& T
\end{aligned}
$$

items $1 \ldots$ i

$$
\begin{aligned}
& A[(i+1, k)]=\min \begin{cases}A[(i, k)], & / / \text { do cit tate io 1 } \\
\left(w^{\prime}+v_{i+1}, \frac{\left.T^{\prime} \cup\{i+1\}\right)}{}\right. & \text { if } A\left[\left(i, k-v_{i+1}\right)\right]=\left(w^{\prime}, T^{\prime}\right) / / t r y \text { toke in 1 } \\
\text { and } w^{\prime}+v_{i+1} \leqslant b \text { nile }\end{cases} \\
& A[(1, k)]=\left\{\begin{array}{ll}
(0, \infty) & k=0 \\
\left(w_{1},\{1\}\right) & k=v_{1} \\
\text { null } & \text { otherwise }
\end{array} \quad\right. \text { (update missing in lecture) }
\end{aligned}
$$

$A[(n, k)]$ check all entries with $k \leqslant \sum V_{i}=V$

Running time : \# entries $n \times V$
time for each entry $O(1)$ (in uniform model; otherwise another log-factor)

$$
O(n \cdot V) \quad V \leqslant n \cdot \operatorname{Max} \ln t(x)
$$

\Rightarrow DPKP has prendopolynomial time

Theorem 2.6 (DP for Knapsack is pseudopolynomial)

For every instance I to Knapsack we have

$$
\operatorname{Time}_{D P K P}(I)=\mathcal{O}\left(|I|^{2} \cdot \operatorname{MaxInt}(I)\right), \quad(\text { los foctor missius) }
$$

i.e., DPKP has pseudopolynomial time for KNAPSACK.

Definition 2.7 (strongly NP-hard)

An integer-input problem is called strongly $\mathcal{N} \mathcal{P}$-hard, if there exists a polynomial p such that Value $(p)_{U}$ is $\mathcal{N P}$-hard.

So: strongly $\mathcal{N P}$-hard \rightsquigarrow hard even for instances with small numbers.

Theorem 2.8 (strongly NP-hard \rightarrow no pseudopoly. algorithm)
Let $\mathcal{P} \neq \mathcal{N}^{\mathcal{P}}$ and U a strongly $\mathcal{N} \mathcal{P}$-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for U.
U strong NS-hard \rightarrow Fp Value (p) US-hord for polquocinal p If A was pseudopolynounial algro U
\Rightarrow A sous in poly-time for $x \in \operatorname{Value}(\mathrm{~g}) v$ (by Then 2.4 f for any polynomial of
in port. for $p \quad \overrightarrow{\text { value }} \mathbf{p}$ lu urp-hard $\quad \rho=N \delta$

A single polynomial P_{1} so Valuelply is MP-hard,
suffices to show Value $(g) v M P$-hard for ans polynomial g.

Example: TSP is strong $\mathcal{M P}$-hard
Hamilton \leqslant_{p} Value (2) ${ }_{\text {TSP }}$

6 ha, $A C$
\Leftrightarrow tour of length n Hamilton NS-hard

Improved Presentation of the DP algorithm for Knapsack
Definition 2.5 (Knapsack (Optimization Version))
Let a tuple $\left(w_{1}, \ldots, w_{n}, v_{1}, \ldots, v_{n}, b\right)$ of $2 n+1$ positive integers be given, $n \in \mathbb{N}$. We call b the capacity of the knapsack, w_{i} the weight and v_{i} the profit (value) of the i-th object, $1 \leq i \leq n$.
The optimization problem Knapsack asks to find a subset $T \subseteq\{1,2, \ldots, n\}$ of items with maximal total $\operatorname{cost} \operatorname{cost}(T)=\sum_{i \in T} v_{i}$ such that T fits into the knapsack, i.e., $\sum_{i \in T} w_{i} \leq b$.
Dyuante Programming

- Hey Idea: ith can be taten or not indep. of rest

BUT respect weight bound
$\rightarrow f\left(x\right.$ the exact profit k for all $0 \leqslant k \leqslant V=\sum_{i=1}^{n} v_{i}$

$$
\begin{aligned}
& A[i, k]=\min \left\{\omega: 3 I \leq[i]: \sum_{i \in I} \omega_{i}=W \leqslant b \wedge \sum_{i \in I} v_{i}=k\right\} \\
& A[i, k]=\min \begin{cases}A[i-1, k] \quad / / \text { don't }^{\prime} \text { sick } i \\
A\left[i-1, k-v_{i}\right]+\omega_{i} / / \text { pick } i\end{cases} \\
& A[1, k]= \begin{cases}0 & k=0 \\
\omega_{1} & k=v_{1} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

$A[n, k]$ start with $k=V$, so down undel $A[n, k] \neq \infty$
optimal ckoice of ifems found by bactutracing

Pouning tiver $\#$ entries $n \times V \leqslant n^{2}$. Maxhat (x) time to compute one eutry $O(1) \quad O(\log (\operatorname{Max} \operatorname{lat}(x)))$

$$
V \leqslant n \cdot \operatorname{Max} \operatorname{lnt}(x)
$$

