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Do NP-complete problems exist at all? Yes!

Definition 1.13 (SAT)

For J the set of formulee from propositional logic and code : F — £* a corresponding
encoding over alphabet X the satisfiability problem (of propositional logic), SAT for short, is
defined by following language:

SAT := {code(F) € ¥* | Fis a satisfiable formula}.



Theorem 1.14 (Cook-Levin)
SAT is NP-complete.
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Observation: <), is transitive, so SAT <, X ~ X is NP-complete.



Further hard problems

Definition 1.15 (3SAT)
Given: formula ¢ in 3-CNF, i.e.,, n,m € Nand [;; € {x1,...,X;,X1,...,X,} fori € [m],j € [3]
Question: Is there a satisfying assignment v : [n] — {0,1} ?

Definition 1.16 (Vertex Cover)
Given: graph G = (V,E) and k € N
Question: AV' cV : |V/|<k A Y{u,v} €E: (ue V' voeV)

Definition 1.17 (Dominating Set)
Given: graph G = (V,E) and k € N
Question: AV' cV : |V/|<k AVoeE:(veV' VvV JueN():uecV)

Definition 1.18 (Hamiltonian Cycle)
Given: graph G = (V,E) (directed and undirected version)
Question: Is there a vertex-simple cycle in G of length |V[?



Further hard problems [2]

Definition 1.19 (Clique)
Given: graph G = (V,E) and k € N
Question: AV cV : |V| >k A Yu,ve V' :{u,v} €E

Definition 1.20 (Independent Set)
Given: graph G = (V,E) and k € N
Question: 3V cV : |V/| >k A Yu,ve V' :{u,v} ¢ E

Definition 1.21 (Traveling Salesperson (TSP))

Given: distance matrix D € N*" and k € N n-1

Question: Is there a permutation 7 : 1] — [1] with Z Drg),m(i+1) + Drngmy,ny < k?
i=1

Definition 1.22 (Graph Coloring)

Given: graph G = (V,E) and k € N

Question: Jc: V — [k] : Y{u,v} € E:c(u) # c(v)?



Further hard problems [3]

Definition 1.23 (Set Cover)
Given: n € N, sets S1,...,S;; C [n]and k € N
Question: I C [m] : Ui Si = [n] A JI| <k?

Definition 1.24 (Weighted Set Cover)

Given: n € N, sets S1,...,S;;, C [n],costscy,...,cn € Ngand k € N
Question: I C [m] : Ui Si = [n] A Digc < k?

Definition 1.25 (Closest String)
Given: s1,...,5, € 2™ and k € N
Question: 3s € X" . Vi€ [n]:dy(s,s) <k (dy Hamming-distance)

Definition 1.26 (Max Cut)
Given: graph G = (V,E) and k € N
Question: 3Cc V : |[ENn{{u,v} |ueCo¢CH >k



Further hard problems [4]

Definition 1.27 (Subset Sum)
Given: x1,...,x, € Z
Question: AT C [n] : T#DAYiqxi=07?
(missing in lecture)
Definition 1.28 ((0/1) Knapsack)
Given: wy,...,w, € N,v1,...,v, € Nand b,k € N
Question: AT C [n] : Yqqwi <b A Yqui > k?

Definition 1.29 (Bin Packing)
Given: wy,...,w, € N, b € N,_k eN
Question: Ja: [n] — [k] : Vjel[k]: Z w; < b?
i
Definition 1.30 (0/1 Integer Programming)
Given: integer linear program (ILP) A € Z"™"",b € Z" andc € Z" and k € Z
Question: Is there x € {0,1}" with Ax < band ¢'x > k? (ef‘f‘oniﬁf/y was
& in \ i lecture)



1.1 Optimization Problems

Definition 1.31 (Optimization Problem)
An optimization problem is given by 7-tuple U = (X1, o, L, Ly, M, cost, goal) with

1. XY an alphabet (called input alphabet),

2. Yo an alphabet (called output alphabet),

3. L C X} the language of allowable problem instances (for which U is well-defined),
4

. L; € L the language of actual problem instances for U
(for those we want to determine U’s complexity),

5. M:L— 2% and withx € L, M(x) is the set of all feasible solutions for x.

6. cost is a cost function, which assigns for x € L each pair (u, x) with u € M(x) a positive
real number,

7. goal € {min, max}.



Definition 1.32 (Optimal Solutions, Solution Algorithms)
Let U = (X1, X0, L, L;, M, cost, goal) an optimization problem. For each x € L; a feasible
solution iy € M(x) is called optimal for x and U, if

cost(y,x) = goal{cost(z,x) | z € M(x)}.

An algorithm A is consistent with U if A(x) € M(x) for all x € L;.
We say algorithm B solves U, if

1. B is consistent with U and

2. forall x € L, B(x) is optimal for x and U.



Examples

Natural examples: Problems above with an input parameter k.

Less immediate example:

Definition 1.33 (MAX-SAT)

Given: CNF-Formula ¢ = C; A --- A Cy, over variables x1, ..., xy,
Allowable (=Actual) Instances: encodings of ¢

M(¢) = {0,1}" (variable assignments)

cost(u, x): # of satisfied clauses in # under given assignment x
goal = max

me K rc;J'L(’UAX> = m



Definition 1.34 (NPO)
NPO is the class if optimization problems U = (X, X0, L, L1, M, cost, goal) with
1. L€ P,
2. there is a polynomial py; with
a) VxelLrVye M) : |yl <py(lx]) and
b) there is a polynomial time algorithm which for all y € %, x € L; with |y| < pu(|x|)
decides whether iy € M(x) holds, and

3. function cost can be computed in polynomial time.
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Definition 1.35 (PO)
PO is the class of optimization problems U = (X, X0, L, L1, M, cost, goal) with

1. U e NPO, and

2. there is an algorithm of polynomial time complexity which for all x € L; computes an
optimal solution for x and U.
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Definition 1.36 (Threshold Languages)
Let U = (X1, X0, L, L;, M, cost, goal) an optimization problem, U € NPO.
For Opty(x) the cost of an optimal solutions for x and U we define the threshold language
for U as
{(x, k)yeL;x{0,1}* | Optu(x) < kz}, if goal = min,
Langy =
{(x,k) € Li x {0,1}* | Optu(x) > ko}, if goal = max.

We say U is NP-hard, if Langy; is NP-hard.



Corollary 1.37 (Optimization is harder than Threshold)

Let U an optimization problem.
If Langy is NP-hard and if P # NP holds, we have U ¢ PO.
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Lemma 1.38 (MAX-SAT)
MAX-SAT is NP-hard.
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Summary

» We have formalized the classic notion of intractable problems.
» What is running time, what is “poly-time”?
» Decision problems <« (formal) languages
» P, NP via Turing machines <« certificates and verifiers
» For the typical case of optimization problems, there are different versions of the problem,
but (in)tractability typically carries over.

~+ We can mathematically prove a problem is intractable (NP-hard).

... but how can we tackle hard problems anyway?



seudopolynomial Algorithms
Strong NP-hardness



Definition 2.1 (Integer-Input Problem)

A U for which we can encode any input as a sequence of integers is called an integer-input
problem.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding.

(As before, integers are encoded in binary:.)
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Definition 2.2 (Pseudopolynomial algorithm)
Let U be an integer-input problem and A an algorithm that solves L.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

Timea(x) = O(p(lx], Maxint(x))),

for every instance x to U.

]’F ﬂa?(/w}/v(j < %(/‘?‘7) Poﬁyuow-;q/z LL

~ Fa{’r/f G(HA/( /



Definition 2.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let 7 : N — N be weakly increasing.

The h-bounded subproblem of U (notation Value(/);) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(|x]).



Theorem 2.4 (Pseudopolynomial is polynomial for small h)
Let U be an integer-input problem and A a pseudopolynomial algorithm for U.
Then for every polynomial / there is a polynomial algorithm for Value(h)y;.

Hence if U is a decision problem then Value(h)y; € P,
if U is an optimization problem then Value(h); € PO.
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Definition 2.5 (Knapsack (Optimization Version))

Let a tuple (w1, ..., wy, v1,...,0,b) of 2n + 1 positive integers be given, n € N.

We call b the capacity of the knapsack, w; the weight and v; the profit (value) of the i-th
object, 1 <i < n.

The optimization problem KNAPSACK asks to find a subset T C {1,2,...,n} of items with
maximal total cost cost(T) = ;e v; such that T fits into the knapsack, i.e., X};cr w; < b.
This presentation was unnecessarily cluttered;
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Theorem 2.6 (DP for Knapsack is pseudopolynomial)

For every instance I to KNaAPsack we have
Timeppxp(I) = O(|I1>-Maxint(D)), ~ (los fochoc wdsoles)

i.e., DPKP has pseudopolynomial time for KNAPSACK.



Definition 2.7 (strongly NP-hard)
An integer-input problem is called strongly NP-hard, if there exists a polynomial p such
that Value(p)y is NP-hard.

So: strongly NP-hard ~~ hard even for instances with small numbers.



Theorem 2.8 (strongly NP-hard — no pseudopoly. algorithm)
Let P # NP and U a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for L.
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(mproved Presentation of the DP algorithm for Knapsack
Definition 2.5 (Knapsack (Optimization Version))
Let a tuple (w1, ..., wy, v1,...,0,b) of 2n + 1 positive integers be given, n € N.
We call b the capacity of the knapsack, w; the weight and v; the profit (value) of the i-th
object, 1 <i < n.
The optimization problem KNAPSACK asks to find a subset T C {1,2,...,n} of items with
maximal total cost cost(T) = ;e v; such that T fits into the knapsack, i.e., X};cr w; < b.
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