Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 2

2017-04-24

Do NP-complete problems exist at all? Yes!

Definition 1.13 (SAT)

For J the set of formulee from propositional logic and code : F — £* a corresponding
encoding over alphabet X the satisfiability problem (of propositional logic), SAT for short, is
defined by following language:

SAT := {code(F) € ¥* | Fis a satisfiable formula}.

Theorem 1.14 (Cook-Levin)
SAT is NP-complete.

¢ SATe WP -DS v cochficabe < sl awisuinint

o Y/ e L Sp SAT
=z Vlob\zid‘ TTM J‘Lq{ yeoes f‘“dy"vé'wk P {V‘)
o shle ol Al 4

SyMbGG o Jﬁ{)& CIJ’ JW"H—A rZ !1/\4 r’or £

forgot position of head on tape (oops)

Observation: <), is transitive, so SAT <, X ~ X is NP-complete.

Further hard problems

Definition 1.15 (3SAT)
Given: formula ¢ in 3-CNF, i.e.,, n,m € Nand [;; € {x1,...,X;,X1,...,X,} fori € [m],j € [3]
Question: Is there a satisfying assignment v : [n] — {0,1} ?

Definition 1.16 (Vertex Cover)
Given: graph G = (V,E) and k € N
Question: AV' cV : |V/|<k A Y{u,v} €E: (ue V' voeV)

Definition 1.17 (Dominating Set)
Given: graph G = (V,E) and k € N
Question: AV' cV : |V/|<k AVoeE:(veV' VvV JueN():uecV)

Definition 1.18 (Hamiltonian Cycle)
Given: graph G = (V,E) (directed and undirected version)
Question: Is there a vertex-simple cycle in G of length |V[?

Further hard problems [2]

Definition 1.19 (Clique)
Given: graph G = (V,E) and k € N
Question: AV cV : |V| >k A Yu,ve V' :{u,v} €E

Definition 1.20 (Independent Set)
Given: graph G = (V,E) and k € N
Question: 3V cV : |V/| >k A Yu,ve V' :{u,v} ¢ E

Definition 1.21 (Traveling Salesperson (TSP))

Given: distance matrix D € N*" and k € N n-1

Question: Is there a permutation 7 : 1] — [1] with Z Drg),m(i+1) + Drngmy,ny < k?
i=1

Definition 1.22 (Graph Coloring)

Given: graph G = (V,E) and k € N

Question: Jc: V — [k] : Y{u,v} € E:c(u) # c(v)?

Further hard problems [3]

Definition 1.23 (Set Cover)
Given: n € N, sets S1,...,S;; C [n]and k € N
Question: I C [m] : Ui Si = [n] A JI| <k?

Definition 1.24 (Weighted Set Cover)

Given: n € N, sets S1,...,S;;, C [n],costscy,...,cn € Ngand k € N
Question: I C [m] : Ui Si = [n] A Digc < k?

Definition 1.25 (Closest String)
Given: s1,...,5, € 2™ and k € N
Question: 3s € X" . Vi€ [n]:dy(s,s) <k (dy Hamming-distance)

Definition 1.26 (Max Cut)
Given: graph G = (V,E) and k € N
Question: 3Cc V : |[ENn{{u,v} |ueCo¢CH >k

Further hard problems [4]

Definition 1.27 (Subset Sum)
Given: x1,...,x, € Z
Question: AT C [n] : T#DAYiqxi=07?
(missing in lecture)
Definition 1.28 ((0/1) Knapsack)
Given: wy,...,w, € N,v1,...,v, € Nand b,k € N
Question: AT C [n] : Yqqwi <b A Yqui > k?

Definition 1.29 (Bin Packing)
Given: wy,...,w, € N, b € N,_k eN
Question: Ja: [n] — [k] : Vjel[k]: Z w; < b?
i
Definition 1.30 (0/1 Integer Programming)
Given: integer linear program (ILP) A € Z"™"",b € Z" andc € Z" and k € Z
Question: Is there x € {0,1}" with Ax < band ¢'x > k? (ef‘f‘oniﬁf/y was
& in \ i lecture)

1.1 Optimization Problems

Definition 1.31 (Optimization Problem)
An optimization problem is given by 7-tuple U = (X1, o, L, Ly, M, cost, goal) with

1. XY an alphabet (called input alphabet),

2. Yo an alphabet (called output alphabet),

3. L C X} the language of allowable problem instances (for which U is well-defined),
4

. L; € L the language of actual problem instances for U
(for those we want to determine U’s complexity),

5. M:L— 2% and withx € L, M(x) is the set of all feasible solutions for x.

6. cost is a cost function, which assigns for x € L each pair (u, x) with u € M(x) a positive
real number,

7. goal € {min, max}.

Definition 1.32 (Optimal Solutions, Solution Algorithms)
Let U = (X1, X0, L, L;, M, cost, goal) an optimization problem. For each x € L; a feasible
solution iy € M(x) is called optimal for x and U, if

cost(y,x) = goal{cost(z,x) | z € M(x)}.

An algorithm A is consistent with U if A(x) € M(x) for all x € L;.
We say algorithm B solves U, if

1. B is consistent with U and

2. forall x € L, B(x) is optimal for x and U.

Examples

Natural examples: Problems above with an input parameter k.

Less immediate example:

Definition 1.33 (MAX-SAT)

Given: CNF-Formula ¢ = C; A --- A Cy, over variables x1, ..., xy,
Allowable (=Actual) Instances: encodings of ¢

M(¢) = {0,1}" (variable assignments)

cost(u, x): # of satisfied clauses in # under given assignment x
goal = max

me K rc;J'L(’UAX> = m

Definition 1.34 (NPO)
NPO is the class if optimization problems U = (X, X0, L, L1, M, cost, goal) with
1. L€ P,
2. there is a polynomial py; with
a) VxelLrVye M) : |yl <py(lx]) and
b) there is a polynomial time algorithm which for all y € %, x € L; with |y| < pu(|x|)
decides whether iy € M(x) holds, and

3. function cost can be computed in polynomial time.

L) ewa;/ ?Ml(jfaﬁ cost OC‘JMCL/OM}

MAX-S4T e NP0
}x12 w = /rvﬁuﬁw’

Definition 1.35 (PO)
PO is the class of optimization problems U = (X, X0, L, L1, M, cost, goal) with

1. U e NPO, and

2. there is an algorithm of polynomial time complexity which for all x € L; computes an
optimal solution for x and U.

check valee et d

CD_S{G(_?
Saq"r(’,C\ FFD%M OFHMZQA/O'” f,gé&(’]

N Update: (ndeed possible for any NP problem!
Cou P Dl s 7 (see Arora, Barak 200%)
~ YA
L) &CCSJQ-— b ;,gq,r(,L @(Cﬂm easy . Lcﬁmz:’_ fo %"’W%

/\\/ r“«,ves[«d b eNQﬁ{,\—\cL‘DD, 3 .LJ?Mq/\ry S??rtZ: \/ CO.S{ N € ﬁ\/

Definition 1.36 (Threshold Languages)
Let U = (X1, X0, L, L;, M, cost, goal) an optimization problem, U € NPO.
For Opty(x) the cost of an optimal solutions for x and U we define the threshold language
for U as
{(x, k)yeL;x{0,1}* | Optu(x) < kz}, if goal = min,
Langy =
{(x,k) € Li x {0,1}* | Optu(x) > ko}, if goal = max.

We say U is NP-hard, if Langy; is NP-hard.

Corollary 1.37 (Optimization is harder than Threshold)

Let U an optimization problem.
If Langy is NP-hard and if P # NP holds, we have U ¢ PO.

AS‘SUM UG@O
—> ’; 'aapyr—HM aﬂso ,Z\ %aé mwruZeJ BFAIWJ y OU(\ (@7l /‘vaﬁla,-(z xe {/

—> O/Dé:/ (K) o ée as)w/) !/vzc(/ {qM foZy'A'MA,(

-> Opqtu (K\ ‘T/CMJL-ﬂc/ - -

<
P

—> FO‘QVL?'M a/ga\ Za,miu =) j): J\(‘P ‘D

Lemma 1.38 (MAX-SAT)
MAX-SAT is NP-hard.

% -
CNF-SAT < ZMﬁMAXfSAT

X 05 aa wsoc])uj of QS b CHNF

Cc o puke !
4 P (XMMB € écwj/m)ﬂfé'r

el

e

('/W./

Summary

» We have formalized the classic notion of intractable problems.
» What is running time, what is “poly-time”?
» Decision problems <« (formal) languages
» P, NP via Turing machines <« certificates and verifiers
» For the typical case of optimization problems, there are different versions of the problem,
but (in)tractability typically carries over.

~+ We can mathematically prove a problem is intractable (NP-hard).

... but how can we tackle hard problems anyway?

seudopolynomial Algorithms
Strong NP-hardness

Definition 2.1 (Integer-Input Problem)

A U for which we can encode any input as a sequence of integers is called an integer-input
problem.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding.

(As before, integers are encoded in binary:.)

’]'ST) KF/\G ‘o c-[:, g,“h P@cls{u X IL/O
r S

14

Definition 2.2 (Pseudopolynomial algorithm)
Let U be an integer-input problem and A an algorithm that solves L.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

Timea(x) = O(p(lx], Maxint(x))),

for every instance x to U.

]’F ﬂa?(/w}/v(j < %(/‘?‘7) Poﬁyuow-;q/z LL

~ Fa{’r/f G(HA/(/

Definition 2.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let 7 : N — N be weakly increasing.

The h-bounded subproblem of U (notation Value(/);) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(|x]).

Theorem 2.4 (Pseudopolynomial is polynomial for small h)
Let U be an integer-input problem and A a pseudopolynomial algorithm for U.
Then for every polynomial / there is a polynomial algorithm for Value(h)y;.

Hence if U is a decision problem then Value(h)y; € P,
if U is an optimization problem then Value(h); € PO.

pro-doplymotd > A tas b O (p(i), Haclut)
f@(« e \/QLAGZL?[)U ~ Mag) < LW(/X}I> = O/bdc) ce Mt/

=)

plinl, Maluttd) = O(plisl (1)) = OC1) depy

Definition 2.5 (Knapsack (Optimization Version))

Let a tuple (w1, ..., wy, v1,...,0,b) of 2n + 1 positive integers be given, n € N.

We call b the capacity of the knapsack, w; the weight and v; the profit (value) of the i-th
object, 1 <i < n.

The optimization problem KNAPSACK asks to find a subset T C {1,2,...,n} of items with
maximal total cost cost(T) = ;e v; such that T fits into the knapsack, i.e., X};cr w; < b.
This presentation was unnecessarily cluttered;
Dyua ﬁﬁk ﬁ@graw wtg /jO_ﬁM gee end of file for improved version without storing T
wladiwal coedold Huad gou wead

(e, 0} = (=T ’

[\\ &~ ‘:rofw“é do be wacled exacwy

ibews 4.
AL K] /W dod dohe ud
/L\ (Hﬁ(k‘) = min . ,
[3 (M,* o T/u[i*ig). i A[{(, l{»\/i,i\] = (' T J vy doke ixt
and w/+\/[,4\VB = nall
(o @} AZO (, o ,
; _ upoate missing in lecture)
Al) = § (ai kv ’

AL (a kY] clock o0l endie; with k< T v =

@umw"ws Lot s H eudides a x V

fvee for each erbry O(4) (in ariiform model;
otherwise another log-factor)

O[W-\/) V€ - Maxlad ()

=5 DPKP | ();@u.cjo ()s-ﬂywowqaﬂ Huee,

Theorem 2.6 (DP for Knapsack is pseudopolynomial)

For every instance I to KNaAPsack we have
Timeppxp(I) = O(|I1>-Maxint(D)), ~ (los fochoc wdsoles)

i.e., DPKP has pseudopolynomial time for KNAPSACK.

Definition 2.7 (strongly NP-hard)
An integer-input problem is called strongly NP-hard, if there exists a polynomial p such
that Value(p)y is NP-hard.

So: strongly NP-hard ~~ hard even for instances with small numbers.

Theorem 2.8 (strongly NP-hard — no pseudopoly. algorithm)
Let P # NP and U a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for L.

U sboes WPhed = 3¢ Valuelply P-hord oo pollyuneaiat

(£ A was psevdopelymocial alge U

= A e u /Jyf/fm fo< xe Value(y), (by Ther 94 |
foc auy polycocial o

/e O'r}\ < —~> \(P;
‘ beoe Vabua ply U6 had NP 0

A sivgéa FJVMOWA"Q"Q e so VG’&“‘({F\U Is (}\f?fﬁ,mil
5"%@25 to clow \/Cbéul/gz)u ()(?’LUQ/ IOF ary /ojv/p(equg?

E%@/MPZ& 4 TSP s SoﬁfOP/j W]PD/LMJ

/4W‘Qf19f4 \<f’ Vaﬁw& (QBTSP

(mproved Presentation of the DP algorithm for Knapsack
Definition 2.5 (Knapsack (Optimization Version))
Let a tuple (w1, ..., wy, v1,...,0,b) of 2n + 1 positive integers be given, n € N.
We call b the capacity of the knapsack, w; the weight and v; the profit (value) of the i-th
object, 1 <i < n.
The optimization problem KNAPSACK asks to find a subset T C {1,2,...,n} of items with
maximal total cost cost(T) = ;e v; such that T fits into the knapsack, i.e., X};cr w; < b.

{Dc wacnq [£=) M/\'v{z\—-:-—‘
Dy acede Prosea ;

UWey [dea e o be dater orf e f fadsp- of st
QoT m(mv‘ welshif bosud)
o fix dle emacd ofb & for ol O<k< V= T,
ACck) = wmin { Wi 3ST=LT 0 T =10<b A va;ZK
cel {eT ’T

N 3 = vl ZA[[“it kj ¥ dou? pick ¢
A[Mk - w Afg»ﬂ\k~\/fz+wg //P"C& 5
0 k=0
Aii‘ k] = W4 = V1
4 o2 othoruulie

/\EVL\ l(} S{tvf‘g SOTNA LS: ,\/\ 50 dsesa ool AEVHL(B Z o0
ep%’wa)@ clntern of Metns ({’ow(l b b@e&otmew"uj

/(D?UMM"Uj M H OMJ?JEJ wx Vo< " Map bat £)

bt o coompebe oue ey OC1) O fog (Max Lddc)))
‘\/ < Ve Max/u{/x)

