Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild Markus Nebel

Lecture 2

2017-04-24

Do NP-complete problems exist at all? Yes!

Definition 1.13 (SAT)

For $\mathcal F$ the set of formulæ from propositional logic and $code: \mathcal F \to \Sigma^*$ a corresponding encoding over alphabet Σ the *satisfiability problem* (of propositional logic), SAT for short, is defined by following language:

SAT :=
$$\{code(F) \in \Sigma^* \mid F \text{ is a satisfiable formula}\}.$$

Theorem 1.14 (Cook-Levin)

SAT is NP-complete.

- SAT ∈ N8 = 258 V cortificate = sal. assignment
- · YLENP L SP SAT
 - -> nondel. TM that was poly-time p(n)
 - . state at time t
 - · symbol on tope at time I and por i

forgot position of head on tape (oops)

Observation: \leq_p is transitive, so SAT $\leq_p X \rightsquigarrow X$ is \mathbb{NP} -complete.

Further hard problems

Definition 1.15 (3SAT)

Given: formula ϕ in 3-CNF, i.e., $n, m \in \mathbb{N}$ and $l_{ij} \in \{x_1, \dots, x_n, \overline{x}_1, \dots, \overline{x}_n\}$ for $i \in [m], j \in [3]$ Question: Is there a satisfying assignment $v : [n] \to \{0, 1\}$?

Definition 1.16 (Vertex Cover)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$

Definition 1.17 (Dominating Set)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \le k \land \forall v \in E : (v \in V' \lor \exists u \in N(v) : u \in V')$

Definition 1.18 (Hamiltonian Cycle)

Given: graph G = (V, E) (directed and undirected version)

Question: Is there a vertex-simple cycle in G of length |V|?

Further hard problems [2]

Definition 1.19 (Clique)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \in E$

Definition 1.20 (Independent Set)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

Definition 1.21 (Traveling Salesperson (TSP))

Given: distance matrix $D \in \mathbb{N}^{n \times n}$ and $k \in \mathbb{N}$

Question: Is there a permutation $\pi: [n] \to [n]$ with $\sum_{i=1}^{n} D_{\pi(i),\pi(i+1)} + D_{\pi(n),\pi(1)} \le k$?

Definition 1.22 (Graph Coloring)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists c: V \to [k] : \forall \{u, v\} \in E: c(u) \neq c(v)$?

Further hard problems [3]

Definition 1.23 (Set Cover)

Given: $n \in \mathbb{N}$, sets $S_1, \dots, S_m \subseteq [n]$ and $k \in \mathbb{N}$ Question: $\exists I \subseteq [m] : \bigcup_{i \in I} S_i = [n] \land |I| \leq k$?

Definition 1.24 (Weighted Set Cover)

Given: $n \in \mathbb{N}$, sets $S_1, \ldots, S_m \subseteq [n]$, costs $c_1, \ldots, c_m \in \mathbb{N}_0$ and $k \in \mathbb{N}$

Question: $\exists I \subseteq [m]$: $\bigcup_{i \in I} S_i = [n] \land \sum_{i \in I} c_i \leq k$?

Definition 1.25 (Closest String)

Given: $s_1, \ldots, s_n \in \Sigma^m$ and $k \in \mathbb{N}$

Question: $\exists s \in \Sigma^m$: $\forall i \in [n] : d_H(s, s_i) \le k$ (d_H Hamming-distance)

Definition 1.26 (Max Cut)

Given: graph G = (V, E) and $k \in \mathbb{N}$

Question: $\exists C \subset V : |E \cap \{\{u,v\} \mid u \in C, v \notin C\}| \ge k$

Further hard problems [4]

Definition 1.27 (Subset Sum)

Given: $x_1, \ldots, x_n \in \mathbb{Z}$

Question: $\exists I \subseteq [n] : \underline{I \neq \emptyset} \land \sum_{i \in I} x_i = 0$?

(missing in lecture)

Definition 1.28 ((0/1) Knapsack)

Given: $w_1, \ldots, w_n \in \mathbb{N}$, $v_1, \ldots, v_n \in \mathbb{N}$ and $b, k \in \mathbb{N}$ Question: $\exists I \subseteq [n] : \sum_{i \in I} w_i \le b \land \sum_{i \in I} v_i \ge k$?

Definition 1.29 (Bin Packing)

Given: $w_1, \ldots, w_n \in \mathbb{N}, b \in \mathbb{N}, \underline{k \in \mathbb{N}}$

Question: $\exists a : [n] \to [k] : \forall \overline{j} \in [k] : \sum_{\substack{i=1,\dots,n\\a[i]=i}} w_i \leq b$?

Definition 1.30 (0/1 Integer Programming)

Given: integer linear program (ILP) $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ and $c \in \mathbb{Z}^n$ and $k \in \mathbb{Z}$

Question: Is there $x \in \{0,1\}^n$ with $Ax \le b$ and $c^Tx \ge k$?

k in N in lecture)

1.1 Optimization Problems

Definition 1.31 (Optimization Problem)

An *optimization problem* is given by 7-tuple $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ with

- **1.** Σ_I an alphabet (called input alphabet),
- **2.** Σ_O an alphabet (called output alphabet),
- **3.** $L \subseteq \Sigma_I^*$ the language of allowable problem instances (for which *U* is well-defined),
- **4.** $L_I \subseteq L$ the language of actual problem instances for U (for those we want to determine U's complexity),
- **5.** $M: L \to 2^{\sum_{0}^{+}}$ and with $x \in L$, M(x) is the set of all feasible solutions for x.
- **6.** cost is a cost function, which assigns for $x \in L$ each pair (u, x) with $u \in M(x)$ a positive real number,
- 7. $goal \in \{\min, \max\}.$

Definition 1.32 (Optimal Solutions, Solution Algorithms)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem. For each $x \in L_I$ a feasible solution $y \in M(x)$ is called *optimal for x and U*, if

$$cost(y, x) = goal\{cost(z, x) \mid z \in M(x)\}.$$

An algorithm A is *consistent with* U if $A(x) \in M(x)$ for all $x \in L_I$. We say *algorithm* B *solves* U, if

- **1.** B is consistent with U and
- **2.** for all $x \in L_I$, B(x) is optimal for x and U.

Examples

Natural examples: Problems above with an input parameter *k*.

Less immediate example:

Definition 1.33 (MAX-SAT)

Given: CNF-Formula $\phi = C_1 \wedge \cdots \wedge C_m$ over variables x_1, \dots, x_n Allowable (=Actual) Instances: encodings of ϕ $M(\phi) = \{0,1\}^n$ (variable assignments) cost(u,x): # of satisfied clauses in u under given assignment x $goal = \max$

Definition 1.34 (NPO)

NPO is the class if optimization problems $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ with

- 1. $L_I \in \mathcal{P}$,
- **2.** there is a polynomial p_U with
 - *a*) $\forall x \in L_I \ \forall y \in M(x) : |y| \le p_U(|x|)$ and
 - **b)** there is a polynomial time algorithm which for all $y \in \Sigma_O^*$, $x \in L_I$ with $|y| \le p_U(|x|)$ decides whether $y \in M(x)$ holds, and
- **3.** function *cost* can be computed in polynomial time.

$$MAX-SAT \in NPO$$
 $|x| \ge n = |solution|$

Definition 1.35 (PO)

 \mathcal{PO} is the class of optimization problems $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ with

- **1.** $U \in \mathbb{NPO}$, and
- **2.** there is an algorithm of polynomial time complexity which for all $x \in L_I$ computes an optimal solution for x and U.

Glossary of Problem Types fund value check value threshold evaluation problem decision problem single (os \ eS ansner ophinization problem search problem so leiboa/ Update: Indeed possible for any NP problem! Complexités ? (see Arora, Barak 2007) 2 decision ho search Often easy , unclear in general threshed to evaluation; binary search V costs & M

Definition 1.36 (Threshold Languages)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem, $U \in \mathbb{NPO}$.

For $Opt_U(x)$ the cost of an optimal solutions for x and U we define the *threshold language* for U as

$$Lang_{U} = \begin{cases} \left\{(x,k) \in L_{I} \times \{0,1\}^{\star} \mid Opt_{U}(x) \leq k_{2}\right\}, & \text{if } goal = \min, \\ \left\{(x,k) \in L_{I} \times \{0,1\}^{\star} \mid Opt_{U}(x) \geq k_{2}\right\}, & \text{if } goal = \max. \end{cases}$$

We say U is NP-hard, if $Lang_U$ is NP-hard.

4

Corollary 1.37 (Optimization is harder than Threshold)

Let *U* an optimization problem.

If $Lang_U$ is \mathbb{NP} -hard and if $\mathbb{P} \neq \mathbb{NP}$ holds, we have $U \notin \mathbb{PO}$.

Lemma 1.38 (MAX-SAT)

MAX-SAT is NP-hard.

CNT-SAT < Languax-SAT

x is an enooding of \$ in CNF, with in claves

'compute' (X, M) & Lang MAKSAT?

 \square

Summary

- ▶ We have formalized the classic notion of intractable problems.
 - ▶ What is running time, what is "poly-time"?
 - $\blacktriangleright \ \ Decision \ problems \ \leftrightarrow \ (formal) \ languages$
 - ▶ \mathcal{P} , \mathcal{NP} via Turing machines \leftrightarrow certificates and verifiers
 - ► For the typical case of optimization problems, there are different versions of the problem, but (in)tractability typically carries over.
- \rightsquigarrow We can mathematically prove a problem is intractable (\mathbb{NP} -hard).

... but how can we tackle hard problems anyway?

Pseudopolynomial Algorithms and Strong NP-hardness

Definition 2.1 (Integer-Input Problem)

A *U* for which we can encode any input as a sequence of integers is called an *integer-input problem*.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer occurring in the input encoding.

(As before, integers are encoded in binary.)

Definition 2.2 (Pseudopolynomial algorithm)

Let *U* be an integer-input problem and *A* an algorithm that solves *U*.

A has $pseudopolynomial\ time\ for\ U$, if there is a polynomial p in two variables with

$$Time_A(x) = \mathcal{O}(p(|x|, MaxInt(x))),$$

for every instance x to U.

Definition 2.3 (Value-Bounded Subproblem)

Let *U* be an integer-input problem and let $h : \mathbb{N} \to \mathbb{N}$ be weakly increasing.

The *h-bounded subproblem of U* (notation $Value(h)_U$) is the problem which results from *U* by allowing only inputs *x* with $MaxInt(x) \le h(|x|)$.

Theorem 2.4 (Pseudopolynomial is polynomial for small *h*)

Let U be an integer-input problem and A a pseudopolynomial algorithm for U. Then for every polynomial h there is a polynomial algorithm for Value(h)U.

Hence if U is a decision problem then $Value(h)_U \in \mathcal{P}$, if U is an optimization problem then $Value(h)_U \in \mathcal{PO}$.

pseudoplynounal
$$\rightarrow$$
 A has time $O(p(|x|, M_{ox}|u_{t}/x)))$
for $x \in Value(h)_{U}$ \rightarrow $Max|u_{t}/x| \leq h(|x|) = O(|x|^{c})$ $c \in M/2$
=) $p(|x|, Max|u_{t}/x|) = O(|x|, |x|^{c}) = O(|x|^{d})$ de M

Definition 2.5 (Knapsack (Optimization Version))

Let a tuple $(w_1, \ldots, w_n, v_1, \ldots, v_n, b)$ of 2n + 1 positive integers be given, $n \in \mathbb{N}$. We call b the *capacity* of the knapsack, w_i the *weight* and v_i the *profit* (value) of the i-th object, $1 \le i \le n$.

The *optimization problem KNAPSACK* asks to find a subset $T \subseteq \{1, 2, ..., n\}$ of items with maximal total cost $cost(T) = \sum_{i \in T} v_i$ such that T fits into the knapsack, i.e., $\sum_{i \in T} w_i \leq b$.

A[(n,k)] check all entres with $k \leq \sum V_i = V$

$$O(n \cdot V)$$
 $V \leq n \cdot Max \ln l(x)$

Theorem 2.6 (DP for Knapsack is pseudopolynomial)

For every instance I to Knapsack we have

$$Time_{DPKP}(I) = O(|I|^2 \cdot MaxInt(I)),$$
 (los fortor valsales)

i.e., DPKP has pseudopolynomial time for $\ensuremath{\mathsf{KNAPSACK}}.$

Definition 2.7 (strongly NP-hard)

An integer-input problem is called *strongly* \mathbb{NP} -*hard*, if there exists a polynomial p such that $Value(p)_U$ is \mathbb{NP} -hard.

So: strongly NP-hard \rightsquigarrow hard even for instances with small numbers.

Theorem 2.8 (strongly NP-hard → no pseudopoly. algorithm)

Let $\mathcal{P} \neq \mathcal{NP}$ and U a strongly \mathcal{NP} -hard (integer-input) problem. Then there exists no algorithm with pseudopolynomial time for U.

U strong NP-hard > 3p Value(p) UP-hard for polynomial p

If A was pseudopolynomial algo U

=> A rows in poly-time for x e Value(q) U (by Thun 2.4)

for any polynomial q

in part, for p Value(p) UP-hard

I

A single polynomial p, so Value(p), is NP-hard, so Strees to show Value(q), NP-hard for any polynomial q.

Example: TSP is strong MP-hard

Hamilton <p Value (2) TSP

6 has AC as town of length u

Hamilton Ng-hard

Improved Presentation of the DP algorithm for Knapsack

Definition 2.5 (Knapsack (Optimization Version))

Let a tuple $(w_1, \ldots, w_n, v_1, \ldots, v_n, b)$ of 2n + 1 positive integers be given, $n \in \mathbb{N}$.

We call b the *capacity* of the knapsack, w_i the *weight* and v_i the *profit* (value) of the i-th object, $1 \le i \le n$.

The *optimization problem KNAPSACK* asks to find a subset $T \subseteq \{1, 2, ..., n\}$ of items with maximal total cost $cost(T) = \sum_{i \in T} v_i$ such that T fits into the knapsack, i.e., $\sum_{i \in T} w_i \leq b$.

Dynamic Programming

Ley Idea: ith earn be token or not indep. of rest

But respect weight bound

Defix the exact profit
$$k$$
 for all $0 \le k \le V = \sum_{i=1}^{n} V_i$

A[i,k] = min { $W: \exists I = Ei3: \bigcup_{i \in I} w_i = W \le b \land \bigcup_{i \in I} V_i = k$ }

A[i,k] = min { $AEi-1,k-Vi3+w_i: //picki$ }

A[1,k] = { $0 k=0$

W1 $k=V1$
 $+\infty$ otherwise

A[n,k] start with k= V, go down with A[n,k] = 0 optimal choice of items found by book trocky

entries nx V & n2. Maxhatlx)

V & n. Maxlut(x)

time to compute one entry O(1) O(log (Maxlat(x)))

Ruming Home