
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 2
2017-04-24

Do NP-complete problems exist at all? Yes!

Definition 1.13 (SAT)
For F the set of formulæ from propositional logic and code : F → Σ� a corresponding
encoding over alphabet Σ the satisfiability problem (of propositional logic), SAT for short, is
defined by following language:

SAT � {code(F) ∈ Σ� | F is a satisfiable formula}. �

Theorem 1.14 (Cook-Levin)
SAT is NP-complete. �

Observation: ≤p is transitive, so SAT ≤p X � X is NP-complete.

forgot position of head on tape (oops)

Further hard problems

Definition 1.15 (3SAT)
Given: formula φ in 3-CNF, i.e., n,m ∈ N and lĳ ∈ {x1 , . . . , xn , x1 , . . . , xn} for i ∈ [m], j ∈ [3]
Question: Is there a satisfying assignment v : [n] → {0, 1} ? �

Definition 1.16 (Vertex Cover)
Given: graph G � (V, E) and k ∈ N

Question: ∃V� ⊂ V : |V� | ≤ k ∧ ∀{u, v} ∈ E :
�
u ∈ V� ∨ v ∈ V�� �

Definition 1.17 (Dominating Set)
Given: graph G � (V, E) and k ∈ N

Question: ∃V� ⊂ V : |V� | ≤ k ∧ ∀v ∈ E :
�
v ∈ V� ∨ ∃u ∈ N(v) : u ∈ V�� �

Definition 1.18 (Hamiltonian Cycle)
Given: graph G � (V, E) (directed and undirected version)
Question: Is there a vertex-simple cycle in G of length |V |? �

Further hard problems [2]

Definition 1.19 (Clique)
Given: graph G � (V, E) and k ∈ N

Question: ∃V� ⊂ V : |V� | ≥ k ∧ ∀u, v ∈ V� : {u, v} ∈ E �

Definition 1.20 (Independent Set)
Given: graph G � (V, E) and k ∈ N

Question: ∃V� ⊂ V : |V� | ≥ k ∧ ∀u, v ∈ V� : {u, v} � E �

Definition 1.21 (Traveling Salesperson (TSP))
Given: distance matrix D ∈ Nn×n and k ∈ N

Question: Is there a permutation π : [n] → [n] with
n−1�
i�1

Dπ(i),π(i+1) + Dπ(n),π(1) ≤ k ? �

Definition 1.22 (Graph Coloring)
Given: graph G � (V, E) and k ∈ N

Question: ∃c : V → [k] : ∀{u, v} ∈ E : c(u) � c(v) ? �

Further hard problems [3]

Definition 1.23 (Set Cover)
Given: n ∈ N, sets S1 , . . . , Sm ⊆ [n] and k ∈ N

Question: ∃I ⊆ [m] :
�

i∈I Si � [n] ∧ |I| ≤ k ? �

Definition 1.24 (Weighted Set Cover)
Given: n ∈ N, sets S1 , . . . , Sm ⊆ [n], costs c1 , . . . , cm ∈ N0 and k ∈ N

Question: ∃I ⊆ [m] :
�

i∈I Si � [n] ∧ �
i∈I ci ≤ k ? �

Definition 1.25 (Closest String)
Given: s1 , . . . , sn ∈ Σm and k ∈ N

Question: ∃s ∈ Σm : ∀i ∈ [n] : dH(s, si) ≤ k (dH Hamming-distance) �

Definition 1.26 (Max Cut)
Given: graph G � (V, E) and k ∈ N

Question: ∃C ⊂ V :
��E ∩ {{u, v} | u ∈ C, v � C}�� ≥ k �

Further hard problems [4]

Definition 1.27 (Subset Sum)
Given: x1 , . . . , xn ∈ Z

Question: ∃I ⊆ [n] : I � ∅ ∧�
i∈I xi � 0 ? �

Definition 1.28 ((0/1) Knapsack)
Given: w1 , . . . ,wn ∈ N, v1 , . . . , vn ∈ N and b, k ∈ N

Question: ∃I ⊆ [n] :
�

i∈I wi ≤ b ∧ �
i∈I vi ≥ k ? �

Definition 1.29 (Bin Packing)
Given: w1 , . . . ,wn ∈ N, b ∈ N, k ∈ N

Question: ∃a : [n] → [k] : ∀j ∈ [k] :
�

i�1,...,n
a[i]�j

wi ≤ b ? �

Definition 1.30 (0/1 Integer Programming)
Given: integer linear program (ILP) A ∈ Zm×n, b ∈ Zm and c ∈ Zn and k ∈ Z

Question: Is there x ∈ {0, 1}n with Ax ≤ b and cTx ≥ k ? �

(missing in lecture)

(erroneously was
 k in N in lecture)

1.1 Optimization Problems

Definition 1.31 (Optimization Problem)
An optimization problem is given by 7-tuple U � (ΣI ,ΣO , L, LI ,M, cost, goal) with

1. ΣI an alphabet (called input alphabet),
2. ΣO an alphabet (called output alphabet),
3. L ⊆ Σ�I the language of allowable problem instances (for which U is well-defined),
4. LI ⊆ L the language of actual problem instances for U

(for those we want to determine U’s complexity),
5. M : L → 2Σ�O and with x ∈ L, M(x) is the set of all feasible solutions for x.
6. cost is a cost function, which assigns for x ∈ L each pair (u, x) with u ∈ M(x) a positive

real number,
7. goal ∈ {min,max}. �

Definition 1.32 (Optimal Solutions, Solution Algorithms)
Let U � (ΣI ,ΣO , L, LI ,M, cost, goal) an optimization problem. For each x ∈ LI a feasible
solution y ∈ M(x) is called optimal for x and U, if

cost(y, x) � goal{cost(z, x) | z ∈ M(x)}. �

An algorithm A is consistent with U if A(x) ∈ M(x) for all x ∈ LI.
We say algorithm B solves U, if

1. B is consistent with U and
2. for all x ∈ LI, B(x) is optimal for x and U. �

Examples
Natural examples: Problems above with an input parameter k.

Less immediate example:

Definition 1.33 (MAX-SAT)
Given: CNF-Formula φ � C1 ∧ · · · ∧ Cm over variables x1 , . . . , xn
Allowable (=Actual) Instances: encodings of φ
M(φ) � {0, 1}n (variable assignments)
cost(u, x): # of satisfied clauses in u under given assignment x
goal � max �

Definition 1.34 (NPO)
NPO is the class if optimization problems U � (ΣI ,ΣO , L, LI ,M, cost, goal) with

1. LI ∈ P,
2. there is a polynomial pU with

a) ∀x ∈ LI ∀y ∈ M(x) : |y| ≤ pU(|x|) and
b) there is a polynomial time algorithm which for all y ∈ Σ�O, x ∈ LI with |y| ≤ pU(|x|)

decides whether y ∈ M(x) holds, and

3. function cost can be computed in polynomial time. �

Definition 1.35 (PO)
PO is the class of optimization problems U � (ΣI ,ΣO , L, LI ,M, cost, goal) with

1. U ∈ NPO, and
2. there is an algorithm of polynomial time complexity which for all x ∈ LI computes an

optimal solution for x and U. �

Update: Indeed possible for any NP problem!
(see Arora, Barak 2007)

Definition 1.36 (Threshold Languages)
Let U � (ΣI ,ΣO , L, LI ,M, cost, goal) an optimization problem, U ∈ NPO.
For OptU(x) the cost of an optimal solutions for x and U we define the threshold language
for U as

LangU �



�(x, k) ∈ LI × {0, 1}� �� OptU(x) ≤ k2

�
, if goal � min,�(x, k) ∈ LI × {0, 1}� �� OptU(x) ≥ k2

�
, if goal � max.

We say U is NP-hard, if LangU is NP-hard. �

Corollary 1.37 (Optimization is harder than Threshold)
Let U an optimization problem.
If LangU is NP-hard and if P � NP holds, we have U � PO. �

Lemma 1.38 (MAX-SAT)
MAX-SAT is NP-hard. �

Summary
� We have formalized the classic notion of intractable problems.

� What is running time, what is “poly-time”?
� Decision problems ↔ (formal) languages
� P, NP via Turing machines ↔ certificates and verifiers
� For the typical case of optimization problems, there are different versions of the problem,

but (in)tractability typically carries over.

� We can mathematically prove a problem is intractable (NP-hard).

. . . but how can we tackle hard problems anyway?

2Pseudopolynomial Algorithms
and Strong NP-hardness

Definition 2.1 (Integer-Input Problem)
A U for which we can encode any input as a sequence of integers is called an integer-input
problem.
For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding. �

(As before, integers are encoded in binary.)

Definition 2.2 (Pseudopolynomial algorithm)
Let U be an integer-input problem and A an algorithm that solves U.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

TimeA(x) � O

�
p
�|x|,MaxInt(x)� � ,

for every instance x to U. �

Definition 2.3 (Value-Bounded Subproblem)
Let U be an integer-input problem and let h : N → N be weakly increasing.
The h-bounded subproblem of U (notation Value(h)U) is the problem which results from U by
allowing only inputs x with MaxInt(x) ≤ h(|x|). �

Theorem 2.4 (Pseudopolynomial is polynomial for small h)
Let U be an integer-input problem and A a pseudopolynomial algorithm for U.
Then for every polynomial h there is a polynomial algorithm for Value(h)U. �

Hence if U is a decision problem then Value(h)U ∈ P,
if U is an optimization problem then Value(h)U ∈ PO.

Definition 2.5 (Knapsack (Optimization Version))
Let a tuple (w1 , . . . ,wn , v1 , . . . , vn , b) of 2n + 1 positive integers be given, n ∈ N.
We call b the capacity of the knapsack, wi the weight and vi the profit (value) of the i-th
object, 1 ≤ i ≤ n.
The optimization problem K������� asks to find a subset T ⊆ {1, 2, . . . , n} of items with
maximal total cost cost(T) � �

i∈T vi such that T fits into the knapsack, i.e.,
�

i∈T wi ≤ b. �
This presentation was unnecessarily cluttered;
see end of file for improved version without storing T

(update missing in lecture)

(in uniform model;
 otherwise another log-factor)

Theorem 2.6 (DP for Knapsack is pseudopolynomial)
For every instance I to K������� we have

TimeDPKP(I) � O
�|I|2 · MaxInt(I)� ,

i.e., DPKP has pseudopolynomial time for K�������. �

Definition 2.7 (strongly NP-hard)
An integer-input problem is called strongly NP-hard, if there exists a polynomial p such
that Value(p)U is NP-hard. �

So: strongly NP-hard � hard even for instances with small numbers.

Theorem 2.8 (strongly NP-hard → no pseudopoly. algorithm)
Let P � NP and U a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for U. �

Definition 2.5 (Knapsack (Optimization Version))
Let a tuple (w1 , . . . ,wn , v1 , . . . , vn , b) of 2n + 1 positive integers be given, n ∈ N.
We call b the capacity of the knapsack, wi the weight and vi the profit (value) of the i-th
object, 1 ≤ i ≤ n.
The optimization problem K������� asks to find a subset T ⊆ {1, 2, . . . , n} of items with
maximal total cost cost(T) � �

i∈T vi such that T fits into the knapsack, i.e.,
�

i∈T wi ≤ b. �

Improved Presentation of the DP algorithm for Knapsack

