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w to Solve Hard Problems?



View on NP-completeness in elementary courses:

nOLLEL L L

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979



“

... but this is not the end of the story

you had just neatly sidestepped potential charges of incompetence by proving that the bandersnatch
problem is NP-complete.

Howeuver, the bandersnatch problem had refused to vanish at the sound of those mighty
words, and you were still faced with the task of finding some usable algorithm for dealing with it.

Garey, Johnson 1979
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vs. NP revisited



1.1 Model of Computation
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Definition 1.1 (Time and Space Complexity)

Let Xj and Yo two alphabets and A an algorithm implementing a total mapping Xf — XL%.
Then for each x € 7 we denote by Time(x) (resp. Spacea(x)) the logarithmic time
complexity (resp. logarithmic space complexity) for A on x.
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Definition 1.2 (Worst-Case Complexity)
Let Xj and Yo two alphabets and A an algorithm implementing a total mapping Xf — XL%.
The worst case time complexity of A is the function Times : N — N with

Timea(n) = max{Timea(x) | x € Z@,
for each nn € N. The worst case space complexity of A is given by function Spaces : N — N with

Spaces(n) = max{Spacea(x) | x € L }.



Definition 1.3 (Decision Problem and Algorithms)
A decision problem is given by P = (L, U, X) for X an alphabetand L C U C ©*. An
algorithm A solves (decides) decision problem P, if for all x € U

1. A(x)=1forxeL,and

2. Ax)=0forxe U\L (i.e.x¢L)
holds. Here A(x) denotes the output of A on input x. If U = Z* holds we denote P briefly
by (L, X).

~ A effectively computes a total function A : U — {0, 1}.



Theorem 1.4 (Inconsistency of Complexities)
There is a decision problem P = (L, {0, 1}) such that for any algorithm A that solves P
there is another algorithm B that also decides P but with

Timeg(n) = log,(Timea(n))

for an infinite number of natural numbers 7.



Definition 1.5 (Upper/Lower Bounds, Optimal Algorithms)
Let U be an algorithmic problem and f, g functions Ng — R™.

> We call O(g(n)) an upper bound for time complexity of U if an algorithm A exists that
solves U in time Timex(n) € O(g(n)).

> We say Q(f(n)) is a lower bound for time complexity of U if each algorithm B that solves
U needs time Timep(n) € Q(f (n)).

» An algorithm C is called optimal for U if Timec(n) € O(g(n)) and €2(g(n)) is a lower
bound for the time complexity of U.
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1.2 The Classes P and NP

Definition 1.6 (P, tractable)
We define the class of languages P decidable in polynomial time by

P = { L = L(M) ) M is a Turing machine (algorithm)
A Timep(n) € O(n°) forac € N }
A language (a decision problem) L € P is called tractable / efficiently decidable.
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Definition 1.7 (Nondeterminism, NP)

Let M a nondeterministic Turing machine (algorithm) and L a language over alphabet X.

» M accepts L (L(M) = L), for all x € L there is at least one computation of M which
accepts x and for all y ¢ L every computation of M rejects .

» For each x € L the time complexity Timey;(x) of M on x is given by the time needed by a
shortest accepting computation of M on x.

» The time complexity of M is a function N — N defined by &

Timep(n) = max{Timep(x) | x € L(M) N X"}. o % :
S vty
> We define class NP by

NP = {L(M) | M nondeterministic TM with polynomial time}.
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Definition 1.8 (Certificates, Verifier, VP)
Let L C X* a language.

» An algorithm A acting on inputs from X* x {0, 1}* is called verifier for L (notation

Does A accepts input (w, c) we say c is proof (or certificate) for w € L.

Yes
L={weX*|3ce{0,1}*)(Aw,c) =1)}.

» A verifier A for L is a polynomial-time verifier if there is a d € N such that forallw € L,
Timea(w, c) € O(|w|?) for a proof c for w € L.

> We define the class of polynomially verifiable languages NP by
VP = {V(A)| A is polynomial time verifier}.
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Theorem 1.9 (Nondeterminism > certificate)
NP = VP.
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Definition 1.10 (Poly-time reductions) % s weore complen " dhan

Letl, € Z;‘ and [, € X} be two languages.

We say L, is polynomial reducible to L, (notation L1 <, L), if there exists a (deterministic)
algorithm A of polynomial time complexity that computes a mapping X} — L such that

VxeXl : xeL; & A(x) € L,.
We call A the polynomial time reduction of Ly to L.
Definition 1.11 (NP-hard, NP-complete)

Alanguage L is called NP-hard if for all U € NP we have U <, L.
A language L is called NP-complete, if additionally L € NP.



Lemma 1.12 (All for one, and one for all)
If L is NP-hard and L € P we must have P =ﬂ
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