
Advanced Algorithmics
Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 1
2017-04-20

0How to Solve Hard Problems?

View on NP-completeness in elementary courses:

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979

. . . but this is not the end of the story
“you had just neatly sidestepped potential charges of incompetence by proving that the bandersnatch
problem is NP-complete.
However, the bandersnatch problem had refused to vanish at the sound of those mighty
words, and you were still faced with the task of finding some usable algorithm for dealing with it.”

Garey, Johnson 1979

1P vs. NP revisited

1.1 Model of Computation

Definition 1.1 (Time and Space Complexity)
Let ΣI and ΣO two alphabets and A an algorithm implementing a total mapping Σ�I → Σ�O.
Then for each x ∈ Σ�I we denote by TimeA(x) (resp. SpaceA(x)) the logarithmic time
complexity (resp. logarithmic space complexity) for A on x. �

Definition 1.2 (Worst-Case Complexity)
Let ΣI and ΣO two alphabets and A an algorithm implementing a total mapping Σ�I → Σ�O.
The worst case time complexity of A is the function TimeA : N → N with

TimeA(n) � max{TimeA(x) | x ∈ Σn
I },

for each n ∈ N. The worst case space complexity of A is given by function SpaceA : N → N with

SpaceA(n) � max{SpaceA(x) | x ∈ Σn
I }. �

Definition 1.3 (Decision Problem and Algorithms)
A decision problem is given by P � (L,U,Σ) for Σ an alphabet and L ⊆ U ⊆ Σ�. An
algorithm A solves (decides) decision problem P, if for all x ∈ U

1. A(x) � 1 for x ∈ L, and
2. A(x) � 0 for x ∈ U \ L (i.e. x � L)

holds. Here A(x) denotes the output of A on input x. If U � Σ� holds we denote P briefly
by (L,Σ). �

� A effectively computes a total function A : U → {0, 1}.

Theorem 1.4 (Inconsistency of Complexities)
There is a decision problem P � (L, {0, 1}) such that for any algorithm A that solves P
there is another algorithm B that also decides P but with

TimeB(n) � log2
�
TimeA(n)

�
for an infinite number of natural numbers n. �

Definition 1.5 (Upper/Lower Bounds, Optimal Algorithms)
Let U be an algorithmic problem and f , g functions N0 → R+.

� We call O(g(n)) an upper bound for time complexity of U if an algorithm A exists that
solves U in time TimeA(n) ∈ O(g(n)).

� We say Ω(f (n)) is a lower bound for time complexity of U if each algorithm B that solves
U needs time TimeB(n) ∈ Ω(f (n)).

� An algorithm C is called optimal for U if TimeC(n) ∈ O(g(n)) and Ω(g(n)) is a lower
bound for the time complexity of U.

�

1.2 The Classes P and NP

Definition 1.6 (P, tractable)
We define the class of languages P decidable in polynomial time by

P �

�
L � L(M)

��� M is a Turing machine (algorithm)

∧ TimeM(n) ∈ O(nc) for a c ∈ N
�
.

A language (a decision problem) L ∈ P is called tractable / efficiently decidable. �

Definition 1.7 (Nondeterminism, NP)
Let M a nondeterministic Turing machine (algorithm) and L a language over alphabet Σ.

� M accepts L (L(M) � L), for all x ∈ L there is at least one computation of M which
accepts x and for all y � L every computation of M rejects y.

� For each x ∈ L the time complexity TimeM(x) of M on x is given by the time needed by a
shortest accepting computation of M on x.

� The time complexity of M is a function N → N defined by
TimeM(n) � max{TimeM(x) | x ∈ L(M) ∩ Σn}.

� We define class NP by

NP � {L(M) | M nondeterministic TM with polynomial time}. �

Definition 1.8 (Certificates, Verifier, VP)
Let L ⊆ Σ� a language.

� An algorithm A acting on inputs from Σ� × {0, 1}� is called verifier for L (notation
L � V(A)), if

L � {w ∈ Σ� | (∃c ∈ {0, 1}�)(A(w, c) � 1)}.
Does A accepts input (w, c) we say c is proof (or certificate) for w ∈ L.

� A verifier A for L is a polynomial-time verifier if there is a d ∈ N such that for all w ∈ L,
TimeA(w, c) ∈ O(|w|d) for a proof c for w ∈ L.

� We define the class of polynomially verifiable languages NP by

VP � {V(A) | A is polynomial time verifier}. �

Theorem 1.9 (Nondeterminism ↔ certificate)
NP � VP. �

Definition 1.10 (Poly-time reductions)
Let L1 ∈ Σ�1 and L2 ∈ Σ�2 be two languages.
We say L1 is polynomial reducible to L2 (notation L1 ≤p L2), if there exists a (deterministic)
algorithm A of polynomial time complexity that computes a mapping Σ�1 → Σ�2 such that

∀x ∈ Σ�1 : x ∈ L1 ⇔ A(x) ∈ L2.

We call A the polynomial time reduction of L1 to L2. �

Definition 1.11 (NP-hard, NP-complete)
A language L is called NP-hard if for all U ∈ NP we have U ≤p L.
A language L is called NP-complete, if additionally L ∈ NP. �

Lemma 1.12 (All for one, and one for all)
If L is NP-hard and L ∈ P we must have P � NP. �

