Advanced Algorithmics

Strategies for Tackling Hard Problems

Sebastian Wild
Markus Nebel

Lecture 1

2017-04-20

w to Solve Hard Problems?

View on NP-completeness in elementary courses:

nOLLEL L L

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979

“

... but this is not the end of the story

you had just neatly sidestepped potential charges of incompetence by proving that the bandersnatch
problem is NP-complete.

Howeuver, the bandersnatch problem had refused to vanish at the sound of those mighty
words, and you were still faced with the task of finding some usable algorithm for dealing with it.

Garey, Johnson 1979

”

Aool(fcr(ﬂ&[){)ﬁ\mﬁu twi (HAJZO(\V
° Ps’guzlofo[yu\ou/m"a,é 6\150
Pava\mdﬂnﬁué cowP@h‘é(/
® Qrprax{vmmk'ow &150

0 You LJ@W“'LLC[ajémf,

0 SmogVHMLC{ amaly i) }

rmﬂ'CLk no torn) zﬂoq
¢ aVevare —case CUM/C/_W"y ¢ 3

13 7ua/v\lvu'x CowPuL'iwj 21

vs. NP revisited

1.1 Model of Computation

= achal hadeee i Lk

o V\/Lu/‘/ugvy

o g oy difomd
o HM f?ﬂJr-’;J}-‘&/ﬂf(}
b speencdy
— ta mezo\r‘y we Mcf a;n/w{:/ﬁﬁfe S/M/l‘f_ =«

o abclracd frown ievelevend bl
o make anlgot; Learthl
o allows couchusiv cocmpardion of Lifferend aler
Fadended Clownth - Yoty ~Tha?s
auwy vealdslNe wnodd o coum pubakroe, cav be siomladed
wih ecly polyicoctad evhind on @ TH
Ls A cae of doobd = THM

Definition 1.1 (Time and Space Complexity)

Let Xj and Yo two alphabets and A an algorithm implementing a total mapping Xf — XL%.
Then for each x € 7 we denote by Time(x) (resp. Spacea(x)) the logarithmic time
complexity (resp. logarithmic space complexity) for A on x.

z
a’:
uw';ﬁemm cos b WOM S doo Caf

Qﬂi Oxw'”awd‘{(e(p@ﬁalﬁ\euj quL.\q O{ﬁ) g’%‘M
° 0050v”‘%(C@j\# MM
co3$s Qe f}ro(zOFHQ"\"IQ b Stz s({\ Mwuémv T é;vf)'

Q{J

T M is aﬁu}ays en ﬂ%am"v?Wc oo ik
St et 2:, aclﬁe_i

ecd - RAM

ha Frqu“;cJ(e M 4"LUO WSDW}

e

4 ;m‘Lfk Seo MEM; O[i) Sw%cg L?JC(-\ WA/U/ bv“(l VLr)'CZTj

2 DLAAA/\/\L.M/\rS = s J'DQ /G/r_g(
7 BVS /M/~Q§y\/ stone Lt bers as S‘/‘Y}'US

vurfed covd st o = L.

I'M LAAD\‘QJ
con e’afuulcj &1 e
wl) = @(0‘95 //‘)

A socd ta O (n Oos Cey m\)!

Definition 1.2 (Worst-Case Complexity)
Let Xj and Yo two alphabets and A an algorithm implementing a total mapping Xf — XL%.
The worst case time complexity of A is the function Times : N — N with

Timea(n) = max{Timea(x) | x € Z@,
for each nn € N. The worst case space complexity of A is given by function Spaces : N — N with

Spaces(n) = max{Spacea(x) | x € L }.

Definition 1.3 (Decision Problem and Algorithms)
A decision problem is given by P = (L, U, X) for X an alphabetand L C U C ©*. An
algorithm A solves (decides) decision problem P, if for all x € U

1. A(x)=1forxeL,and

2. Ax)=0forxe U\L (i.e.x¢L)
holds. Here A(x) denotes the output of A on input x. If U = Z* holds we denote P briefly
by (L, X).

~ A effectively computes a total function A : U — {0, 1}.

Theorem 1.4 (Inconsistency of Complexities)
There is a decision problem P = (L, {0, 1}) such that for any algorithm A that solves P
there is another algorithm B that also decides P but with

Timeg(n) = log,(Timea(n))

for an infinite number of natural numbers 7.

Definition 1.5 (Upper/Lower Bounds, Optimal Algorithms)
Let U be an algorithmic problem and f, g functions Ng — R™.

> We call O(g(n)) an upper bound for time complexity of U if an algorithm A exists that
solves U in time Timex(n) € O(g(n)).

> We say Q(f(n)) is a lower bound for time complexity of U if each algorithm B that solves
U needs time Timep(n) € Q(f (n)).

» An algorithm C is called optimal for U if Timec(n) € O(g(n)) and €2(g(n)) is a lower
bound for the time complexity of U.

GGQ,QS d
o forwng/(y s‘oecfgay wLLcﬂ(P(\s’)é}éﬂ,&/kj ore. Frae/}/ea/g/}/ ;pgyaéé(

e mwathod fo GQQJ%'Vly rﬂoéﬁwd ko traebable aed
)’Mg\'raaf‘\qbﬁ(Y

1.2 The Classes P and NP

Definition 1.6 (P, tractable)
We define the class of languages P decidable in polynomial time by

P = { L = L(M)) M is a Turing machine (algorithm)
A Timep(n) € O(n°) forac € N }
A language (a decision problem) L € P is called tractable / efficiently decidable.
o ro [’Ju&“ dJQ&X\/]qu GLWSEj i (&marau(fal'{ema\[W"M EC‘_/‘f
o u;«ﬂz:s = ;S LUASQ (O(‘M () ‘A'M nﬂéoaﬂlﬂ{“lfﬁﬂﬂnnl vsv r/ Froc/ﬂo&

o fxoat/maw;&/as ckm{ Vu«u /JmPQ/rl(j x/\LqV" N~ 2
‘D“ﬂﬂ/ Stves a [AKQC(foctor e Ma Heek

How b slew a problem in §'7

—> fmcj @ fVL!V - Jjw Qéﬁvm%m V[Lm[SdQ‘lf‘J Vuf‘k Fra égbwd

/Qjobu ‘\3 S’L(OM} J’Lﬁi 7V{ ;S Vf—BUL /)M ??

Definition 1.7 (Nondeterminism, NP)

Let M a nondeterministic Turing machine (algorithm) and L a language over alphabet X.

» M accepts L (L(M) = L), for all x € L there is at least one computation of M which
accepts x and for all y ¢ L every computation of M rejects .

» For each x € L the time complexity Timey;(x) of M on x is given by the time needed by a
shortest accepting computation of M on x.

» The time complexity of M is a function N — N defined by &

Timep(n) = max{Timep(x) | x € L(M) N X"}. o % :
S vty
> We define class NP by

NP = {L(M) | M nondeterministic TM with polynomial time}.

//cm f(J,Q:Lu- e wd Jean 15 Uw’f/!é\)(‘({\)ﬂ/\e_

Definition 1.8 (Certificates, Verifier, VP)
Let L C X* a language.

» An algorithm A acting on inputs from X* x {0, 1}* is called verifier for L (notation

Does A accepts input (w, c) we say c is proof (or certificate) for w € L.

Yes
L={weX*|3ce{0,1}*)(Aw,c) =1)}.

» A verifier A for L is a polynomial-time verifier if there is a d € N such that forallw € L,
Timea(w, c) € O(|w|?) for a proof c for w € L.

> We define the class of polynomially verifiable languages NP by
VP = {V(A)| A is polynomial time verifier}.

Exmf/& J SAT G?W 656&@4 OQDWJQ 70
@ /s ?p sa&”sﬁ/@% 9

Theorem 1.9 (Nondeterminism > certificate)
NP = VP.
freofi NP e P
Ledry = I wendh THM M i Lir) =
Cocrdwed vemPrer A
(x.c) e I *x So. 4p®
A fml@,rawo.ﬁas ¢ as 5U:J1 J‘Llr%d‘yl\ e vorn—dedsrndediffe clwices ovﬂ M

M WAHSLLJ' ('[AQ@;,Q OtxR A PQ\L&S
Lo Nod tef] bibs e @ $e0l o wdh padh b deke
(S¥ N g«\"m,tlal{ OUL Pes?v%l\ CQWMOL‘ DGF M,

-S> aith S‘NM @
M afCLﬁDLJ' X d=> Ot Qnﬁchf)—ufixl/wa GQ(\ M Qmef/‘j
,\]!/

oLk c Su(&l ijin/)l ctuarquj

= V(A) = L

L = X pelyfien
svenr o Loarfrer A VA = L
coustrel @ weu-db TM M
@D M geverales rov-ddecrntuishally a blary i o
with o) b1 (p bovad o diegy (k1))

@ stwwdate Alx, C>
@ C&(JQ/ on)&\,m/r}“

= (M) =/

G&sty J/_TJT/[)QJ O()(\ M

OFFBKAMJ NP : [wjuﬂgl’) = deels e Pra@ﬁ&«m[
VP

7?: /buj
{Wrﬁ«"c/{“va 5 CUHU()fCQLt ze\q,rga Fr@%ﬁo/ﬂz

yfs/bco %/{.JLN w, bu(;‘ l“/(IR uq(‘ L/lj(@,4)0 {)JMV4 mevﬂ

SAT Vol oo s is e sahs{ele 7
;‘&\ 5o volat 75 o ge/,gdt‘wﬂuj Qy)"/rf_cgmwvl

Com com o wole dhecoand okl havons e e de denti st
QaSy 5 MCM*M T//[can SJ‘DP(EO/‘UA@Q!{

bu}: U!AC/ZLM ’\Up (E 8 ou&jg/ &M&w &M'EQK XL e)qp X d,l&“JJ/V

Definition 1.10 (Poly-time reductions) % s weore complen " dhan

Letl, € Z;‘ and [, € X} be two languages.

We say L, is polynomial reducible to L, (notation L1 <, L), if there exists a (deterministic)
algorithm A of polynomial time complexity that computes a mapping X} — L such that

VxeXl : xeL; & A(x) € L,.
We call A the polynomial time reduction of Ly to L.
Definition 1.11 (NP-hard, NP-complete)

Alanguage L is called NP-hard if for all U € NP we have U <, L.
A language L is called NP-complete, if additionally L € NP.

Lemma 1.12 (All for one, and one for all)
If L is NP-hard and L € P we must have P =ﬂ

P(oeq“"
L Nftlord wd]S

~2 d ddt pelyFue TM M 2 L(M) =/

Ue P o UL~ I 4l poly—iuw als. B ¢+ xel &= BL)ey
sofpers bo slew I polybie aks € dad dioidy 1

@ B&) by shwdalon)

G M 8) by shudabion)

M @ccep ,\) =) BLY e L = xe (J e FJy%w

' L T ted WA probably iudroetabl.
™ doey Has esdst

