Advanced Algorithmics

Strategies for Tackling Hard Problems
Sebastian Wild
Markus Nebel

Lecture 1

2017-04-20

How to Solve Hard Problems?

View on NP-completeness in elementary courses:

"I can't find an efficient algorithm, but neither can all these famous people."
Garey, Johnson 1979
... but this is not the end of the story
"you had just neatly sidestepped potential charges of incompetence by proving that the bandersnatch problem is NP-complete.
However, the bandersnatch problem had refused to vanish at the sound of those mighty words, and you were still faced with the task of finding some usable algorithm for dealing with it."

Grey, Johnson 1979
Look for loopholes in theory

- psendopolynomial also
- parametrized complexity
- approximation also
- randomized algor.
$\left.\begin{array}{l}\text { - smoothed analysis } \\ \text { - average-case analysis }\end{array}\right\}$ provide no new algoc.
- quantum computing?

P vs. NP revisited

1.1 Model of Computation

- actual hardware is finite
- memory
- input
- time
many different possibilities
to generalize
- in theory we need asymptotic stints.
- abstract from irrelevant detail
- mate analysis feasible
- allow condusire comparison of different algor.

Extended Church-Furiug Thesis any realistic model of computation can be simulated with only polynomial overhead on a TM.
Ls in care of doubt $\rightarrow T M$

Definition 1.1 (Time and Space Complexity)
Let Σ_{I} and Σ_{O} two alphabets and A an algorithm implementing a total mapping $\Sigma_{I}^{\star} \rightarrow \Sigma_{O}^{\star}$. Then for each $x \in \Sigma_{I}^{\star}$ we denote by $\operatorname{Time}_{A}(x)$ (resp. Space $\left._{A}(x)\right)$ the logarithmic time complexity (resp. logarithmic space complexity) for A on x.

- uniform cost model

$$
a=a^{2} \text { too cheap }
$$

all arithmetic operations take $O(1)$ time

- logarithmic cosf model
costs are proportional to size of number in bits

TM is always in logarithmic model since \sum freed
in practice we hare two regimes

- "intr" soffees $O(1)$ sophees add null, bit tricks
- numbers are too large Lo Bisluteger store numbers as strings
unified, word size $\omega=$ \# bits in cord can depend on n

$$
\omega(n)=\theta(\operatorname{Oog} n)
$$

ω sort in $O(n \log \log n)$.

Definition 1.2 (Worst-Case Complexity)

Let Σ_{I} and Σ_{O} two alphabets and A an algorithm implementing a total mapping $\Sigma_{I}^{\star} \rightarrow \Sigma_{O}^{\star}$. The worst case time complexity of A is the function Time $_{A}: \mathbb{N} \rightarrow \mathbb{N}$ with

$$
\operatorname{Time}_{A}(n)=\max \left\{\operatorname{Time}_{A}(x) \mid x \in \Sigma_{I}^{n}\right\},
$$

for each $n \in \mathbb{N}$. The worst case space complexity of A is given by function Space $_{A}: \mathbb{N} \rightarrow \mathbb{N}$ with

$$
\operatorname{Space}_{A}(n)=\max \left\{\operatorname{Space}_{A}(x) \mid x \in \Sigma_{I}^{n}\right\}
$$

Definition 1.3 (Decision Problem and Algorithms)

A decision problem is given by $P=(L, U, \Sigma)$ for Σ an alphabet and $L \subseteq U \subseteq \Sigma^{\star}$. An algorithm A solves (decides) decision problem P, if for all $x \in U$

1. $A(x)=1$ for $x \in L$, and
2. $A(x)=0$ for $x \in U \backslash L$ (i.e. $x \notin L$)
holds. Here $A(x)$ denotes the output of A on input x. If $U=\Sigma^{\star}$ holds we denote P briefly by (L, Σ).
$\rightsquigarrow A$ effectively computes a total function $A: U \rightarrow\{0,1\}$.

Theorem 1.4 (Inconsistency of Complexities)

There is a decision problem $P=(L,\{0,1\})$ such that for any algorithm A that solves P there is another algorithm B that also decides P but with

$$
\operatorname{Time}_{B}(n)=\log _{2}\left(\operatorname{Time}_{A}(n)\right)
$$

for an infinite number of natural numbers n.

Definition 1.5 (Upper/Lower Bounds, Optimal Algorithms)
Let U be an algorithmic problem and f, g functions $\mathbb{N}_{0} \rightarrow \mathbb{R}^{+}$.

- We call $\mathcal{O}(g(n))$ an upper bound for time complexity of U if an algorithm A exists that solves U in time $\operatorname{Time}_{A}(n) \in \mathcal{O}(g(n))$.
- We say $\Omega(f(n))$ is a lower bound for time complexity of U if each algorithm B that solves U needs time $\operatorname{Time}_{B}(n) \in \Omega(f(n))$.
- An algorithm C is called optimal for U if $\operatorname{Time}_{C}(n) \in \mathcal{O}(g(n))$ and $\Omega(g(n))$ is a lower bound for the time complexity of U.

Goals:

- formally specify what problems ore practically solvable
- method to chasity problems into tractable and intractable ones
1.2 The Classes P and NP

Definition 1.6 (P , tractable)
We define the class of languages \mathcal{P} decidable in polynomial time by

$$
\begin{aligned}
\mathcal{P}=\{L=L(M) \mid & M \text { is a Turing machine (algorithm) } \\
& \left.\wedge \operatorname{Time}_{M}(n) \in \mathcal{O}\left(n^{c}\right) \text { for a } c \in \mathbb{N}\right\} .
\end{aligned}
$$

A language (a decision problem) $L \in \mathcal{P}$ is called tractable / efficiently decidable.

- robust against changes in computational mode ECTT
- unless c is huge, $O\left(u^{c}\right)$-time algorithmis usually practich
- polynomials hare the propertor that $n \leadsto 2 n$ only gives a fixed factor more in time

How to show a problem in S ?
\rightarrow find a poly-time algorithm that salves the problems How to show that it is not in 3 ?

Definition 1.7 (Nondeterminism, NP)

Let M a nondeterministic Turing machine (algorithm) and L a language over alphabet Σ.

- M accepts $L(L(M)=L)$, for all $x \in L$ there is at least one computation of M which accepts x and for all $y \notin L$ every computation of M rejects y.
- For each $x \in L$ the time complexity Time $_{M}(x)$ of M on x is given by the time needed by a shortest accepting computation of M on x.
- The time complexity of M is a function $\mathbb{N} \rightarrow \mathbb{N}$ defined by Time $_{M}(n)=\max \left\{\right.$ Time $\left._{M}(x) \mid x \in L(M) \cap \Sigma^{n}\right\}$.
- We define class $\mathcal{N P}$ by

$\mathcal{N P}=\{L(M) \mid M$ nondeterministic $T M$ with polynomial time $\}$.

Non-determivism is onintuitine

Definition 1.8 (Certificates, Verifier, VP)

Let $L \subseteq \Sigma^{\star}$ a language.

- An algorithm \underline{A} acting on inputs from $\Sigma^{\star} \times\{0,1\}^{\star}$ is called verifier for L (notation $L=V(A)$), if

$$
L=\left\{w \in \Sigma^{\star} \left\lvert\,\left(\underset{\sim}{\exists c} \in\{0,1\}^{\star}\right)\left(A(w, c)=\begin{array}{c}
y_{\text {es }} \\
1
\end{array}\right)\right.\right\} .
$$

Does A accepts input (w, c) we say c is proof (or certificate) for $w \in L$.

- A verifier A for L is a polynomial-time verifier if there is a $d \in \mathbb{N}$ such that for all $w \in L$, $\operatorname{Time}_{A}(w, c) \in \mathcal{O}\left(|w|^{d}\right)$ for a proof c for $w \in L$.
- We define the class of polynomially verifiable languages $\mathcal{N P}$ by

$$
\mathcal{V \mathcal { P }}=\{V(A) \mid A \text { is polynomial time verifier }\} .
$$

$$
\begin{aligned}
& \text { Example, SAT Given boolean formula } \varphi \\
& \\
& \\
& \text { (2) } 1 \mathrm{~s} \varphi \text { salisficble? }
\end{aligned}
$$

Theorem 1.9 (Nondeterminism \leftrightarrow certificate)
$\mathcal{N P}=\nu \mathcal{P}$.
Proof, $N \rho \subseteq \nu \rho$
Leors $\rightarrow \exists$ rondel. $T M M: L(M)=L$
Courdruet verifier A

$$
(x, c) \in \Sigma^{*} \times\{0,1\}^{*}
$$

A interprets c as guide through the non-deterniustore choices of M M might choose one m paths
Ls $\lceil\ell d(m)\rceil$ bits from a tell us with path to tate
\rightarrow with siren c, we simulate one possible computation of M.
M accepts $x \Leftrightarrow$ one computation of M accepts ฟ
one a guides right choices

$$
\Rightarrow V(A)=L
$$

$$
\nu S \leq \text { NS poly-time }
$$

siren a veriforer $A: V(A)=L$
coustrucf a nou-det. TM M
(1) M senerates nou-deterministially a binary string c with $p(|x|)$ bits $\quad\left(p\right.$ boond on $\left.\operatorname{time}_{A}(|x|)\right)$
(2) simulate $A(x, c)$
(3) copy ootput

$$
\Rightarrow \quad L(M)=L
$$

6 Cossarer \qquad Types of Problems

yes/no question, but in case of yes, also want proof
SAT: yes lino s is φ satisfiable?
if so, what is a satisfrius assignment
Can can you solve the search problem whenever we con solve the decision prob. easy: nou-det TM can store certificate
but: unclear if we only allow blact-box reuse of a decider

Definition 1.10 (Poly-time reductions)

Let $L_{1} \in \Sigma_{1}^{\star}$ and $L_{2} \in \Sigma_{2}^{\star}$ be two languages.
We say L_{1} is polynomial reducible to L_{2} (notation $L_{1} \leq_{p} L_{2}$), if there exists a (deterministic) algorithm A of polynomial time complexity that computes a mapping $\Sigma_{1}^{\star} \rightarrow \Sigma_{2}^{\star}$ such that

$$
\forall x \in \Sigma_{1}^{\star}: x \in L_{1} \Leftrightarrow A(x) \in L_{2}
$$

We call A the polynomial time reduction of L_{1} to L_{2}.

Definition 1.11 (NP-hard, NP-complete)

A language L is called $\mathcal{N P}$-hard if for all $U \in \mathcal{N P}$ we have $U \leq_{p} L$.
A language L is called $\mathcal{N} \mathcal{P}$-complete, if additionally $L \in \mathcal{N P}$.

Lemma 1.12 (All for one, and one for all)
If L is $\mathcal{N P}$-hard and $L \in \mathcal{P}$ we must have $\mathcal{P}=\mathcal{N} \mathcal{P}$.
Proof:
\angle NPP-hord and $L \in S$
$\leadsto \exists$ det. poly-fiue $T M M: L(M)=L$
Ue UP $\Rightarrow U s_{p} L \rightarrow \Rightarrow$ def. polytince ats. $B: x \in U \Leftrightarrow B(x) \in L$ suffices to show \exists poly-tiue ats C that decides U
(1) $B(x)$ (by simulation)
(2) $M(B(x))$ (by simulation)
M accept, $\Leftrightarrow B(x) \in 2 \quad x \in U \quad$ in poly-time $\quad 4$.
If L JVS-hard, it is probably intractable π does this exist?

