Exercise Sheet 6 for
 Computational Biology (Part 1), SS 15

Hand In: Until Tuesday, 21.07.2015, 10:00 am, email to $r_{-} m u e l l e @ c s . .$. or in lecture.

Problem 16

For two string $S \in \Sigma^{n}$ and $T \in \Sigma^{m}$, we define the matching statistics of S w.r.t. T as

$$
m s(i)=\max \left(\left\{j-i+1 \mid j \in\{1, \ldots, n\} \wedge k, l \in\{1, \ldots, m\} \wedge S_{i, j}=T_{k, l}\right\} \cup\{0\}\right)
$$

for $i=1, \ldots, n$, i.e. $m s(i)$ is the length of the longest substring of S starting at index i that matches a substring (somewhere) in T.

Design an algorithm to compute the matching statistics of S w.r.t. T, for given $S \in \Sigma^{n}$ and $T \in \Sigma^{m}$. The running time of your algorithm should be in $\mathcal{O}(m+n)$.

Hint: If you use a suffix tree, you may keep the suffix links after its construction.

Problem 17

a) Design an algorithm to compute a longest common subsequence ${ }^{1}$ of two given strings $S \in \Sigma^{m}$ and $T \in \Sigma^{n}$. The runtime of your algorithm should be in $\mathcal{O}(m \cdot n)$.
b) For two strings $R=a R^{\prime}$ and $S=b S^{\prime}, a, b \in \Sigma, R^{\prime}, S^{\prime} \in \Sigma^{*}$, we define the shuffle of R and S as

$$
R \amalg S:=a\left(R^{\prime} ш S\right) \cup b\left(R \amalg S^{\prime}\right)
$$

where $w \amalg \epsilon=\epsilon Ш w=\{w\}$. For example, the shuffle of $R=a b$ and $S=c d$ is $R \amalg S=\{a b c d, a c b d, c a b d, a c d b, c a d b, c d a b\}$.

Consider a text $T \in \Sigma^{l}$ and two strings $R \in \Sigma^{m}$ and $S \in \Sigma^{n}$. Design an algorithm which decides whether T contains any interleaved (possibly with spaces) occurrence of R and S, i.e. any $w \in R \amalg S$ as a subsequence. The runtime of your algorithm should be in $\mathcal{O}(l \cdot m \cdot n)$.

[^0]
Problem 18

Prove Lemma 16 (page 128) in the German lecture notes; restated here for convenience:
Let K_{1} and K_{2} be two cycles of a minimal cycle cover \mathcal{K} and let $w_{1} \in K_{1}$ and $w_{2} \in K_{2}$ be two elements of the cycles. It then holds

$$
\operatorname{ov}\left(w_{1}, w_{2}\right)<\operatorname{cost}\left(K_{1}\right)+\operatorname{cost}\left(K_{2}\right) .
$$

Recall that we assume the set of strings \mathcal{S} for the SCSP to be substring-free, i. e., no string is a substring of another.

[^0]: ${ }^{1}$ Remember, a subsequence need not consist of contiguous characters in S.

