Stochastic modeling: How good do randomly chosen fragments
cover a molecule?

Definition
Let A: Ry — N a nondecreasing function satisfying A(0) = 0,

where A(t) describes the number of events until time t. Then we
have a poisson process with rate \, if

(1) Pr[A(s + t) — A(s) = n] = exp(—X - t)22L and

al
(2) the distribution of the number of events is stationary, i.e. it
depends only on the length but not on the position of a given
interval.

Theorem
Let A be a poisson process.

a) The expected number IE[A(t)| of events in an interval of
length t satisfies IE[A(t)] = A - t.

b) Let T, be the time between the (n — 1)-th and the n-th
event. Then

Pr[T1 > t] = Pr[T, > t] = exp(—A - t).

Model: Assuming fragments of length L are cut from multiple
copies of a DNA molecule of length C randomly and
independently. Then for / any position of the molecule

Pr[i is covered by randomly chosen fragment] =

C

g

is the probability that / is not covered by any of the /V fragments.

holds and thus

exp (x)= V‘\/_\‘; C/L"‘U»&)

Poisson process?
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We let ) = % and ask for the probability of exactly n of the ¥/

fragments covering position /. This probability is given by

() (&) (P g

n C C nl - (N — n)!
NI () - N)”
= NN P )
~ exp(—A - N)- (& n{\l)”

So the number of fragments covering a fixed position is
approximately poisson distributed with rate A = % (This
statement holds for n < N < C and L < C.)

The expected number of fragments covering position / is thus
R=AN= % R is called redundancy of the fragment set.

Corollary
The expected number of positions not covered is (approximately)
given by
[N
exp (——) - C=exp(—R) - C.
C
]
Definition

Let F be a set of fragments of length | and © ¢ [0, 1]. We take
F as vertices of a graph and connect two fragments 1, f, € F by
an indirected edge, if a suffix (prefix) of f; of length at least © - L
is a prefix (suffix) of » (overlap). We get an undirected graph
whose connected components are called ©-islands.

Intuition: Fragments with only small overlap should not be
considered overlapping.

How many ©-islands are to be expected?
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Lemma
Let © ¢ [0,1] and redundancy R be given and let N be the

number of randomly chosen fragments. Then
N -exp(—R - (1 — ©))

is (approximately) the expected number of ©-islands.
Poofi . 2 Loyt ol molecule

L é L('-LBTH, o'( ‘C/QSV‘-—\M{‘
/\ .= L /C/

Ld L |o< oy FoSlzl:fbv\. oL ‘\"'\e W\oLchul(
We defime

j(;}i)-': P\( [‘P’S-{,;ﬁrﬁt Ou\ok C-"X,L o (e C‘o\/enot }07 V&v\deR
Hoser Lmgemant |
Cxp (~R (’l-—x)) {ovr Oscxe

Clavim: (o) -
O O"RWYSQ



L-N

Wa K = N M= ~ {Ne T"d“"\"(“‘«é‘y‘
L
£ >
{ I i W\D‘CCU\,\(
b (. Ll
< S
»- L (1=2)- L

=_~> Tl’\.e muw-«,lm-v 6% U\iﬁ%ﬂﬂ{: lOCC\,'I;OV\Y {;v &
Vav\chm Qaswx««,*— xo CovlY lDO'I"\ P’OSIFL'\O«\S

N R

Y P; [L e v+x- L 'L, Ce (OJQ-’CGL g7 Yandou, 'OQSW\Q-\'L]

(N=x)-L.
-

—
1

e Ps{b and.  [+xX [ axe Vlol‘ covtrt &7 am O'F
‘t\-»e N '@ﬂjvv\ovcl\]

:</l C"‘)L_ /(/(’(44)[&)

R,LC”

N—=0»

= ¢ (- -)-R)



s lands: - = = 2 Cagint
. T b= O |
X %
AN
XxX= =20/

O(osevvq,JC.o.,\; F_ s “\\e Oﬂ(y ‘Cfﬁsw«”\,{_ \J\rc.:l Ccoye/ s
FDS")¥\3¢\5 U ool LBl Cue O{"\N\:Mc

W Woslok vet S \e V‘-,st\{mos-}— eleant
of ke (onS'folucoL I\gla_w,('

€ L#O-islads | = |E] #vifrlmost Gogmebs]

/\\) LR O lC’o\/\l:\é 'FO\/
l&[_# ‘Q“‘S“’\WLS C‘éJWC\J ?DS'A\»,« [ a~d [~OL QxJusiuJ71

= N-J3(e) &= V- exy (=R (- 2)

5&5-\6(’ j(,@) A: P(£fawo(o\~\_ -Clctswvv\,l' okmfﬂi‘ oNa LqF h<
Nifono b Cagenat
:_IE’P\lﬂ -@aSW\wJ- 'y ‘\"1( LC\T+ DC Qe iswz
&



Example: We consider the case of a molecule with 10% bases to
be mapped. We assume that a library of 10000 fragments has
been created, each around 50000 bases long. In this case

R = % = 5 and for © small enough
N-exp(—R-(1—©)) ~ 10* - exp(—5) = 67.37946999 ... many

islands are to be expected.

Shotgun sequencing and fragment assembly:

Definition

Let D be a DNA molecule to be sequenced and S = {s,, ... s,}
the set of words (fragment sequences), observed at a shotgun
sequencing of . Then the fragment assembly problem /s to
determine (algorithmically) the arrangement of the words from S
corresponding to their original positions in D.

Solution of the fragment assembly problem:

1. Overlap: In this phase the possible overlaps of pairs of words
from 5 are determined. They do not have to be exact
prefix-suffix pairs but alignments with great similarity may
also be used.

2. Layout: From the result of the first phase now an
arrangement (similar to a semiglobal alignment) of the words
from 5 is designed, representing the arrangement of the
fragments in 0. The structure resulting from the overlaps is
called Layout.

3. Consensus: As the layout usually contains several fragments
overlapping at a given position of D in the final step it has to
be decided, which symbol is chosen. This can e.g. be done by
majority voting.



Collection of DNA fragments

———m—

pairwise overlaps
of all fragments

determine good layout of fragments

determine consensus

majority voting

COonsensus

Sources of errors and problems:

seq uencing errors,

creation of chimeras,

orientation (s; or complement reverse to s;7),

>
>
» uncovered parts (toxic effect of a fragments wrt. host),
>
>

repeats (of (almost) identical substrings) (overlap or not?).

Shortest superstrings

We create as layout an overlapping of the fragments that implies
a sequence for D as short as possible.

Formally we are looking for a word ws containing all s5; € S

(superstring for S) for S = {5, ..
words. We call this problem the shortest common superstring

problem (SCSP).

., S5} a subword free set of




Another view at the problem is given by the notion of compression:

Definition
Let ws a superstring for set S = {si,...,s,}. The compression of
ws is defined by

comp(ws) 1= ( Z 5:') — |ws.

1<i<n

Intuitively comp(ws) is the number of symbols that ws saves
compared to the trivial superstring s; - s, - - - 5,,.

Correspondingly the maximum compression common superstring
problem (MCCSP) is the problem of finding algorithmically a
superstrings for 5 with maximal compression.

Obviously: Optimal solutions for SCSP and MCCSP are the
same.

But: Performance guarantees can not be exchanged between the
problems.

Definition
Given a set S = {s1,50,...5,}, n > 0, of words. If there are
decompositions of s;, s, ¢ S satisfying

> S5, = Xy,

> 5 =Y

» X # ¢ andz # ¢,

» |v| maximal with these properties,

y is called overlap of s; and s; (notation Ov(s;,s;)). The Merge
< s;,5; > of 5; and s; then is the word X v

[N ]

< 5,5 >i= Xyz, > 2

and we call x prefix of the merge < s;,s; > (notation Pref(s;, s;)).



Definition

Let S = {s,...,s,} be aset of words and G the digraph with
vertices S and edges S x 5. The overlap graph OG(S) of S is the
digraph we get from marking G according to

v: (S x5)— Ny: ov(s;,s;) = |Ov(s;,s;).
If we mark G according to
(S x S) — Ny pr(s;, s;) := |Pref(s;, 57},
we get the distance graph of 5 (notation DG(S)).

Example: S = {aabca, aacab, aaddd, ababaa, caba }, table shows

edge weights ov(x,y) | pr(x,y): ~
vaed) s

Y aaq ceSa
X aabca | aacab | aaddd | ababaa |- caba

aabca || 14 | 1|4 | 1|4 114 |2]3
aacab || 0|5 | 0|5 | 0|5 213 |32
2addd || 0]5 | 0/5 | 0]5 | 0]5 |05
ababaa || 2|4 | 2|4 | 24 1|5 [0]6
caba 1313 1]3 3|1 |04
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Using our method from the exercises (9. Task) to find all pairwise
overlaps of words in S5 we can create the overlap graph for S in
time O(N - (log(N) + || + n)), assuming S is a set of words over
rand N:i=) . |si|.

Using pr(s;, s;) = |Pref(s;, s;) = |s;) — |Ov(s;, 5;)| we get the
same running time for creating the distance graph.

Note that n° = (O(\ - n) and even n* < n- N holds as by
assumption ¢ being a substring of every word can't be an element

of 5.

Edge s; — s; in the overlap or distance graph can be identified
with merge < s;,5; >.

= Path corresponds to series of merges of the words represented
by the nodes. E.g. for path 51,5, ..., 5,

< 51,5, ...,5 >=

Pref(sy,s,) - Pref (s, 83) - -+ Pref(s;_1,5k) * Sk.

A superstring for S5 then corresponds to a path through the graph
visiting each node exactly once, a minimal superstring (i.e. a
solution for SCSP or MCCSP) to a path with optimal weight (for
the distance graph this is the minimal weight).

— (orrespondence of our problems and TSP!

Theorem
Dec-SCSP is NP-complete.

Approximation algorithm:

while [S|>1 do
Determine s;,s5; ¢ 5, s 45, with...
.maximal overlap of all pairs in 5.
Set s' =< s;,s5;> and 5=5"\{s;,s}U{s}.
return{scS) //the only word remaining in §



This way the algorithm creates a hamiltonian cycle in the overlap
graph.

Example: S = {aabca, aacab, aaddd, ababaa, caba} (Graph see
previous example)

First choice: Two alternatives ((caba, ababaa) and (aacab, caba)).
We take (caba, ababaa) = merge < caba, ababaa >= cababaa
and S = {cababaa, aabca, aaddd, aacab}.

Second step: Combine aacab and cababaa to get aacababaa and
S = {aacababaa, aabca, aaddd} .

Third step: Pair (aacababaa, aaddd) has maximal overlap.
= S = {aacababaaddd, aabca}.

Last step: Output aabcaacababaaddd of length 16 (being a
shortest superstring for the input considered).

Theorem
Assuming a constant size of the alphabet above greedy algorithm
given input S = {sy,...,s,} takes running time in

O(N - (n+log(N))), N =21, Isil.
Proof:
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