Stochastic modeling: How good do randomly chosen fragments cover a molecule?

Definition

Let $A : \mathbb{R}_0 \to \mathbb{N}$ a nondecreasing function satisfying A(0) = 0, where A(t) describes the number of events until time t. Then we have a poisson process with rate λ , if

(1)
$$\Pr[A(s+t) - A(s) = n] = \exp(-\lambda \cdot t) \frac{(\lambda \cdot t)^n}{n!}$$
 and

(2) the distribution of the number of events is stationary, i.e. it depends only on the length but not on the position of a given interval.

Theorem

Let A be a poisson process.

- a) The expected number $\mathbb{E}[A(t)]$ of events in an interval of length t satisfies $\mathbb{E}[A(t)] = \lambda \cdot t$.
- b) Let T_n be the time between the (n-1)-th and the n-th event. Then

$$\Pr[T_1 > t] = \Pr[T_n > t] = \exp(-\lambda \cdot t).$$

Model: Assuming fragments of length L are cut from multiple copies of a DNA molecule of length C randomly and independently. Then for i any position of the molecule

$$Pr[i \text{ is covered by randomly chosen fragment}] = \frac{L}{C}$$

holds and thus

$$\left(1 - \frac{L}{C}\right)^{N} \approx \exp\left(-\frac{L \cdot N}{C}\right) \tag{1}$$

is the probability that i is not covered by any of the N fragments.

$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

Poisson process?

We let $\lambda := \frac{L}{C}$ and ask for the probability of exactly n of the N fragments covering position i. This probability is given by

$$\binom{N}{n} \cdot \left(\frac{L}{C}\right)^{n} \cdot \left(1 - \frac{L}{C}\right)^{N-n} \approx \frac{N!}{n! \cdot (N-n)!} \lambda^{n} \cdot \exp(-\lambda \cdot N)$$

$$= \frac{N!}{N^{n} \cdot (N-n)!} \exp(-\lambda \cdot N) \cdot \frac{(\lambda \cdot N)^{n}}{n!}$$

$$\approx \exp(-\lambda \cdot N) \cdot \frac{(\lambda \cdot N)^{n}}{n!} .$$

So the number of fragments covering a fixed position is approximately poisson distributed with rate $\lambda = \frac{L}{C}$. (This statement holds for $n \ll N \ll C$ and $L \ll C$.)

The expected number of fragments covering position i is thus $R := \lambda \cdot N = \frac{L \cdot N}{C}$. R is called *redundancy* of the fragment set.

Corollary

The expected number of positions not covered is (approximately) given by

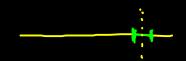
$$\exp\left(-\frac{L\cdot N}{C}\right)\cdot C = \exp(-R)\cdot C.$$

Definition

Let $\mathcal F$ be a set of fragments of length L and $\Theta \in [0,1]$. We take $\mathcal F$ as vertices of a graph and connect two fragments $f_1, f_2 \in \mathcal F$ by an indirected edge, if a suffix (prefix) of f_1 of length at least $\Theta \cdot L$ is a prefix (suffix) of f_2 (overlap). We get an undirected graph whose connected components are called Θ -islands.

Intuition: Fragments with only small overlap should not be considered overlapping.

How many ⊖-islands are to be expected?



Lemma

Let $\Theta \in [0,1]$ and redundancy R be given and let N be the number of randomly chosen fragments. Then

$$N \cdot \exp(-R \cdot (1 - \Theta))$$

is (approximately) the expected number of Θ -islands.

Proof: C = length of molecule

N = # of fragments

L = length of fragment

A := L/C

Let i be any position of the molecule We define

J(x):=Pr[positions & and &+x.L are covered by randowly chosen fragment]

Claim:
$$J(x) = \begin{cases} exp(-R(1-x)) & \text{for } 0 \le x \le 1 \\ o & \text{otherwise} \end{cases}$$

with
$$R = \lambda \cdot N = \frac{L \cdot N}{C}$$
 the redundancy.

The number of different locations for a vandom fragment to cover both positions is given by $(1-x) \cdot L$

Proposition of the covered by random fragments

 $\frac{(1-x) \cdot L}{C}$

Proposition of the covered by random fragments

 $\frac{(1-x) \cdot L}{C}$

PIET and i+x.L are not corred by any of
the N fragments]
$$= \left(1 - \frac{(n-x).L}{C}\right)^{N} = \left(1 - \frac{(n-x).R}{N}\right)^{N}$$

$$R = \frac{L.N}{C}$$
N-200
$$= \exp\left(-(1-x).R\right)$$

Islands: F= fragmont

| i i+O.L

| X = >O.L

Observation: F 15 the only fraguent which covers positions i and L+B.L Since obtainse it would not be the vightnost element of the considered what.

[E[#0-islands] = [E[#vightnost fragments]

Due are lookies for

[E[# fragments covering positions i and i+OL exdusively]

 $= N \cdot \Im(\Theta) \approx N \cdot \exp(-\Re(1-\Theta))$

Since J(O)=Pr[random fragment does not ovorlap the vifthost fragment]

= Pr[fragment is tre last of an island]

Example: We consider the case of a molecule with 10^8 bases to be mapped. We assume that a library of 10000 fragments has been created, each around 50000 bases long. In this case $R = \frac{5 \cdot 10^4 \cdot 10^4}{10^8} = 5$ and for Θ small enough $N \cdot \exp(-R \cdot (1-\Theta)) \approx 10^4 \cdot \exp(-5) = 67.37946999...$ many islands are to be expected.

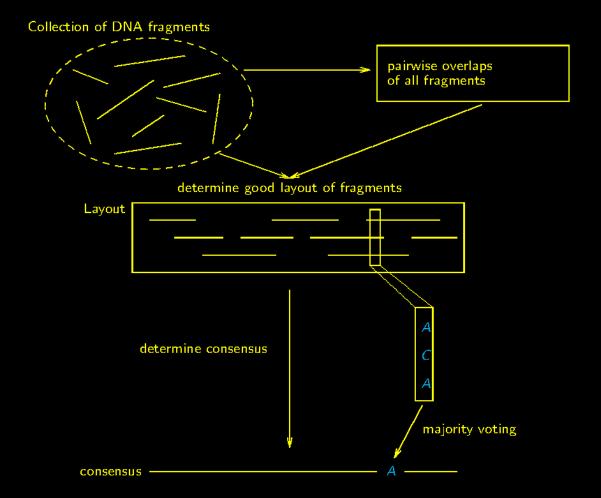
Shotgun sequencing and fragment assembly:

Definition

Let D be a DNA molecule to be sequenced and $S = \{s_1, \ldots, s_n\}$ the set of words (fragment sequences), observed at a shotgun sequencing of D. Then the fragment assembly problem is to determine (algorithmically) the arrangement of the words from S corresponding to their original positions in D.

Solution of the fragment assembly problem:

- Overlap: In this phase the possible overlaps of pairs of words from S are determined. They do not have to be exact prefix-suffix pairs but alignments with great similarity may also be used.
- Layout: From the result of the first phase now an arrangement (similar to a semiglobal alignment) of the words from S is designed, representing the arrangement of the fragments in D. The structure resulting from the overlaps is called Layout.
- 3. **Consensus:** As the layout usually contains several fragments overlapping at a given position of *D* in the final step it has to be decided, which symbol is chosen. This can e.g. be done by majority voting.



Sources of errors and problems:

- sequencing errors,
- creation of chimeras,
- uncovered parts (toxic effect of a fragments wrt. host),
- orientation (s_i or complement reverse to s_i ?),
- repeats (of (almost) identical substrings) (overlap or not?).

Shortest superstrings

We create as layout an overlapping of the fragments that implies a sequence for D as short as possible.

Formally we are looking for a word w_S containing all $s_i \in S$ (superstring for S) for $S = \{s_1, \ldots, s_n\}$ a subword free set of words. We call this problem the shortest common superstring problem (SCSP).

Another view at the problem is given by the notion of compression:

Definition

Let w_S a superstring for set $S = \{s_1, \ldots, s_n\}$. The compression of ws is defined by

$$comp(w_S) := \left(\sum_{1 \leq i \leq n} |s_i|\right) - |w_S|.$$

Intuitively $comp(w_S)$ is the number of symbols that w_S saves compared to the trivial superstring $s_1 \cdot s_2 \cdots s_n$.

Correspondingly the maximum compression common superstring problem (MCCSP) is the problem of finding algorithmically a superstrings for 5 with maximal compression.

Obviously: Optimal solutions for SCSP and MCCSP are the same.

But: Performance guarantees can not be exchanged between the problems.

Definition

Given a set $S := \{s_1, s_2, \dots s_n\}$, n > 0, of words. If there are decompositions of $s_i, s_j \in S$ satisfying

- \triangleright $s_i = xy$
- \triangleright $s_i = yz$,
- \triangleright $x \neq \varepsilon$ and $z \neq \varepsilon$,
- |y| maximal with these properties,

y is called overlap of s_i and s_i (notation $Ov(s_i, s_i)$). The Merge $\langle s_i, s_j \rangle := xyz,$ $< s_i, s_j > \text{ of } s_i \text{ and } s_j \text{ then is the word}$

$$\langle s_i, s_j \rangle := xyz,$$

and we call x prefix of the merge $\langle s_i, s_i \rangle$ (notation $Pref(s_i, s_i)$).

Definition

Let $S = \{s_1, ..., s_n\}$ be a set of words and G the digraph with vertices S and edges $S \times S$. The overlap graph OG(S) of S is the digraph we get from marking G according to

$$ov: (S \times S) \rightarrow \mathbb{N}_0: ov(s_i, s_j) := |Ov(s_i, s_j)|.$$

If we mark G according to

$$pr: (S \times S) \rightarrow \mathbb{N}_0: pr(s_i, s_i) := |Pref(s_i, s_i)|,$$

we get the distance graph of S (notation DG(S)).

Example: $S = \{aabca, aacab, aaddd, ababaa, caba \}$, table shows edge weights $ov(x, y) \mid pr(x, y)$:

Greed

	y				
X	aabca	aacab	aaddd	ababaa	·caba
aabca	1 4	1 4	1 4	1 4	2 3
aacab	0 5	0 5	0 5	2 3	3 2
aaddd	0 5	0 5	0 5	0 5	0 5
ababaa	2 4	2 4	2 4	1 5	0 6
caba	1 3	1 3	1 3	3 1	0 4

aa casa

Using our method from the exercises (9. Task) to find all pairwise overlaps of words in S we can create the overlap graph for S in time $\mathcal{O}(N \cdot (\log(N) + |\Sigma| + n))$, assuming S is a set of words over Σ and $N := \sum_{1 \le i \le n} |s_i|$.

Using $pr(s_i, s_j) = |Pref(s_i, s_j)| = |s_i| - |Ov(s_i, s_j)|$ we get the same running time for creating the distance graph.

Note that $n^2 = \mathcal{O}(N \cdot n)$ and even $n^2 \le n \cdot N$ holds as by assumption ε being a substring of every word can't be an element of S.

Edge $s_i \rightarrow s_j$ in the overlap or distance graph can be identified with merge $\langle s_i, s_i \rangle$.

 \Rightarrow Path corresponds to series of merges of the words represented by the nodes. E.g. for path s_1, s_2, \ldots, s_k

$$\langle s_1, s_2, \dots, s_k \rangle :=$$

$$Pref(s_1, s_2) \cdot Pref(s_2, s_3) \cdot \cdot \cdot Pref(s_{k-1}, s_k) \cdot s_k.$$

A superstring for *S* then corresponds to a path through the graph visiting each node exactly once, a minimal superstring (i.e. a solution for SCSP or MCCSP) to a path with optimal weight (for the distance graph this is the minimal weight).

⇒ Correspondence of our problems and TSP!

Theorem

Dec-SCSP is NP-complete.

Approximation algorithm:

```
while |S| > 1 do

Determine s_i, s_j \in S, s_i \neq s_j, with...

... maximal overlap of all pairs in S.

Set s' := \langle s_i, s_j \rangle and S = S \setminus \{s_i, s_j\} \cup \{s'\}.

return (s \in S) //the only word remaining in S
```

This way the algorithm creates a hamiltonian cycle in the overlap graph.

Example: $S = \{aabca, aacab, aaddd, ababaa, caba\}$ (Graph see previous example)

First choice: Two alternatives ((caba, ababaa) and (aacab, caba)). We take (caba, ababaa) \Rightarrow merge < caba, ababaa >= cababaa and $S = \{cababaa, aabca, aaddd, aacab\}$.

Second step: Combine aacab and cababaa to get aacababaa and $S = \{aacababaa, aabca, aaddd\}$.

Third step: Pair (aacababaa, aaddd) has maximal overlap. $\Rightarrow S = \{aacababaaddd, aabca\}.$

Last step: Output aabcaacababaaddd of length 16 (being a shortest superstring for the input considered).

Theorem

Assuming a constant size of the alphabet above greedy algorithm given input $S = \{s_1, \ldots, s_n\}$ takes running time in $\mathcal{O}(N \cdot (n + \log(N))), N = \sum_{1 \le i \le n} |s_i|.$

Proof:

Constant alphabet size > compute all pairuise overlaps in time $O(N \cdot (n + log(v)))$ [suffix trees]

Sort tre n² edges in time $O(n^2+N)$ = $O(n\cdot N)$ (according to label) using distribution counting (labels are bounded above by layth of the longest imput sequence and this Sy N)

Graph: time O(m²) adjacency makin.

UNION-FIND (to prevent cycles);

Away R[1:n] with R[i) = name of purlition
i Selongs to

Parlition: time List (stones; it length)

linitalise: O(n); in siegletons (5i)

initalisation O(N. (n+log(N))