9th Exercise sheet for Advanced Algorithmics, SS 15

Hand In: Until Wednesday, 24.06.2015, 12:00am, in lecture, exercise sessions, hand-in box in stairwell 48-6 or via email.

Problem 24

a) Show that a^{n} can be computed with $\mathcal{O}\left(n^{2} \log n\right)$ bit operations for constant $a \in \mathbb{N}$.
b) Give a sharper upper bound than the one in part a). How can it be attained?

Problem 25

Let $\Sigma=\{+,-\}$ and for $j \leq i$

$$
L(i, j)=\left\{\left.w \in \Sigma^{*}| | w\right|_{+}=i+j,|w|_{-}=j\right\}
$$

the language of all sequences of $i+j+$ and $j-$.
Show that at least a third of all words in $L(i, j)$ contain (properly) more + than - in every suffix.

Problem 26

Analyze the behaviour of algorithm $\operatorname{PrimeNumber}(\ell, k)$ for
i) $k=2 \cdot\left\lceil\log _{2} \ell\right\rceil$ and
ii) $k=2 \cdot\left(\left\lceil\log _{2} \ell\right\rceil\right)^{2}$,
respectively.

