
MaLiJAn Manual
Florian Furbach Michael Holzhauser

Raphael Reitzig Vasil Tenev Sebastian Wild

September 28, 2012

1

Contents
1 Overview 3

1.1 Steps of Analysis—A Glossary . 3

2 Primer—Theorectical Foundations 6
2.1 Maximum Likelihood Analysis . 6
2.2 The Art of Extrapolation: How to get pi→j(n)? 7

3 Prepare Your Algorithm 8
3.1 In-code cost measures . 8
3.2 Compiling . 8
3.3 Unsupported Language Constructs . 9

4 Analyze Your Algorithm 10
4.1 Creating a new project . 10
4.2 Loading a project . 11
4.3 Managing the analyses . 11
4.4 Creating a new analysis . 11
4.5 Analyzing the algorithm . 12

4.5.1 Extrapolations . 14

5 Running Time Predictions 15
5.1 Support of Block Sampling in MaLiJAn 15

6 Typical Problems, Known Pitfalls & Neat Tricks 16
6.1 Costs . 16

6.1.1 Splitting Costs . 16
6.2 Counter Extrapolations . 16

6.2.1 Input Size Range Hints . 16
6.2.2 The Sum-of-O-Criterion . 16
6.2.3 Overfitted extrapolations . 17
6.2.4 Customizing the Extrapolation Heuristic 17

6.3 Elimination . 17
6.4 Analysis Result . 18

6.4.1 Block-Counter-Extrapolation Integrity Check 19

7 Advanced Techniques 20
7.1 Distributed Profiling . 20

7.1.1 Slave Configuration . 20
7.1.2 Client Configuration . 21

7.2 Securing Slaves . 21
7.3 Better Estimates of Free Memory . 22

References 23

2

1 Overview
MaLiJAn is a tool that analyzes an algorithm by training a stochastic model of the algo-
rithm on user-provided input data and obtains its average complexity using maximum
likelihood analysis (see section 2).

The rest of this manual is organized as follows: Section 1.1 introduces main steps of
the analysis explained in further detail in subsequent sections. Prerequisites to be met
by the algorithm are stated in section 3. Section 4 guides you through the analysis
of your algorithm in MaLiJAn. Problems we encountered in analyses are discussed in
section 6 together with “best practice” hints to avoid them. Section 7 explains setup
for large-scale distributed profiling.

1.1 Steps of Analysis—A Glossary
The analysis consists of the following steps. Figure 1 shows the connections between
these steps.

Augmentation The Java input algorithm is marked to produce costs on critical posi-
tions in the source code, then compiled and augmented with counters on basic
block entry points that count how often they are used during program execution.
The user specifies which program parts are augmented by manual selection and
code commenting.

Profiling The augmented program is run on a given sets of inputs. Obtaining tran-
sition counters necessary to train the stochastic control flow model can take a
while, especially if the algorithm under consideration is slow and/or some input
data is large.
Therefore, MaLiJAn is able to distribute simulation to a cluster of machines using
slaves connected by RMI as describe in section 7.

Analysis Once Profiling is done, in the analysis phase data is extrapolated and ex-
pected values for costs measures are computed. This phase consists of multiple
tasks that determine the quality of the analysis result and may be iterated mul-
tiple times with adjusted parameters.

Control Flow Graph The control flow graph (CFG) of a program is a directed
graph consisting of one node per instruction in the code. Two nodes u and
v are connected by a transition edge (u, v) if there exists a possible run of
the program in which v is executed directly after u.
As most instructions in a program are sequential, i. e. execution always
continues with subsequent instruction, CFGs tend to contain linear lists.
For reasons of clarity and comprehensibility, MaLiJAn contracts such lists
into single nodes called basic blocks.
MaLiJAn displays the graph as well as detailed information about its basic
blocks, which can be valuable help for identifying problems in analyses.

3

MaLiJAn

Computations on

Mathematica Server
Object in MaLiJAnAction in MaLiJAnInput

Class files
Select code and

method to analyze

MaLiJAn project

Stored to file

Analysis

(for project)

Run analysis

(distrubuted on

slaves)

Profile

(counts for

transitions)

Digest transition

counts

Control Flow

Graph & cost

annotations
Compute symbolic

expected values

Extrapolate

counters

Eliminate worst

counter (per

transition)

Transition

probabilities

Insert

extrapolation &

simplify

Expected cost in n

(for each cost

measure)

Symbolic

expected values

Input

provider

(input data)

Figure 1: Overview flow chart of the different steps in MaLiJAn.

4

Compute Expectation The control flow graph of the algorithm is translated
into a probability generating function (PGF). The PGF is used to obtain
symbolic expected values of all cost measures in terms of symbolic transition
probabilities (further details in section 2).

Extrapolation For each transition, collected data for different input sizes is ex-
trapolated using a heuristic to get transition probabilities as a function in
input size n.
This is done by extrapolating counters—how often blocks were entered
and transitions were taken respectively—and then dividing extrapolations.
Details in section 2.

PlugIn These transition probabilities are inserted in symbolic expected values
for cost measures, resulting in approximations of average case complexities
of the algorithm in terms of input size n.

Result Simplification Often, resulting expressions need to be simplified to draw
conclusions from them. To this end, several simplification methods are
offered.

5

2 Primer—Theorectical Foundations
This section gives a brief introduction to the theory underlying MaLiJAn.
We assume basic familiarity with ordinary generating functions and their application

to derive expected values from probability generating functions for discrete random
variables with range N. A nice introduction can be found in [1, Chapter 8.3].

2.1 Maximum Likelihood Analysis
Maximum Likelihood Analysis was introduced in [2] as a tool to derive symbolic average
case analyses of algorithms for empirical input distributions. The result is a symbolic
expression for the expected value of some cost measure depending on the input size
parameter n. MaLiJAn allows to automate large parts of this method and supports
arbitrary user-provided algorithms (given as Java Bytecode).
Using information collected by running an algorithm on user provided input data—

potentially taken from real-world applications and thus reflecting the actual distri-
bution of inputs in practice—MaLiJAn can semi-automatically derive the symbolic
average case costs of the algorithm. As done in classic runtime analyses, costs are
defined in terms of elementary operations, e. g. “key comparisons” for sorting.1

The underlying idea is to regard the control flow graph of an algorithm as finite
Markov chain: We abstract from the exact behavior of the program by only looking at
the program counter, i. e. states are certain positions in the code of the program and
transitions jump from one position to another. This model is completely described by
considering conditional probabilities

pi→j = Pr [continue with basic block j | currently in basic block i] .

In MaLiJAn, pi→j will be rendered as p(i, j) for better legibility in small fonts.

However, it turns out this abstraction was too eager to still allow interesting conclu-
sions: For most algorithms, pi→j is not constant with respect to the input size n.
Therefore, we allow transition probabilties to depend on input size n

pi→j = pi→j(n) .

Theorem 5 in [2] now states that we can algebraically compute the average case
runtime as follows:

1. Solve the symbolic linear equation system

Bi =
{

1 if block i is a sink∑
j pi→j · ykj otherwise

for all basic blocks i

for the entry point B0 of the main procedure. kj is the cost contribution of basic
block j (e. g. number of elementary operations).

1In MaLiJAn, “elementary operations” are called cost measures.
They are defined by the user (see Section 3.1).

6

The result is a rational function in variable z that contains symbolic transition
probabilities pi→j . This function is the ordinary probability generating function

S(z) =
∑
k≥0

Pr[k elementary operations] · zk

2. Compute S′(1), the first derivative of S with respect to z at point z = 1.
The result is the symbolic expected value for the number of elementary opera-
tions.

3. Replace symbolic pi→j by pi→j(n).
The resulting term is the expected number of elemenary operations executed for
input size n.

2.2 The Art of Extrapolation: How to get pi→j(n)?
In general, it is not possible to determine the functions pi→j(n) automatically.2
However, for many cases the following heuristic works very well: We count in c(n)

i→j for
each basic block transition i→ j and input size n how often it occurred in the execution
of the algorithm. From them, we can easily compute ci :=

∑
j ci→j . Assuming one

fixed input size n, ci→j

ci
is the maximum likelihood estimate p(n)

i→j of pi→j at size n.
Hence, we can use extrapolations c̄i→j(n) and c̄i(n) derived from the points c(n)

i→j

and c(n)
i , respectively, to compute an extrapolation

p̄i→j := c̄i→j(n)
c̄i(n)

for pi→j .

Of course, it would also be possible to directly extrapolate the points p(n)
i→j . How-

ever, the extrapolation heuristic currently implemented in MaLiJAn are intended for
monotonically nondecreasing functions—which is typical behavior for counters.
Additionally, experience with Maximum Likelihood Analysis has shown, that judging

the quality of extrapolations—which is the only part of the analysis that has to be
done with human guidance— is much harder for direct extrapolations of probabilities
compared to extrapolations of counters. The apparent reason is that probabilties are
naturally constrained to the interval [0, 1] such that wrong extrapolations can still
appear close to the points p(n)

i→j .

2At the very least, there are uncountably many of them . . .

7

3 Prepare Your Algorithm
In order for MaLiJAn to analyze a Java program, you have to specify the following
metadata:

set of analyzed methods Only code from those methods will be included in the con-
trol flow graph. This allows to focus on essential parts of an algorithm.

start method Among the set of analyzed methods, one method has to be selected as
main method. This method will be called by MaLiJAn during profiling. The
start method needs to be declared public and static and has to take exactly
one parameter, say of type T . The inputs the algorithm is run on are instances
of this type T .

cost measures Cost measures determine to what extend each code segment contributes
to total costs. You may define several independent cost measures.

input provider The input data created by input provider is passed to the start method
during profiling. Hence, it has to return inputs of type T .

3.1 In-code cost measures
MaLiJAn allows two different ways to specify cost measures. The probably most con-
venient one is to directly annotate costly instructions in source code.
To do so, simply add a call to (static) method produceCost in class de.unikl.cs.

agak.malijan.annotation.Annotations:

produceCost("<cost-measure>",<amount>);

This assigns the following statement <amount> units of cost for <cost-measure>.

Method produceCost is designed to always returns true, so you can use it in
boolean expressions:

if (produceCost("key comparison",1) && a[i] <= a[j]) ...

3.2 Compiling
Augmenting is done on Java Bytecode, therefore you have to provide your Java pro-
gram in compiled form. Which Java compiler you use does not matter.

Including debug symbols on compilation makes basic block info in the con-
trol flow graph view much more informative. If you are using Oracle JDK, use
parameter -g.

8

3.3 Unsupported Language Constructs
Some advanced features of the Java Programming Language have not been considered
in MaLiJAn.

Exception Handlers are not included in control flow graphs. Example:

try {
A: throw new Exception();

} catch (Exception e) {
B:

}

Here, the “correct” control flow graph contains an edge from A to B, as the control
flow continues in the exception handler. This edge (together with the node for B)
is not created by MaLiJAn.

Multithreading For concurrent programs, it is in general not clear how to sensibly
combine the profiles of different threads. Therefore, MaLiJAn currently does not
support multiple profiles at all.

In the current implementation, if analyzed methods are executed con-
currently, global transition counter will falsely “detect” transitions between
basic blocks executed from different threads. The resulting CFG will contain
incorrect edges and transition counters are just wrong.

Bottom line: Don’t do it.

9

4 Analyze Your Algorithm
In this section we want to explain briefly how to use MaLiJAn in order to analyze a
given algorithm.
Before we start with the walkthrough we have to introduce some GUI related terms:

Project: A project consists of a given source base, i. e. a folder or JAR-archive con-
taining (compiled) byte code of a Java program to analyze. It further contains
information about the selected methods to be analyzed as well as chosen start
method (cf. section 3). Conceptionally, the project is divided in several analyses
(see below). Every project is stored in a JAR-archive containing (possibly aug-
mented) source base and a separate *.maliconf file (containing project’s meta
data). Both files must be kept in the same directory and must have same file
name (of course with file extension .maliconf instead of .jar).

Analysis: An analysis is—as already mentioned—part of a project. In addition to
information stored in a project, it further contains
• the chosen input provider,
• the profile containing all data collected during executions of the algorithm,
• as well as extrapolations and further formulæ created during analysis (see
below).

The ordering of the following subsections corresponds to the workflow of MaLiJAn.
First of all, when starting MaLiJAn, one has to either load an existing project or
create a new one. We will start with the latter option.
Note that MaLiJAn allows only one open project at a time. However, you can start

several instances in case you need to compare several projects.

4.1 Creating a new project
In a first step one has to specify a name for the project (which will determine the file
name of the project files) and a source base. The source base can be a folder containing
.class files or a JAR-archive. After pressing the ‘Analyze’ button it will be read and
in case of success a tree of all classes contained in the source base will be shown.
Use checkboxes in the tree to select all methods to be included in the analysis. Only

methods selected here can contribute to analysed costs of the algorithm. Hence, the
rationale is to choose a superset of all methods possibly needed.
In the next step, the start method of the algorithm has to be chosen. MaLiJAn will

only offer methods meeting requirements for start methods (public, static and one
parameter; see Section 3).

After that the new project will be built, i. e. methods chosen to be analyzed are aug-
mented for profiling and put into a JAR-archive named like the project without special
characters. Additionally, the corresponding maliconf file containing already collected
metadata will be created.
As from now, the project can be loaded as described in the next subsection.

10

4.2 Loading a project
If you want to open an already existing project, MaLiJAn offers the option to read
a maliconf file. It will be checked, if the maliconf file contains valid data and if a
corresponding JAR-archive can be found (needs to be located in the same directory)
and opened. In case of success the analysis management will be shown.

4.3 Managing the analyses
After loading or creating a new project, MaLiJAn shows every previously opened anal-
ysis as a tab and an additional tab for managing analyses— i. e. investigating, deleting,
opening or creating new analyses.
In the upper area of the program window several buttons are located. We explain

them from left to right:

Return to the start screen (thereby closing current project)

Analysis Management & Analysis Tabs
This is the main working area for doing analyses and the default view after
opening a project.

Project details.
Shows a verbose text view of the open project and all its analyses.

Status & History of requests (see below)

Save current project.
Note that MaLiJAn never saves your project automatically, except when building
the project. (Reason is that we do not provide an undo button . . .)

About dialog, giving information of MaLiJAn’s origin.

4.4 Creating a new analysis
By opening a new tab one has the possibility to create a new analysis.

If other analyses have been created and profiled already, MaLiJAn will offer
re-use their profiles and merge them with a newly created profile.

This will come in handy if you notice during analysis that in the current analysis
too little profiling data was collected. Then you can copy the existing profile and
add e. g. some samples for larger input sizes.

In the next step one has to give a name for the analysis and select an input provider.
If there are non-abstract classes implementing the InputProvider-interface in the
underlying source base those will be shown. Additionally, MaLiJAn offers several built-
in input providers. Note that only those input provider will be shown which input type
is a subtype of the start method’s argument type.

11

After selection of an appropriate input provider constructor there will be the possi-
bility to enter values for the constructor’s arguments.
If MaLiJAn is able to instantiate the chosen input provider with the chosen construc-

tor and the entered arguments, one can continue with the profiling step. The input
provider will be called as long as it returns new data, which will then be used to run
the algorithm via the chosen start method. During execution all occurring basic block
transitions will be counted. The profiling step can be aborted at any time without loss
of the already finished results, and can be restarted if necessary.

See section 7 for how to set up a cluster environment to distribute profiling
to several machines.

4.5 Analyzing the algorithm
As soon as profile data is set one is able to analyze the algorithm’s cost. MaLiJAn
offers a two-part view.
In the upper area of the screen, the program’s (compactified) control flow graph is

shown. Vertices correspond to basic blocks and an edges between two nodes indicates
a possible transition from one block to the other.
The lower area holds several tabs for the different analysis steps In the following,

we describe the typical workflow of an analysis (from left to right):

Overview: In this tab, some information about the underlying profile is given. Besides
a plot of the number of runs per input size, there a button allows to export profile
information.

Block Info: Here, detailed information is for the control flow graph is shown. When
selecting one or more basic blocks, information about the corresponding byte
code is displayed.

Cost Measures: In this tab, you define the cost measures to apply. Initially, only
measures derived from code annotations are shown, but you may also create new
cost measures from scratch and edit existing ones.
Once all cost measures are defined, click on ‘Compute Symbolic Expectation’.
Note that you cannot change cost measures after that.

Base Functions: This tab shows the list of base functions used for the extrapolation
heuristic. For the analysis to be correct, you have to give (a superset of) the
functions actually occurring for counters in this list. As those functions are not
known up front, add all sensible ones here and use the next tab to evaluate their
adequacy.
Currently, the heuristic is only intended for monotonically non-decreasing func-
tions. Other base functions will produce results, but those might be poor extrap-
olations. Moreover, the list has to be sorted by descending asymptotic growth,
which can be done automatically by clicking ‘Sort’. If the sort method cannot
determine for two functions f and g, which has the larger asymptotic growth
rate, the user will be interactively queried.

12

Counter Extrapolation: This is one of the two extrapolation tabs. Here one can ex-
trapolate the counters for basic blocks and transitions (see Section 2.2).
By selecting one or more entries in the list to the left, you can view plots of the
counters. If the entry has already been extrapolated, the function is shown and
included in the plot.
A click on ‘Extrapolate’ opens the Extrapolation Dialog, where you can adjust
parameters for extrapolation. The dialog has two tabs, one for MaLiJAn’s ex-
trapolation heuristic and one to enter manual functions.
For the heuristic, you can select a list of base functions. The resulting function
will always be a linear combination of those. Additionally, you can select an
interval of input sizes. Only counters whose x-value falls in this interval are used
for the extrapolation. (This allows exclusion of atypical points, see Section 6.2.1).
In the second tab of the Extrapolation Dialog you can enter a manual function
term. It has to be given Mathematica syntax, where n is the input size.
Colors in the list of ‘extrapolatable’ entries indicate their states: A red entry has
not been extrapolated yet. Once it was extrapolated, it is show in black. Gray
entries are counters that do not occur in any symbolic expected cost value and
hence need not be extrapolated.3

From Counters to Probabilities: After creating counter extrapolations, the next step
is to compute probability extrapolations from those. For that, you have to select
for each basic block which counter extrapolation to eliminate (the probability
extrapolations are over-determined).
MaLiJAn can automatically select the “worst” extrapolation for elimination ac-
cording to some built-in heuristics.4 Hitting button ‘Eliminate and Compute
Probabilities’, computes all probability extrapolations for this basic block. Any
existing extrapolations will be overwritten.

Expected Costs: This is the last panel and offers functionality to complete the anal-
ysis. For each cost measure one can compute the expected value now.
After choosing a cost measure, the symbolic expected value will be displayed and
you can plug in the extrapolated probabilities. As a result you get a single term
in input size n for the expected value of the selected cost measure. Additionally,
a plot of this term will be shown together with cost amounts determined during
profiling to judge analysis quality.
In the combobox, MaLiJAn offers a variety of term simplification methods. Click-
ing on ‘Simplify’ applies the currently selected one to the plugged in term. You
can use several simplification steps one after another.

3Of course, this is only known once you have clicked ‘Compute Symbolic Expectation’ in tab Cost
Measures.

4As indicated by the term ‘heuristic’, these automatic methods may fail. You should always bear in
mind Section 6.3.

13

Runtime Prediction: This tab gives access to the runtime prediction facilities of MaL-
iJAn. See Section 5 for a detailed description.

4.5.1 Extrapolations

To ensure a meaningful result, extrapolation quality needs to be checked. Extrapola-
tions depend on the choice of base functions as well as the choice which counts should
be included and excluded from extrapolating, respectively.
Since counts of the outgoing transitions of a base block sum up to the count of the

block, the same has to hold for extrapolations. So one of those values is expressed in
terms of the others instead of being extrapolated independently.

14

5 Running Time Predictions
Apart from the purely combinatorial cost measures discussed in the last section, MaL-
iJAn can also be used to predict actual running times on a particular machine.
In principle, it suffices to measure the running times of all basic blocks. However,

those running times are in the range of nanoseconds, so they cannot be properly
measured directly. MaLiJAn contains an indirect methodology called “basic block
sampling” to determine these block running times. It is fully automatic and aims at
minimizing systematic errors. We divide the program into basic blocks, i. e. maximal
blocks of sequential instructions. Then, we inject instructions at the beginning of each
block to store an identifying number of the block in a global variable. This introduces
a systematic error as each basic block becomes a few instructions longer, but it will be
fairly small compared to other techniques of runtime measurement. Then, on a periodic
basis, we concurrently read the global variable and store the block number. Note that
this periodic job is done in parallel and hence does not influence the running time of
the algorithm itself, i. e. it does not add to the systematic error. By repeating the run
sufficiently often, the relative frequencies of the observed block numbers approach the
relative running time contribution of the blocks.
From this, we get the vector b = (b1, . . . , bk) of observed block frequencies, i. e. block

i has been seen bi times in total. In separate runs, we also count fi exactly, i.e. how
often block i is executed in total, and we measure the total running time T in yet
another run. Then, we use

c(i) := 1
fi
· bi

B
· T, where B :=

k∑
i=1

bi

as an estimate of the block running times.

5.1 Support of Block Sampling in MaLiJAn
Unfortunately, MaLiJAn currently only gives preliminary support for block sampling.
In the ‘Runtime Prediction’ tab of an Analysis, there are two buttons, ‘Sample’ and

‘Measure’. Those create an standalone executable JAR archive, which can be started
on the target machine to automatically measure b and T using the inputs created by
the Analysis’ InputProvider.
Computation of the block costs c(i) and integration into MaLiJAn is planned for a

future version. For the time being, one has to do the processing externally.

15

6 Typical Problems, Known Pitfalls & Neat Tricks
6.1 Costs
6.1.1 Splitting Costs

If the expected value for some cost measure is too complicated to handle, you might
try to split up cost measures into several ones. This works if the cost measure assigns
non-zero amounts to several basic blocks:
Let B1, . . . , Bk be the blocks, where cost measure C has non-zero value. The you

can define k simpler cost measures CB1 , . . . , CBk
, where CBj only assigns cost to Bj .

Since expected values are linear, we have

EC = E
(∑

j

CBj

)
=
∑

j

ECBj

.

6.2 Counter Extrapolations
6.2.1 Input Size Range Hints

The selection of input sizes to use for extrapolating is vital for two reasons:
1. Judging quality from plots is only possible by looking at points that were not used

for computing extrapolations. As we mainly need to hit the correct asymptotic
growth of functions, some of the largest profiled input sizes should be excluded
from extrapolating.

2. Many algorithms show their typical runtime behavior only for inputs exceeding a
certain size. Below that size, initialization code etc. might hide actual hot spots.
Therefore, excluding small sizes can help if they do not fit the global trend.

6.2.2 The Sum-of-O-Criterion

How to judge the quality of an extrapolations in general is not clear. Before we resort
to guessing, necessary conditions for sensible extrapolations should be checked. One
example is the Sum-of-O-Criterion: For arbitrary functions f, g holds:

O(f + g) = O(max(f, g)) =
{
O(f) if g = O(f)
O(g) otherwise

.

For the counter extrapolations, we always have the situation that the sum of all tran-
sition counters ci→j equals the block counter ci. Hence, in terms of O, a sensible set
of extrapolations fulfills
• ci→j = O(ci) for all target blocks j.

• ci→j = Θ(ci) for at least one block j.
This criterion is automatically checked by MaLiJAn’s elimination heuristic, so if the
heuristic did not fail, the Sum-of-O-Criterion is guaranteed to be fulfilled.

16

6.2.3 Overfitted extrapolations

The extrapolation heuristic always yields a linear combination of the base functions
(plus some constant). The maximal number of base functions with non-zero constant
factor can be given in extrapolation dialog. Experience suggests that rarely more than
2 should be used.
If the heuristic does not find a suitable extrapolation with one base function, often

too few or too noisy data is used, such that further profiling might help. Using several
base function terms often looks well in plots, but does not hit ground truth.
Of course, the correct function might also be completely missing from the list of

base functions. Then, you will have to add it to the set of base functions.

6.2.4 Customizing the Extrapolation Heuristic

If the extrapolation routine selects a function that does not seem right, you might try
the following steps

1. Change the set of selected points, see section 6.2.1.

2. Deselect the leading term of the current extrapolation from base functions. By
that, the heuristic can be prevented from using seemingly wrong term again.

3. If you have reason to believe a certain base function should be correct, select only
this function as base function. The result will then be of the form a · f(n) + b,
where f(n) is the selected base function.

4. If your concrete guess is not part of the set of base functions, you can change the
list on the ‘Base Functions’ tab. Function terms have to be given in Mathematica
syntax
Important: Currently, only monotonically non-decreasing base functions are
supported and the list of base functions has to be sorted by asymptotic growth.
The latter can be done automatically using the ‘sort’ button. The heuristic will
produce some result even for base functions violating these conditions, but the
extrapolations might be completely wrong.

5. If the built-in heuristic completely fails, you might use the CSV-export of the
points and come up with an extrapolation manually. Export is available in
‘Counter Extrapolation’ tab via button ‘Export Counters’.
Once you found a suitable extrapolation, enter the function term in the Manual
Term tab of the extrapolation dialog.

6.3 Elimination
After all counters have been extrapolated, we select “the worst” of them and throw it
away. The eliminated extrapolation can be expressed by the others using ci =

∑
j ci→j .

Before we go into detail of elimination, let a warning be issued:

17

If a counter extrapolation looks wrong,
do not try to solve this by eliminating it!

Elimination of counters can help reduce numerical errors,
but in general it cannot correct for wrong O-classes in extrapolations.

Which counter is eliminated can heavily influence the result of the analysis (for reasons
given below). In most cases, you will get best results by the following procedure, which
is implemented in MaLiJAn’s heuristic for automatically selecting a counter:

1. Find all transition counts with the same O-class as the block count. As argued
in section 6.2.2, we find at least one such (or some extrapolations are wrong).

2. Eliminate either the block count or one of the found transition counts.
Potential numerical errors should guide your decision: Higher total count

values are typically more stable than lowers; extrapolations of points that
form a smooth line will be more reliable than ones resulting from fuzzy point
clouds.

To motivate this procedure, consider a basic block i, with two outgoing transitions
i→ j and i→ `, and assume the extrapolations c̄i, c̄i→j and c̄i→`, respectively, fulfil

ci→j = Θ(ci) and ci→` = o(ci) .

If we selected i → ` for elimination—contradicting above procedure—we would re-
place c̄i→` by c̄′i→` = ci − ci→j . As the extrapolations are computed numerically, it
is probable that the coefficients of the leading terms in ci and ci→j are not equal and
then

c̄′i→` = ci − ci→j = Θ(ci)

which is certainly wrong.

6.4 Analysis Result
After plugging in probability extrapolations, the final expression for the expected
value can be rather huge. MaLiJAn provides several general-purpose methods to sim-
plify those—however a reliable and tractable way of condensing the term down to its
dominant contributions is still part of active research.
To our experience, the following sequence of simplification steps work in the vast

majority of all cases:

1. ‘Asymptotics via Base Functions’ to get rid of terms vanishing for n→∞.

2. ‘Convert to Numeric’ to convert (rational) constants to decimal fractions.

18

For the remaining cases, you will have to confine yourself to trial-and-error. Each
simplification is applied to the result of the previous one, so you can apply several of
them in a row. Hitting the plug-in-button resets the expression.

A word of caution concerning the plot ‘Computed Expectation vs. Sampled
Costs’ is in order:
Even small numerical errors in the counter extrapolations might pile up to a
significant difference in the resulting expected value. A rather bad looking plot
might still hit the correct O-class of growth.

On the other hand, of course, a plot that looks well is not sufficient for a correct
analysis.

6.4.1 Block-Counter-Extrapolation Integrity Check

A simple cross-check for counter extrapolations and final results is based on the fol-
lowing fact: Assuming the block counter extrapolations are correct, we can compute
the expected value of a cost measure C as

(EC)(n) =
∑

i∈Blocks
C(i) · c̄i(n)

if we interpret C as a function C : Blocks → N assigning to basic block i the amount
C(i) it contributes to the cost measure C.
Using this identity, we have a second way to determine expected costs, yielding a

way to check integrity of the analysis.

19

7 Advanced Techniques
7.1 Distributed Profiling
MaLiJAn is ready to use an arbitrary numbers of remote machines to profile faster.
As explained above, MaLiJAn starts one subprocess per input that runs the algorithm
on that particular input. This paradigm beautifully scales to many machines. Any
number of workers—we call them slaves—can request individual inputs from clients
and profile them independently.
To that end, you need to have a set of computers your office machine can connect to

and vice versa; ideally, they are all situated in a local network with no NAT, firewalls
or similar ailments involved. On each of your slave machines, you configure and run
our slave application which we call malijan-slave from now on. The client you use
needs some configuration, too. This section will teach you how to do both things so
you can profile as speedy as a desert mouse runs.

7.1.1 Slave Configuration

After you download and extract MaLiJAn slave you have to set up a couple of pa-
rameters for a functioning slave. Put a file named <username>.properties (replace
<username> with your username) next to malijan-slave.jar you downloaded. A
property is specified by putting <property-name> = <value> in a separate line. Lines
starting with # are ignored. You have to specify at least these parameters properly:

host The address clients can reach the slave under. This can be an IP or a proper
alias, e.g. a hostname that is resolved by a DNS your clients have access to. If
you malconfigure this property clients might still be able to connect initially but
not send you any profiling requests.

This property sets Java’s system property java.rmi.server.hostname
which is used as callback address in remote objects passed to clients.

port, objectport These two parameters are actually optional as the defaults 1099 and
1337, respectively, should work well in most circumstances. Make sure clients
can connect to whatever ports you end up using.

port is used for the slave’s RMI registry while objectport is the port
remote objects listen on.

For a full parameter list with comprehensive descriptions, check slave-default.properties
in malijan-slave.jar. Among others, you can change the slave’s name, how
much resources it may use and where to write temporary files to.

Now you are almost done. All you have to do is open up a terminal in your slave
directory and run malijan-slave start5.

5You may have to make the script executable: chmod +x malijan-slave

20

We currently only support slaves running on Linux via our runscript. You can,
of course, start slaves by hand on any machine with java -jar malijan-slave
provided that you manually put a file named malijan-slave.pid in your system’s
default temp folder.

Check the log file appearing in the same directory; it should contain a message saying
that your slave is working for work now. If not, something went wrong and the log
hopefully contains information to help you—or us—to fix the problem.

In order to follow logging messages more closely, run tail -f on the logfile.
You can adjust logging granularity by defining property loglevel; valid values
are DEBUG, INFO, WARN, ERROR and FATAL in order of decreasing verbosity.

7.1.2 Client Configuration

For MaLiJAn to use remote slaves for profiling, you have to set the following prop-
erties in <username>.properties (replace <username> with your username) next to
maliclient.jar you downloaded. A property is specified by putting name=value in
a separate line. Lines starting with # are ignored.

slaves A comma-separated list of slave addresses with port. Address and port should
be the same as the respective slaves host and port properties, respectively.

host The address slaves can reach the client under. This can be an IP or a proper
alias, e.g. a hostname that is resolved by a DNS your slaves have access to. If
you malconfigure this property slaves will not be able to send their results back.

This property sets Java’s system property java.rmi.server.hostname
which is used as callback address in remote objects passed to slaves.

port This parameter is actually optional as the default 1337 should work well in most
circumstances. Make sure slaves can connect to whatever port you end up using.

port serves the same purpose as objectport on slaves. If you run multiple
clients or both client and slave on one machine, make sure to choose a
different port for every instance.

7.2 Securing Slaves
Slaves run with rather liberal security permissions6 by default. In particular, they have
read and write access to all files the executing user can access and accept remote con-
nections from everywhere. This can be restricted by carefully chosen host-dependent
permissions.
Check slave.policy in malijan-slave.jar to find the default permissions. Slaves

need at least the following permissions to run as intended:

6Check http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html for
an introduction.

21

permission java.lang.RuntimePermission "modifyThread";
permission java.lang.RuntimePermission "shutdownHooks";
permission java.util.PropertyPermission "*", "read";

It is up to you to configure both FilePermission and SocketPermission properly.
As for files, slaves will need read, write and delete access to the configured working
directory and have to be able to execute the local Java installation. As for sockets,
slaves will only be able to be used from clients that they are allowed to both accept
connections from and to connect to.
Once you have come up with a policy file you can make your slave use it by setting

property policy to its filename. Enable debug logging and check the log to see if
everything works.
If you do not trust malijan-slave to honor your policy you can of course start it

with a security manager of your choice by specifying the corresponding command line
parameters. Good luck.

7.3 Better Estimates of Free Memory
If no suitable settings are given, MaLiJAn and malijan-slave try to use as much
memory as possible for profiling. To that end, they check how much memory is free.
The default estimates can be bad so we implemented an alternative in case you run
into problems.
If you need better automatic estimates, download the SIGAR binary suitable for

your system7 and place it next to your client or slave run script.

7support.hyperic.com/display/SIGAR/Home

22

http://support.hyperic.com/display/SIGAR/Home

References
[1] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics: a foundation

for computer science, volume 2. Addison-Wesley Reading, MA, 1994.

[2] U. Laube and M.E. Nebel. Maximum likelihood analysis of algorithms and data
structures. Theoretical Computer Science, 411(1):188–212, 2010.

23

	Overview
	Steps of Analysis—A Glossary

	Primer—Theorectical Foundations
	Maximum Likelihood Analysis
	The Art of Extrapolation: How to get pij(n)?

	Prepare Your Algorithm
	In-code cost measures
	Compiling
	Unsupported Language Constructs

	Analyze Your Algorithm
	Creating a new project
	Loading a project
	Managing the analyses
	Creating a new analysis
	Analyzing the algorithm
	Extrapolations

	Running Time Predictions
	Support of Block Sampling in MaLiJAn

	Typical Problems, Known Pitfalls & Neat Tricks
	Costs
	Splitting Costs

	Counter Extrapolations
	Input Size Range Hints
	The Sum-of-O-Criterion
	Overfitted extrapolations
	Customizing the Extrapolation Heuristic

	Elimination
	Analysis Result
	Block-Counter-Extrapolation Integrity Check

	Advanced Techniques
	Distributed Profiling
	Slave Configuration
	Client Configuration

	Securing Slaves
	Better Estimates of Free Memory

	References

