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Inductive proofs are one of the main tools of discrete mathematics, often yielding
suprisingly simple proofs for complicated statements. Yet, this simplicity comes at a
price: Inductive arguments typically lack the possibility to derive a valid statement; we
can only verify a given one. The theory of NP-hardness suggests that finding a solution
is way more complicated than verifying a given one. Hence in this sense, induction is a
‘weak’ method.

One famous example demonstrating this is the explicit formula for the Fibonacci
sequence. The Fibonacci numbers are recursively defined as

F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 for k > 2 .

From this definition, it is evident that the sequence is non-decreasing and rather fast-
growing. Apart from that, the innocent-looking definition does not give us clues how
an explicit formula might look like. Here it is:

Fk =
1√
5

(
1+
√
5

2

)k
−
1√
5

(
1−
√
5

2

)k
(Fk explicit)

This formula is remarkably ugly; it’s not even evident from it that Fk is rational, let
alone natural for any k ∈N!

Typically, (Fk explicit) simply appears out of thin air and is then proven by induction —
leaving it open how to find such explicit formulæ. This is where generating functions
take off.1

1The following derivation is taken more or less literally from [GKP94, p. 297ff].
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For a sequence (ai)i∈N of real numbers, define the (ordinary) generating function

G(z) :=

∞∑
i=0

aiz
i .

The prudent reader will insist that — depending on ai— above series might not con-
verge. In fact, the function G : C→ C might be undefined for any z 6= 0.2 The way out is
simple: We don’t interpret G(z) as a complex function, but as a purely algebraic entity
instead: Formal power series.

These decent guys have a right to exist independent from convergence issues: Together
with componentwise addition and convolution (a. k. a. Cauchy product)

(∑
aiz

i
)
·
(∑

biz
i
)
:=

∞∑
i=0

[∑i
k=0akbi−k

]
zi ,

formal power series form a ring. We can derive rules for computation, such that we
can work with generating functions in a natural way.3

Using the recurrence relation from the definition, we can compute a closed form for
the generating function G of the Fibonacci sequence:

G(z) :=

∞∑
i=0

Fiz
i = F0 + F1z+

∞∑
i=2

(Fi−1 + Fi−2) z
i

= 0 + z + z
∑∞
i=1 Fiz

i + z2
∞∑
i=0

Fiz
i

= z + z
(
G(z) − F0

)
+ z2G(z)

⇐⇒ G(z) = z+ zG(z) + z2G(z)

⇐⇒ G(z) =
z

1− z− z2
.

This is a rather pleasing term — it doesn’t look half as scary as (Fk explicit)!

. . . but wait a second. After all, we’d like to derive (Fk explicit). So, doesn’t finding such
a nice formula simply imply the nasty tricks are yet to come? What can this closed
form of G do for us, anyhow?

Of course, we need to find our way back from generating functions to coefficients. In
general, there are several more or less involved ways to do so — we’ll stick to one that
works for rational functions.

2As an example,
∑∞
i=0 i!z

i has radius of convergence 0, hence its generating function is a not well-defined
complex function.

3A thorough introduction is given in chapter 2 of [Wil06].
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Our goal is to ‘massage’ our closed form of G to let us apply well-known identies for
(power-) series. Actually, in our case, high-school knowledge suffices:4

∞∑
i=0

ci =
1

1− c
for |c| < 1 . (geometric)

For rational funtions, the massage technique of choice is partial fraction decomposition.
The denominator of G(z) factors into

1− z− z2 = (1−φz)(1− φ̂z) with φ =
1+
√
5

2
and φ̂ = 1−φ =

1−
√
5

2
.

The attentive reader immediately recognizes φ and his brother φ̂ as the bases of
the exponents in (Fk explicit). It seems we’re finally on a hot scent!
By the way, φ ≈ 1.61803 is the famous golden ratio — a number that keeps occurring
as ratio of lengths in animals and plants, as well as in fine arts.


We use the following ansatz for partial fractions

z

1− z− z2
=

A

1−φz
+

B

1− φ̂z
. (part. frac.)

Setting z = 0 in (part. frac.) yields B = −A.

Now, we multiply (part. frac.) with common denominator 1− z− z2 to get

z = A(1− φ̂z) −A(1−φz) = Az(φ− φ̂)

⇐⇒ A =
1

φ− φ̂
=

1√
5

.

(Aha, there we have the 1/
√
5 ocurring in (Fk explicit) — victory is within our grasp.)

Im summary, we now know

G(z) =
z

1− z− z2
=

1/
√
5

1−φz
+

−1/
√
5

1− φ̂z
.

4Many of those series identities are listed in [Sei94, (“Theoretical Computer Science Cheat Sheet”)].
Some careful thought is needed to show that such equalities hold for formal power series.
We show the variant of (geometric)

∑
qizi = 1

1−qz . First, note
∑
qizi, 1− qz and 1 are generating

functions for sequences ai = qi, bi and di = δi,0 (Kronecker delta) respectively, with b0 = 1, b1 = −q

and bi = 0 for i > 2. Multiplying in the ring, we get

(1− qz) ·
(∑∞

i=0 q
izi
)
=

∞∑
i=0

[∑i
k=0 bkq

i−k
]
zi =

∞∑
i=0

[
qi

qi−q·qi−1
for i=0
for i>1

]
zi = 1 .

So,
∑
qizi and 1 − qz are reciprocals of each other. Hence, we can define division by 1 − qz as

multiplication with (1− qz)−1, such that 1
1−qz is a well-defined formal power series.

[Wil06, prop. 2.1] even states: Any generating function for sequence ai with a0 6= 0 has a unique
reciprocal.
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Looking at this last representation of G, we can spot two instances of the right hand
side of (geometric):

G(z) = 1√
5

1

1− (φz)
− 1√

5

1

1− (φ̂z)

= 1√
5

∞∑
i=0

φizi − 1√
5

∞∑
i=0

φ̂izi

=

∞∑
i=0

[
1√
5

(
φi − φ̂i

)]
zi

=

∞∑
i=0

[
Fi

]
zi ,

where the last equation holds by definition of G. From this, we see Fi = 1√
5

(
φi − φ̂i

)
,

concluding our derivation of (Fk explicit).

Deriving the explicit formula of the Fibonacci numbers was merely a simple introduc-
tary example. The true strength of generating functions often lies in their ability to
represent operations on number sequences. For example, convolution of sequences cor-
responds to multiplication of generating functions. More such operations are discussed
e. g. in [Wil06].

Another powerful approach is to take a step back and interpret G as a complex function.
Of course, we get back all convergence issues we could discuss away so nicely in
the algebraic world. In return, we may let loose our knowledge of complex analysis.
G is analytic within the radius of convergence ρ of the power series

∑
aizi. Well-bred

sequences5 have ρ > 0. For those, Cauchy’s integral formula from residual calculus
states

an =
1

2πi

‰
G(z)

zn+1
dz (integrating over some closed path around the origin.)

This offers an elegant and systematic way to get back the coefficients from G.

Often, this allows to derive bounds for ai even if exact approaches fail.6

5For sequences (an)n∈N with an = O(cn) for n→∞ and some constant c, ρ will actually be at least 1c .
To see this, note that for |z| < 1

c , we have∣∣∣∣an+1zn+1anzn

∣∣∣∣ 6 |cz| <
∣∣∣c · 1c ∣∣∣ = 1 for large n ,

so the series converges absolutely by the ratio test.
As the Fibonacci numbers are non-decreasing, they fulfill Fk = Fk−1 + Fk−2 6 2Fk−1 and by iteration
Fk 6 2k, so ρ > 1

2 . Actually, from the explicit formula, we know ρ = 1
φ .

6This idea and many fancy methods derived from it are presented in great depth in [FS09].
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