Theorem

Let $S = \{S_1, \ldots, S_k\}$ a set of words over Σ , T = (V, E) an alignment tree for S and δ a scoring function satisfying $\delta(-,-) = 0$. Then a multiple alignment $(S^{(1)}, \ldots, S^{(k)})$ for S compatible with all optimal alignments corresponding to edges $e = \{S_i, S_i\} \in E$ can be efficiently determined.

Proof: We compute an alignment compatible with T using the following algorithm:

Input: A set of words $S = \{S_1, \ldots, S_k\}$ over Σ , a scoring $\delta : (\Sigma \cup \{-\})^2 \to \mathbb{Q}$ satisfying $\delta(-, -) = 0$ and an alignment tree T for S.

Step 1: Let $V_1 := \{1\}$ and T_1 the subtree of T consisting only of node 1. Alignment $\mathcal{A}^{(1)}$ then is equal to S_1 .

Step 2: For *i* from 1 to k-1 repeat the following steps:

- (a) Choose any node $s \notin V_i$, neighbored to a node $r \in V_i$ in T. Let $V_{i+1} := V_i \cup \{s\}$ and add s and edge $\{r, s\}$ to $T_i \Rightarrow T_{i+1}$.
- (b) Compute optimal alignment \mathcal{A} of S_s and row $\mathcal{A}_r^{(i)}$ of alignment $\mathcal{A}^{(i)}$ corresponding to S_r . As $\delta(-,-)=0$ holds, the score of an optimal alignment of S_s and S_r is equal to the score of an optimal alignment for S_s and $\mathcal{A}_r^{(i)}$.
- (c) For each gap added to $\mathcal{A}_r^{(i)}$ by \mathcal{A} add a gap column to $\mathcal{A}^{(i)}$. Finally add the row of \mathcal{A} corresponding to \mathcal{S}_s to the modified $\mathcal{A}^{(i)}$ creating $\mathcal{A}^{(i+1)}$.

Step 3: Output alignment $\mathcal{A}^{(k)}$.

Observations:

- ► The algorithm obviously guarantees consistency for the new edge {r, s} and adding further edges doesn't change consistency of previously added edges as only gap columns are added.
- As a tree with k nodes always has k − 1 edges
 ⇒ the loop in step 2 will process each edge of the alignment tree eventually.

Special case: Alignment tree for $S = \{S_1, \ldots, S_k\}$ is a star (i.e. a tree with center c and k-1 leaves, each connected to c by an edge). This special case is often called *star alignment*. The algorithm for the star alignment first determines the center c from the given words S_i as follows:

- ▶ For each $1 \le i \le j \le k$ determine similarity $sim(S_i, S_j)$ of S_i and S_i according to the scoring function used.
- ► Choose c to be the word w with minimal sum $\sum_{S \in S} sim(w, S)$.

Then T is the star with center c, leaves $S \setminus \{c\}$ and the previously determined similarlyties as edge labels. Afterwards the algorithm from the previous proof is used to create a multiple alignment consistent with T. This method is called *center star method*.

It should be obvious that this method does not create an optimal alignment for the input. The question is how good the created alignment is.

Definition

A scoring function $\delta: (\Sigma \cup \{-\})^2 \to \mathbb{Q}$ is called good if it satisfies the following conditions:

- 1. $(\forall a \in (\Sigma \cup \{-\}))(\delta(a, a) = 0);$
- 2. $(\forall a, b, c \in (\Sigma \cup \{-\}))(\delta(a, c) \leq \delta(a, b) + \delta(b, c))$ (triangle inequality).

This definition immediately leads to:

Lemma

If δ is a good scoring function,

$$\delta(a,b) \geq 0$$

for all $a, b \in (\Sigma \cup \{-\})$.

Proof:
$$0 = \delta(a, a) \le \delta(a, b) + \delta(b, a) =^* 2\delta(a, b)$$
 for all $a, b \in (\Sigma \cup \{-\})$.

* We required p(a, b) = p(b, a) already for pairwise alignments

Lemma 5

Let δ a good scoring function, $S = \{c, S_1, \ldots, S_k\}$ a set of words and T = (V, E) the star with center c and leaves S_1, \ldots, S_k . Let $(c', S^{(1)}, \ldots, S^{(k)})$ a multiple alignment of S compatible with T. Then for all $i, j \in \{1, \ldots, k\}$

$$\delta(S^{(i)}, S^{(j)}) \leq \delta(S^{(i)}, c') + \delta(c', S^{(j)}) = sim(S_i, c) + sim(c, S_i)$$

holds.

Proof: As the score $\delta(S^{(i)}, S^{(j)})$ of the pairwise alignment is the sum of the scores of the pairs in all columns, the inequality follows immediately from the triangle inequality continued on δ . The equality follows from the fact that the pairwise alignments of S_i and c resp. c and S_j induced by the multiple alignment $(c', S^{(i)}, \ldots, S^{(k)})$ are optimal and $\delta(-, -) = 0$.

Theorem

Let δ a good scoring function, δ_{SP} the SP score induced by δ and $\mathcal{S} = \{S_1, \dots, S_k\}$ a set of words. Furthermore let $sim_{SP}(\mathcal{S})$ the SP score of an optimal multiple alignment for \mathcal{S} . Then the multiple alignment $(S^{(1)}, \dots, S^{(k)})$ constructed by the center star method satisfies

$$\delta_{SP}(S^{(1)},\ldots,S^{(k)}) \leq \left(2-\frac{2}{k}\right) \cdot sim_{SP}(S_1,\ldots,S_k).$$

Proof: Let $(\bar{S}^{(1)}, \ldots, \bar{S}^{(k)})$ an optimal multiple alignment of S wrt. SP scoring i.e. $\delta_{SP}(\bar{S}^{(1)}, \ldots, \bar{S}^{(k)}) = sim_{SP}(S_1, \ldots, S_k)$. We define

$$v(S^{(1)},\ldots,S^{(k)}) := \sum_{1 \leq i \leq k} \sum_{1 \leq j \leq k} \delta(S^{(i)},S^{(j)}) = 2 \cdot \delta_{SP}(S^{(1)},\ldots,S^{(k)})$$

and

$$v(\bar{S}^{(1)},\ldots,\bar{S}^{(k)}) := \sum_{1 \leq i \leq k} \sum_{1 \leq j \leq k} \delta(\bar{S}^{(i)},\bar{S}^{(j)}) = 2 \cdot \delta_{SP}(\bar{S}^{(1)},\ldots,\bar{S}^{(k)})$$

$$= 2 \cdot sim_{SP}(S).$$

Then the claim follows from

$$\frac{v(S^{(1)},\ldots,S^{(k)})}{v(\overline{S}^{(1)},\ldots,\overline{S}^{(k)})} \leq \left(2-\frac{2}{k}\right).$$

Let

$$m := \min_{t \in \mathcal{S}} \sum_{s \in \mathcal{S}} sim(s, t) = \sum_{s \in \mathcal{S}} sim(c, s) = \sum_{s \in \mathcal{S} \setminus \{c\}} sim(c, s).$$

WLOG we assume $c = S_k$. Lemma 5 then assures

$$egin{aligned} &v(S^{(1)},\ldots,S^{(k)}) \ &= \sum_{1 \leq i \leq k} \sum_{1 \leq j \leq k} \delta(S^{(i)},S^{(j)}) \leq \sum_{\substack{1 \leq i \leq k \ 1 \leq j \leq k}} (sim(S_i,c) + sim(S_j,c)) \ &= \sum_{1 \leq i \leq k-1} \sum_{1 \leq j \leq k-1} (sim(S_i,c) + sim(S_j,c)) \ &= \sum_{1 \leq i \leq k-1} \sum_{1 \leq j \leq k-1} sim(S_i,c) + \sum_{1 \leq i \leq k-1} \sum_{1 \leq j \leq k-1} sim(S_j,c) \ &= 2 \cdot (k-1) \cdot \sum_{1 \leq i \leq k-1} sim(S_i,c) = 2 \cdot (k-1) \cdot m. \end{aligned}$$

On the other hand

$$\begin{aligned} v(\bar{S}^{(1)},\ldots,\bar{S}^{(k)}) &= \sum_{1\leq i\leq k} \sum_{1\leq j\leq k} \delta(\bar{S}^{(i)},\bar{S}^{(j)}) \geq \sum_{1\leq i\leq k} \sum_{1\leq j\leq k} sim(S_i,S_j) \\ &\geq k \cdot \sum_{1\leq j\leq k} sim(c,S_j) = k \cdot m, \end{aligned}$$

as each choice of i results in

$$\sum_{1 \leq j \leq k} sim(S_i, S_j) \geq \sum_{1 \leq j \leq k} sim(c, S_j)$$

since $c := \operatorname{argmin}_{t \in \mathcal{S}} \sum_{s \in \mathcal{S}} sim(t, s)$. This leads us to

$$\frac{v(S^{(1)},\ldots,S^{(k)})}{v(\bar{S}^{(1)},\ldots,\bar{S}^{(k)})} \leq \frac{2\cdot(k-1)\cdot m}{k\cdot m} = 2-\frac{2}{k}.$$

We have shown that for good scoring functions and SP scoring the center star method is an $(2-\frac{2}{k})$ -approximation algorithm for the multiple alignment of k words.

The center star method is, however, not only suitable for SP scoring. One can show that when scoring based on consensus words it is a 2-approximation if using good scoring functions.

Sequencing

Physical Mapping (first approach for sequencing): Break down many copies of the DNA molecule in question in many overlapping fragments.

⇒ Order in the original molecule is lost.

Target: Determine a *physical map* describing the placement of the fragments. This is done using *markers*, being short given base sequences.

Definition

Let D a DNA sequence. A physical map for D consists of a set M of markers and a function $p: M \to 2^{\mathbb{N}}$, giving all occurrences of m in D (via positions) for each marker $m \in M$. Creating a physical map is called mapping.

Restriction site mapping: Use restriction enzymes to create the fragments. The restriction sites are used as markers.

Method: Double digest method

Input: A DNA molecule D to be mapped and two restriction enzymes \mathcal{A} and \mathcal{B} with disjoint restriction sites.

Steps:

- 1. Create three copies of *D*.
- 2. In three different test-tubes use enzyme \mathcal{A} , enzyme \mathcal{B} and enzymes \mathcal{A} and \mathcal{B} resp. on one copy of \mathcal{D} each. Now each test-tube contains an unordered set of fragments of \mathcal{D} .
- 3. Determine length of these fragments to create multisets (Here [x, i] denotes x appearing i times)

$$\Delta(X)$$
, $X \in \{A, B, AB\}$, where $\Delta(X) = \{[\ell, i] \in \mathbb{N}^2 \mid \text{digestion of } D \text{ by enzyme(s) } X \text{ created } i \text{ fragments of length } \ell\}$.

We consider the idealized case of complete digestion.

Goal: Derive arrangement of fragments from sets $\Delta(X)$.

To do this we look for arrangements π and ϕ of the fragments in multisets $\Delta(\mathcal{A})$ and $\Delta(\mathcal{B})$. These arrangements should be such that the positions where fragments end induce just the fragment lengths in $\Delta(\mathcal{AB})$.

Definition

Let $X := \{[x_1, i_1], \dots, [x_n, i_n]\}$ be a multiset over \mathbb{N} . Let $\pi = (x_{j_1}, \dots, x_{j_l})$, $I := \sum_{1 \le k \le n} i_k$, be a permutation of the elements of X. We define

$$Pos(\pi) := \{0, x_{j_1}, x_{j_1} + x_{j_2}, \dots, \sum_{1 \leq k \leq l} x_{j_k}\}$$

as the position set of permutation π . For $Y = \{y_1, \dots, y_l\}$, $y_i \in \mathbb{N}_0$, $0 \le i \le l$, and $y_1 < y_2 < \dots < y_l$ we define the multiset

$$Dist(Y) := \{ [\ell, k] \mid |\{i \mid |y_{i+1} - y_i| = \ell \land i \in [1 : l-1] \} | = k \in \mathbb{N} \}.$$

We call Dist(Y) distance set of Y.

Note: $Dist(Pos(\pi)) = X$ for each permutation π of the elements in X.

Definition

Let A, B and C multisets over \mathbb{N} . Furthermore let π (resp. ϕ) an arrangement of the elements of A (resp. B). The pair (π, ϕ) is called feasible for A, B and C, if

$$Dist(Pos(\pi) \cup Pos(\phi)) = C.$$

Double digest problem (DDP): Given multisets A, B and C. Determine a feasible pair of arrangements of the elements in A and B.

Requirement: The elements of the three sets have the same sum.

Brute force: Test all permutations of A and B. \Rightarrow In the worst case (each element occurs only once in A resp. B) $(|A|)! \cdot (|B|)!$ many alternatives.

Theorem

Dec-DDP is NP-complete

Proof: Problem is in NP, as it is obviously possible to test in polynomial time, if a pair (π, ϕ) of permutations is a feasible solution.

Completeness: Reduction from set partition to Dec-DDP.

Set partition problem: Input: Set X of naturals. Is there a partition of X into sets Y and Z whose elements have the same sum?

Details: See exercises.

Further problem: The solution for a given input is not unique. If e.g. (π, ϕ) is a feasible solution, (π^r, ϕ^r) is also feasible, where x^r denotes the reverse order of x. There are also instances with additional solutions.

Method: Partial digest method

Input: A DNA molecule D to be mapped and a restriction enzyme A.

Steps:

- 1. Generate multiple copies of D.
- 2. Use enzyme \mathcal{A} on \mathcal{D} in several experiments with different durations. Each results in a set of fragments.
- 3. Determine the length of these fragments and collect all the lengths in a multiset $\Delta_p(A)$.

Idealised model of data:

Definition

Let D a DNA molecule and c_1, \ldots, c_n the possible restriction sites of restriction enzyme \mathcal{A} in D, $c_1 < c_2 < \cdots < c_n$ and $c_0 = 0$, $c_{n+1} = |D|$. We call set $\Delta_p(\mathcal{A})$ determined with the partial digest method ideal, if

$$\Delta_{p}(A) = \{ [\ell, k] \mid |\{(i, j) \in \mathbb{N}^{2} \mid c_{j} - c_{i} = \ell \land 0 \le i < j \le n + 1\} | = k \in \mathbb{N} \}$$

holds, i.e. if the length of each possible fragment is counted exactly once in $\Delta_p(A)$.

Can we determine the arrangement of the fragments from an ideal set $\Delta_p(A)$ efficiently?

We abstract $\Delta_p(A)$ as a multiset of $\binom{n}{2}$ elements, where n-2 is the number of restriction sites of A in D.

Definition

Let A be a multiset of $\binom{n}{2}$ elements from \mathbb{N} and let $P = \{x_1, \dots, x_n\}$ be a set of elements from \mathbb{N}_0 where $0 = x_1 < x_2 < \dots < x_n$. We call such a set P a point set and define the multiset

$$Dist_{p}(P) := \{ [\ell, k] \mid |\{(i, j) \in \mathbb{N}^{2} \mid x_{j} - x_{i} = \ell \land 1 \leq i < j \leq n\}| = k \in \mathbb{N} \}$$

of all pairwise distances of points in P. The point set P is called feasible solution for A, if

$$Dist_p(P) = A$$

holds.

Partial digest problem (PDP): Given a multiset A with $\binom{n}{2}$ elements from \mathbb{N} determine a point set P that is a feasible solution for A, or 0, if there is no such P.

Intuitively the partial digest problem thus is to reconstruct the position set P of restriction sites from the multiset A of fragment lengths.

Difference to DDP: Because of partial digestion overlaps of fragments are possible.

Characterizing feasible solutions:

Definition

Let A be a multiset of $\binom{n}{2}$ elements from \mathbb{N} and let $P = \{x_1, \ldots, x_n\}$, $x_i \in \mathbb{N}_0$, $1 \le i \le n$, $0 = x_1 < x_2 < \cdots < x_n$ a feasible solution for PDP with input $\Delta_p(\mathcal{A})$. For $1 \le i < n$ we define

$$level_{A}(i) := \{ [\ell, k] \mid |\{j \in \mathbb{N} \mid x_{j+i} - x_{j} = \ell \land 1 \le j \le n - i\}| = k \} \subseteq A$$

as the multiset of distances of end points in P having an index distance of i.

Let A be a multiset of $\binom{n}{2}$ elements from \mathbb{N} and let $P = \{x_1, x_2, \dots, x_n\}$ be a feasible solution for PDP with input A. We make the following observations:

- \blacktriangleright $|level_A(i)| := n i$.
- In our biological motivation level_A(1) is the multiset of fragment lengths whose fragments are restricted by neighbored restriction sites (or ends of the DNA molecule). Thus we call the elements of level_A(1) as atomic distances.
- ▶ $level_A(n-1) = \{y_{max}\}$ where $y_{max} := max(A)$. Thus $level_A(n-1)$ only contains the length of the DNA sequence.
- Considering the union of multisets

$$level_A(1) \stackrel{.}{\cup} level_A(2) \stackrel{.}{\cup} \cdots \stackrel{.}{\cup} level_A(n-1) = A$$
,

holds.

Brute force: Consider all of the maximal $\binom{\binom{n}{2}}{n-1}$ possibilities of choosing atomic distances and check their $\binom{n-1}{2}$ arrangements for feasibility.

Notation: We define

$$\delta(X, y) := \{ [\ell, k] \mid |\{x \in X \mid |x - y| = \ell\}| = k \in \mathbb{N} \}$$

for $X = \{x_1, \dots, x_n\}$ a set of naturals and y a natural.

Assumption: An input for PDP has $\binom{n}{2}$, $n \in \mathbb{N}$, many elements as otherwise there is no solution.

Input: A multiset A of $\binom{n}{2}$ elements from \mathbb{N} . **Steps:**

- 1. Sort elements in A by size.
- 2. $S := \varepsilon$ (empty stack).
- 3. $y_{max} := max(A)$; $X := \{0, y_{max}\}$; $A := A \setminus \{y_{max}\}$.
- Place further elements by calling recursive procedure Plaziere(X,A,S), working as follows: (see handout)

Example: $A = \{[1, 1], [2, 1], [3, 1], [4, 1], [5, 2], [7, 2], [9, 2], [10, 2], [12, 1], [14, 1], [19, 1]\}.$

/ dead end, no placement at left (resp. right) end possible.

Backtracking, saved state is restored.

Theorem

If PDP with input A has a feasible solution, our algorithm will find such a solution.

Proof: We show: There are no other solutions than those placing the longest remaining distances at the left or right end.

Consider the partial solution $X = \{0, x_2, x_3, \dots, y_{max}\}$ constructed so far and denote by A the multiset with all distances implied by X erased. Furthermore let y the largest distance remaining in A. Assume y had to be placed in the middle for a correct solution, i.e. with a start point $z \neq 0$ and an end point $z + y \neq y_{max}$.

We distinguish three cases:

- 1. If $z + y \notin X$, $z + y \in A$ must hold as $0 \in X$ implies distance |z + y 0|. As $z \neq 0$ implies y < z + y this is a contradiction to our assumption of y being the largest element in A.
- 2. If $z \notin X$, $y_{max} z \in A$ must hold as $y_{max} \in X$ implies distance $|y_{max} z|$. As $y > y_{max} z$ (since y is the largest element of A), $y + z > y_{max}$ contradicting y_{max} being right border of the interval considered.
- 3. If $z \in X$ and $z + y \in X$ we can't place y as planned as this

would imply distances of length 0 not in A.