Issue Date: 01.06.2015 Version: 2015-05-29 15:14

7th Exercise sheet for Advanced Algorithmics, SS 15

Hand In: Until Monday, 08.06.2015, 12:00am, in lecture, exercise sessions, hand-in box in stairwell 48-6 or via email.

Problem 17

Define ZPP the class of decision problems that can be decided by polynomial-expectedruntime Las Vegas algorithms. Define RP, BPP and PP similarly for OSE-MC, TSE-MC and UE-MC algorithms, respectively.

Show (at least) three of the following statements:

- a) $\mathcal{P} \subseteq \text{ZPP} \subseteq \text{RP} \subseteq \text{BPP} \subseteq \text{PP}$
- b) $\operatorname{RP} \subseteq \mathcal{NP}$
- c) $ZPP = RP \cap co-RP$
- d) $\mathcal{NP} \subseteq \text{co-RP} \implies \mathcal{NP} = \text{ZPP}$
- e) $\mathcal{NP} \cup \text{co-}\mathcal{NP} \subseteq PP$

Problem 18

- i) Argue why the definitions of "randomized δ -approximation algorithm" and "randomized δ -expected approximation algorithm" are not equivalent.
- ii) Can you give an algorithm for a natural problem that is one, but not the other?
- iii) Can you give a problem that can be solved with one, but not the other kind?

Problem 19

Consider the following problem P:

Input: Digraph G = (V, E).

Solutions: Acyclic spanning subgraph G' = (V, E') of G.

Goal: Maximise |E'|.

And furthermore the algorithm A:

- 1. Order V randomly.
- 2. Select as E'
 - all forward edges (w.r.t. the order from 1.) with probability $\frac{1}{2}$ and
 - all backwards edges otherwise.

Show that A is a randomized 2-expected approximation for P.

Problem 20

Consider the WEIGHTED VERTEX COVER problem, that is:

Input: A graph G = (V, E) with vertex weights $w : V \to \mathbb{N}$.

Solutions: Sets of nodes $C \subseteq V$ so that every edge is covered, i.e. $u \in C$ or $v \in C$ for all $\{u, v, \} \in E$.

Goal: Minimise cover cost $w(C) = \sum_{v \in C} w(v)$.

And the algorithm A:

```
\begin{array}{l} \mathsf{C} = \emptyset \\ \texttt{while } \mathsf{E} \neq \emptyset \ \{ \\ \texttt{ select } \mathsf{e} = \{ \texttt{v}, \texttt{t} \} \in \mathsf{E} \\ \texttt{ randomly choose } \texttt{x} \in \{ \texttt{v}, \texttt{t} \} \texttt{ with } \Pr[\texttt{x} = \texttt{v}] = \frac{w(t)}{w(v) + w(t)} \\ \mathsf{C} = \mathsf{C} \, \cup \, \{\texttt{x}\} \\ \mathsf{E} = \mathsf{E} \, \setminus \, \{\texttt{e} \mid \texttt{e} \texttt{ incident of } \texttt{x}\} \\ \} \\ \texttt{return } \mathsf{C} \end{array}
```

Show that A is a randomized 2-expected approximation algorithm for WEIGHTED VERTEX COVER.