7th Exercise sheet for Advanced Algorithmics, SS 15

Hand In: Until Monday, 08.06.2015, 12:00am, in lecture, exercise sessions, hand-in box in stairwell 48-6 or via email.

Problem 17

Define ZPP the class of decision problems that can be decided by polynomial-expectedruntime Las Vegas algorithms. Define RP, BPP and PP similarly for OSE-MC, TSE-MC and UE-MC algorithms, respectively.

Show (at least) three of the following statements:
a) $\mathcal{P} \subseteq \mathrm{ZPP} \subseteq \mathrm{RP} \subseteq \mathrm{BPP} \subseteq \mathrm{PP}$
b) $\mathrm{RP} \subseteq \mathcal{N} \mathcal{P}$
c) $\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{co}-\mathrm{RP}$
d) $\mathcal{N P} \subseteq \operatorname{co}-\mathrm{RP} \Longrightarrow \mathcal{N} \mathcal{P}=\mathrm{ZPP}$
e) $\mathcal{N} \mathcal{P} \cup \operatorname{co}-\mathcal{N} \mathcal{P} \subseteq \mathrm{PP}$

Problem 18

i) Argue why the definitions of "randomized δ-approximation algorithm" and "randomized δ-expected approximation algorithm" are not equivalent.
ii) Can you give an algorithm for a natural problem that is one, but not the other?
iii) Can you give a problem that can be solved with one, but not the other kind?

Problem 19

Consider the following problem P :
Input: Digraph $G=(V, E)$.
Solutions: Acyclic spanning subgraph $G^{\prime}=\left(V, E^{\prime}\right)$ of G.
Goal: Maximise $\left|E^{\prime}\right|$.
And furthermore the algorithm A :

1. Order V randomly.
2. Select as E^{\prime}

- all forward edges (w.r.t. the order from 1.) with probability $\frac{1}{2}$ and
- all backwards edges otherwise.

Show that A is a randomized 2 -expected approximation for P.

Problem 20

Consider the Weighted Vertex Cover problem, that is:
Input: A graph $G=(V, E)$ with vertex weights $w: V \rightarrow \mathbb{N}$.
Solutions: Sets of nodes $C \subseteq V$ so that every edge is covered, i.e. $u \in C$ or $v \in C$ for all $\{u, v,\} \in E$.
Goal: Minimise cover cost $w(C)=\sum_{v \in C} w(v)$.
And the algorithm A :

```
C = \emptyset
while E \not=\emptyset {
    select e = {v,t} \in E
    randomly choose x }\in{\textrm{v},\textrm{t}}\mathrm{ with }\operatorname{Pr}[\textrm{x}=\textrm{v}]=\frac{w(t)}{w(v)+w(t)
    C = C U{x}
    E = E \{e | e incident of x}
}
return C
```

Show that A is a randomized 2-expected approximation algorithm for Weighted Vertex Cover.

