Exercise Sheet 3 for Computational Biology (Part 1), SS 15

Hand In: Until Tuesday, 09.06.2015, 10:00 am, email to r_muelle@cs. . ., hand-in box in stairwell 48-6 or in lecture.

Problem 7

a) Design an algorithm for computing an optimal global alignment score (only the score, not the alignment itself!) with linear space complexity.

To simplify notation, we assume that $g \geq 0$, goal $_{\delta}=\min$ and $\delta(a, b) \geq 0$ for all symbols $a, b \in \Sigma$. Moreover, we assume $n \leq m$.

Formally then, for two strings $S, T \in \Sigma^{\star}$ of lengths m and n, respectively, your algorithm should compute $\operatorname{sim}_{\delta}(S, T)$ in time $\mathcal{O}(m n)$ and space $\mathcal{O}(n)$.
b) Design an algorithm for computing an optimal global alignment in time $\mathcal{O}(m n)$ and space in $\mathcal{O}(n+\log (m))$.
(Yes, this time it is not only the score, but the actual alignment.)
Less efficient solutions yield partial credit.
Hint: Use divide and conquer and a).

Problem 8

Prove that the decision version of multiple alignments with SP scoring is $\mathcal{N} \mathcal{P}$-complete.
Hint: Try a reduction of the Dec- $(0,1)$-Shortest-Superseq-Problem defined in the German lecture notes, page 85 .

Problem 9

Prove Lemma 12 of the German lecture notes; restated here for convenience:
Given a directed graph $G=(V, E)$ with edge weights $g: E \rightarrow \mathbb{R}_{\geq 0}$. Define $d_{g}(u, v)$ to be the shortest path distance of u and v w.r.t. g, i. e. the minimum of the sum of edge weights over all paths from u to v in G. Assume further that we are given a special target node $t \in V$ and a node potential $\xi: V \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\forall v \in V: \xi(v) \leq d_{g}(v, t)
$$

If we furthermore have $g(u, v) \geq \xi(u)-\xi(v)$ for all edges $(u, v) \in E$, we can define modified edge weights

$$
g^{*}(u, v):=g(u, v)-(\xi(u)-\xi(v)),
$$

which are again nonnegative. Show that every shortest path from u to v w.r.t. g^{*} is a shortest path from u to v w.r.t. g, as well.
Remark: In a geometric setting, one may think of ξ as the "straight-line distance" between two points, whereas the graph distance d_{g} is the distance on a road network. The sanity condition then says that a road segment is at least as long as the difference in straight-line distance to t.

