for to do begin
// Phase
for ;.= to do begin
Traverse along the path ;
If necessary extend the tree at the
position reached this way by ;
// Details follow
end;
end

If the path labeled ends in a leaf, is appended to
the label of the edge leading to the leaf.

If the path does not end in a leaf and there is no
possibility to continue it with , a new edge to a new leaf is
created and labeled with . The leaf is labeled ;. If ends
amidst an edge, additionally a new internal node has to be created
at the respective position.

If the path can be continued with nothing is done.

/
O

Nested loops + traversal along running time
cubic in length of text.

1.) If for given ; Rule 3 is applied for the first time:
The path labeled can be continued with , Created

when inserting word
Suffixes of w inserted in an earlier phase guarantee existence of

a continuation of , with

Rule 3 implies termination of the current phase.



?l\m

2.) A leaf always remains a leaf. If labeled ; it represents all
suffixes of / starting at position ;. Whenever we insert in a
later phase, we reach leaf ; and apply rule 1. With 1.) it follows
that:

Each phase starts with a sequence of extensions
(beginning with ), in which only rules 1 and 2 are
applied.

Let /; denote the last extension in phase / in which rule 1 or
rule 2 is applied. As each application of rule 2 generates a

new leaf holds. Thus the initial sequence of
applications of rules 1 and 2 can’t become shorter in later
phases.

All extensions for in phase will be by rule 1
because either there was already a leaf labeled ; in phase / (in this
case only its edge label is extended with ) or in phase / the
second rule has been applied for (we consider , SO

rule 3 is ruled out for extension /) so now there exists a leaf
labeled ; for which the edge label is extended.

We don’t have to do extensions explicitly if we mark the
leaves’ edges with , ¢ a global symbol meaning current end
of text. (e is set to in phase )

AT T2 21l1 \
RS .
AEEE 1
11
AL Ee



—_—
3.) For use rule 2 or 3.

rule 3 (i.e. ); terminate.
phase terminated by different rule

Observation: Two consecutive phases have at most (WC is that
rule 3 ends phase) one j in common, for which both do explicit
extensions:

Phase 2: compute explicit extensions for :
Phase 3: compute explicit extensions for ,

Phase i-1: compute explicit extensions for ,
Phase i: compute explicit extensions for

many phases and imply at most 2 explicit
extensions.

[

\C

11

1

Create tree ;
., // leaf 1 already exists

for /.= to do begin
// Phase
; // all implicit extensions
. // no application of rule 3
for ;.= to do begin
Traverse along path ;
If necessary, extend by :

if (rule 3 was used) then begin
End phase ;
end ;
end ;
end



4.) Speed up traversal of edges labeled with more than one
character by only evaluating the first character. The position at
which to continue in the traversal word is determined from the
indices saved for the edge. (We already noticed that in phase
each word is present in the tree.)

5.) Add utility links:

Let , , , and 15 an implicit suffix tree. If
contains an internal node x, reached from the root by w and a
node v with path-label v, the suffix link of x points to

%

The places of explicit extensions can be found

without traversing the tree (starting at the root) each time.
If in phase the extension for has to be done, the tree
has to be traversed along and the existence of at the
position x reached this way has to be checked.
The next extension then considers . The node reached by

is found via the suffix link of x (if there is an internal node).
The same holds for the next extension (a suffix link leads possibly
directly to the node reached by ) and so on.

no internal node: Return to v, the last node on the way to
(we can always save this node) and follow this node’s suffix link.

The node reached thusly is reached by a prefix of .From
there we have to continue using the symbols between v and

Assuming each internal node has a suffix link, an
explicit extension has constant amortized running time.



Extend tree by and its suffixes:

If a new internal node x with path label 1o, , Is created by
extension | of phase then either v already ends at an
internal node of the current tree or this node is created at the
next extension (extension of phase ).

Proof: New internal node rule 2 path ends amidst an
edge label with next character ¢ not equal

Earlier phase inserted

The same phase afterwards processed

path 7 for in the tree.
a) 7 can only be continued with
Extension by creates an internal node at the position
considered.

b) 7 can be continued with various symbols:
At the position considered an internal node must be present.



For Ukkonen's algorithm we can assure that each internal node
created has a suffix link after the following extension. This
requires constant extra time.

Proof: Induction: has no internal nodes relevant for suffix
links (at the root ).

Assumption: Assumption holds after phase

Lemma 2 = The target node of a node created in the /-th
extension of phase will be present after the -th
extension of the same phase. (This gives a simple method to create
suffix links: We remember nodes created by rule 2 and add the suffix link
after reaching or creating the target node during the next extension.)
Since it is impossible that the last extension of a phase

(considering the single character ) creates a new internal
node all new internal nodes will have a suffix link after the
-th phase.
At most explicit extensions with constant

amortized cost lead to running time linear in

Add a -th phase to the algorithm
with . Afterward replace ¢ with by a tree traversal
(linear time)

compact suffix tree for

Text 7 fixed, String /7 varies (suffix tree reasonable only in this
case!).
Running time in for & the number of occurrences

of Pin I.
(By assumption the subtree reached via /7 has k leaves and thus ‘{%
at most nodes and can be traversed in time )

Sequential Search of all /7, in the suffix tree has
the same running time bound as the Aho-Corasick algorithm.



Aho-Corasick creates search term tree of size ,

. in time ., and searches in time ,
Suffix tree has size , construction time and search time
If all 7, together are longer than the text, the suffix tree

solution needs less space but more time (preprocessing ignored). If
the set of the strings is shorter than the text, the Aho-Crasick
needs less space but more time.

We observe a place/time-trade-off, as no solution is superior in
place and time consumption at the same time.

Look for string /7 in a set of texts :
Example: Newly sequenced DNA fragment (/) is to be searched

amongst DNA sequences in the database (7) (ldentification by
mitochondrial DNA).

Generalized compact suffix tree: compact suffix tree for text

(all §; different),
Leaves are labeled with pairs (text, position), symbols following an
end mark are removed (as the $,; are different, this only happens
at leaf edges).

Create generalized suffix tree for /' in time and space
and traverse along /~ to solve the substring problem for
the given set of texts.

Dead end not contained.

Leaf contained exactly once (label identifies text and
position).

Internal node contained multiple times (visit all leaves in

time proportional to number of occurrences).



Search a longest substring, common to all words in

Example: Identify important and thus in related organisms
mutationless regions of DNA.

Solution: construct generalized suffix tree for

Inner node x corresponds to

prefix of a suffix of only one of the 7, (all leaves in the
subtree with root x belong to the same 7)), or

prefix of a suffix of multiple texts (leaves in the subtree with
root x belong to different 7).

Thus we label each internal node x with the set of text indices
appearing in the subtree with root x (This can e.g. be achieved by
traversing the tree in postorder and labeling each node with the union of the
labels of its children).

Now only such nodes are solution candidates that are labeled with
the complete set (the solution has to appear in each
of the 7).

From these nodes we chose one with maximum string depth, i.e. a
node v which has a path-label & of maximum length. This can be
done with a tree traversal.

Now the searched substring is given by



Let and , and let
is called an exact repeat of |, if and only if

If additionally and , P s called a
maximum repeat in

This definition does not rule out the possibility of several different
maximum repeats starting at the same position of

Example: In , ab (because of
) and (because of ) are
maximum repeats, one of which starts at

Let | be a word given as compact suffix tree and I a maximum
repeat in | . Then there exists an internal node x with path label
in the tree.

Note that this lemma implies a maximum number of
maximum repeats in

Ploo (5 F VA Tef(“te ) ;]L r°(".\’lo-«s- [du««l)

{oe T Wt P o LCwWS W Sdg‘l"“—'ﬂ

T |l P TP

/
/‘\oal d:-fre-lml -S‘u”imf wil\L (f(‘(:;& r




/-\J 5JH\)L ‘N‘FC L\A: Z L@ﬁ-\/\\f -uf)(\ fef\
\G.Se(s L'L ond LL g"’k‘\ 5L’\IL\) V(}\ P

O
¢

J

Given a compact suffix tree t for text | an internal node x of t is
called left divers, if the subtree with root x contains two leaves

with labels 1 and ; for which holds (Remember that the
label of the leaves denotes the position in the text where the respective suffix

starts).

Let be given as compact suffix tree. Then is a
maximum repeat in |, if and only if traversal along I leads to a
left divers internal node.

0
Proof:
o{ P X
/?_ C“’C C OL,



TN e, vefc-uél



