3rd Exercise sheet for Advanced Algorithmics, SS 15

Hand In: Until Monday, 11.05.2015, 12:00 am, in lecture, exercise sessions, hand-in box in stairwell 48-6 or via email.

Problem 5

Which of the following reduction rules for MAX-SAT are valid? Explain why your answers are correct.
i) If φ contains a clause with only one literal, set the corresponding variable to the satisfying truth value, delete the clause and decrement k by 1 .
ii) If variable x occurs only positively in φ, set x to TRUE, decrement k by the number of therewith fulfilled clauses and delete these.
iii) If φ contains clauses (x) and $(\neg x)$, delete both and decrement k by 1 .
iv) If variables x, y and z occur only in a subformula

$$
(x \vee y) \wedge(\neg y \vee z) \wedge(\neg x \vee \neg z)
$$

of φ, delete all three clauses and decrement k by 3 .
v) If variable x occurs only in a subformula

$$
(x \vee y) \wedge(y \vee z) \wedge(\neg x)
$$

of φ, substitute x with y and leave k unchanged.
vi) If variable x occurs only in a subformula

$$
(x \vee y) \wedge(y \vee z) \wedge(\neg x)
$$

of φ, substitute x with $\neg y$, decrement k by 1 and delete clause $(x \vee y)$.

Problem 6

Solve the following inhomogenous linear recurrence equations using generating functions:
a)

$$
\begin{aligned}
a_{0} & =4, \\
a_{i+1} & =2 a_{i}+3^{i} \quad, i \geq 0 .
\end{aligned}
$$

b) $\quad b_{0}=2$,
$b_{1}=2$,
$b_{i}=6 \cdot b_{i-1}-8 \cdot b_{i-2}+13 \cdot i \quad, i \geq 2$.

Problem 7

In lecture, we have seen a procedure to determine optimal vertex covers in time $\mathcal{O}\left(1.33^{k}\right)$ using search trees.
a) Show that case 3 (regular graph) occurs at most three times in every branch!
b) If case 3 could occur arbitrarily often, how large would the largest search trees be?
c) If only the number of 2 -regular graphs was bounded, how large would the largest search trees be?

