Issue Date: 28.04.2015 Version: 2015-04-28 11:37

Exercise Sheet 1 for Computational Biology (Part 1), SS 15

Hand In: Until Tuesday, 12.05.2015, 10:00 am, email to r_muelle@cs..., hand-in box in stairwell 48-6 or in lecture.

Problem 1

- a) Give an infinite family (T_n) of texts with $T_n \in \{a, b\}^{n-1}$ such that the number of nodes t_n of the corresponding simple suffix trees B_{T_n} is quadratic in n, i.e., $t_n = \Theta(n^2)$.
- b) Give a second infinite family (T_n) of texts, for which the compact suffix trees IB_{T_n} have worst case size, i.e., the number of nodes of IB_{T_n} is maximal among all compact suffix trees for texts of the same size $|T_n| = n$. What is the worst case number of nodes?

Problem 2

For two strings $P \in \Sigma^m$, $S \in \Sigma^n$ and a positive integer k, we say that P is a k-repeat in S, if there are exactly k (distinct) indices i_1, \ldots, i_k such that $S_{i_j, i_j+m-1} = P$ for $j = 1, \ldots, k$.

Design an algorithm to find a shortest k-repeat in a string $S \in \Sigma^n$. The runtime should be in $\mathcal{O}(n)$.

Problem 3

Design a linear time algorithm to compute the set of all maximal repeats of a text T along the lines given on pages 61ff of the German lecture notes.

More precisely, for every maximal repeat P of $T \in \Sigma^n$, your algorithm is supposed to output one pair of indices (i, j) and its length m = |P|, such that P is found at positions i and j in T:

$$T_{i,i+m-1} = T_{j,j+m-1} = P \quad \land \quad T_{i-1} \neq T_{j-1} \quad \land \quad T_{i+m} \neq T_{j+m}$$

where we set $T_0 := \$ =: T_{n+1}$ for $\$ \notin \Sigma$. The running time should be in $\mathcal{O}(n)$.

2+3 points

3 points

3 points

Problem 4

4 points

For two strings S and T over alphabet Σ , we define the *overlap* of S and T as

$$ov(S,T) := \max\left\{ |y| \mid y \in \Sigma^* \land \exists x, z \in \Sigma^+ : S = xy \land T = yz \right\}$$
(1)

Design an algorithm to compute *all* pairwise overlaps of a given set of strings $\mathcal{T} = \{T^{(1)}, \ldots, T^{(m)}\}$ over Σ , i. e. for all $i, j \in [m]$, compute $ov(T^{(i)}, T^{(j)})$. The running time of your algorithm should be in $\mathcal{O}(n \cdot m)$, where $n := \sum_{i=1}^{m} |T_i|$ is the total length of all strings in \mathcal{T} .