P

String-Matching:

Given a text and a string , the string matching
problem is to determine all , satisfying:

The number s from this definition is named
A shift is called , iIf /7 is found at the respective place in /,
otherwise s is called

Naive algorithm: Try all shifts one by one.

Worst case running time: . E.g. if : :

Reason of the slow running time: Knowledge about / gained in
previous steps is not used. If e.g. and is a feasible
shift, we already know that , and are infeasible.
Thus algorithm is implemented in Java runtime library!

11 ¢

Efficient String Matching Algorithms
Here we only give an overview:

1) Using finite automata

Example: and

Fundamental definition:

The suffix function of /7 is defined by
Le. is the length of the longest prefix of IV being a suffix
of X (where denotes that I is a suffix of X and is the

length k prefix of).

X L

Now with , and a linear scan
of the text is sufficient to find all feasible shifts.
Preprocessing: -algorithm to compute

m:=|P|;
for q:=0 to m do begin
for a in Sigma do begin
ki=min{m+1,q+2); // P[0..k] should be
// suffix of P[0..q]+a
repeat
k:=k —1;
until (P[0..k] is suffix of (P[0..q]+2a));
delta [q,a]:=k;
end
end;

P[i..j] denotes substring of /-,

operator + on strings describes concatenation.

2) Knuth-Morris-Pratt Algorithm (KMP)

Let a string. The prefix function
of /7 is defined by

Example: For , holds, since is the
maximum value for which holds. This leads to
the following situation:

These two matches need not be verified,
they can be inferred from

1 m=|P]|;

2 Pi[1]:=0;

3 k:=0;

4 for q:=2 to m do begin

5 while (k>0) and (P[k+1]<>P[q]) do
6 ki=Pi[k];

7 if P[k+1]=P[q] then

8 k:i=k+1;

9 Pilaq]:=k;

10 end;

Running time: (amortized analysis using the potential method)

Let the /-th operation be the /-th iteration of the
for-loop. (Executing lines 7 through 9 yields constant cost c.).

Cost ; of is ¢ plus number of iterations of the
while-loop.
while-loop iterated often only if & is large. (Assignment in line
6 strictly decreasing). while-loop iterated often leaves k small.

Hence we choose

Amortized cost

increase of potential during

To reach ; iterations of the while-loop, is required.
~ previous operations need to have gone without decreasing
during the while-loop but increasing 4 by 1 in line 8.

These operations have actual cost ¢, but are accounted with cost
in our analysis.

(~ Overcharging of ; to account for the cost of ; iterations of the

while-loop).

On the other hand holds for the iteration, however the
increase of potential is (% is reduced by /, thus

) resp. , if line 8 is evaluated after
the loop.
Hence amortized costs are . (Here the
previous overcharging and the cost of the while-loop are balanced,
because in amortized analysis an operation including iterations of the
while-loop is also rated with at most.)
Our discussion therefor leads to

Summing the amortized costs of all iterations of the for-loop, we
get

Hence: Summed amortized costs are

upper bound of actual costs. This requirement is however fulfilled

trivially as 4 never gets negative and starts with O in line 3.
Upper bound of

for the running time of our algorithm to compute the prefix
function.

Knuth-Morris-Pratt (KMP) algorithm

1 n:=|T]|;

2 m=|P|;

3 // Compute prefix function Pi here

4 q:=0;

5 for 1:=1 to n do begin

6 while (g>0) and (P[q+1l]<>T[i]) do
7 q:=Pi[q];

8 if P[g+1]=T[i] then q:=q+1;

9 if g=m then do begin

10 print(’0Occurrence at shift ’,i-m);
11 q:=Pi[q];

12 end;

13 end;

KMP has (optimal) running time in which can be
proven by a similar analysis.

The knowledge of makes it possible do compute ¢ of
in linear time.

Comparing the naive method and the (optimized) KMP
algorithm by dividing the expected number of comparisons
both algorithms need on random texts we find

So if m and ¢ are large enough both methods are almost
equal.

3) The Boyer-Moore algorithm
Application: / long, > relatively large.

Core: Naive method: By setting in lines 12 and 14
we get an implementation of the naive method.

Notable: /7 is compared to the text from right to left.

Speed-up: In case of a mismatch two heuristics (bad
character heuristic (), good-suffix heuristic ()
give an increment for s which does not miss a feasible shift
and is usually greater than 1.

Worst case running time of the Boyer-Moore algorithm is in
(and usually in

), as
the computation of lambda takes time,
the computation of gamma takes time and
the algorithm does not use more than time on each of
the at worst shifts.

Practise: BM often the best choice as the worst case rarely
occurs and the two heuristics give relatively large increments on
the considered shifts. =, sublinear (in in length of text) running
time. BM faster than optimized KMP algorithm.

4) Boyer-Moore-Horspool algorithm
Variation of BM with only one heuristic similar to the
bad-character heuristic. (Negative movement is avoided.)

Mismatch on comparing /7 with is moved to the
right by positions, where
Intuition: 7, is brought to a match with a character of /7 (if

possible). The minimizing guarantees that no potentially feasible
shift is omitted.

Running time: Worst case , average case (sub)linear.
The constant of the linear term in the average running time is
asymptotical ()

5)Karp-Rabin algorithm

6)Algorithm of Aho and Corasick

This algorithm finds all occurrences of a set of search terms in a
text () at the same time. This is achieved by
organising the strings in a search term tree, a directed tree
satisfying the following conditions:

Each edge is labeled with a symbol from

Edges leaving the same node are labeled with different
symbols.

For each search term w there is exactly one node such that
the path from the root to this node is labeled with

Each leave is associated with a search term.

Searching in the text:

Traverse the search term tree according to the letters of

Reaching a node corresponding to a search term means we
have found this term.

If no outgoing vertex for the next symbol exists:

: Link from node v to node w such that a path
from the root to w is equal to the longest suffix of the path
from the root to

Determining these links: Refer to , the search term
tree is like a string matching automaton for a set of strings.

Difference: failure links are not associated with symbols
from the alphabet.

Traversing a failure link does not consume a symbol of the
text, but increase the current shift by the number of levels we
went up in the tree.

It is possible that multiple failure links are traversed in direct
succession.

If the current node is the root and there is no matching edge
we stay at the root and advance to the next symbol of the
text.

Idea: /7 appears in /', if and only if /7 is a prefix of a suffix of

Let a text. A directed tree with root r is
called a simple suffix tree for I, if it satisfies the following
conditions:

has exactly n leaves labeled with numbers | to
Every edge in is labeled with a symbol from
All edges leaving an (internal) node are labeled differently.
The path from r to leaf i is labeled with

T E —

P IRTI
Method: Construction of a simple suffix tree
Input: Text
Step 1: Let , - et

Step 2: Initialize with childless root
Step 3: For / from 1 to n repeat:

Traverse starting at » along the path until node x,
reached by symbol /., has no leaving edge matching

Append to x a linear list of nodes, the corresponding edges
labeled with

Label the new leaf with /.

Deciding with running time :
Finding all matches: Additional effort proportional to the size of
the subtree reached by

A simple suffix tree may have size in
Nodes with only one successor.
Allow each (nonempty) word as label and eliminate unary

nodes. Words are represented by start- and end-position in the
text.

Let a text. A directed tree with root r is

called compact suffix tree for [, if it satisfies the following
conditions:

has exactly n leaves, labeled with numbers 1 to
Each internal node of 5, has at least two successors.
The edges of 5, are labeled with substrings of

Labels of edges leaving the same node start with pairwise
different symbols.

The path from the root to leaf i is labeled with

Let a text. A compact suffix tree for | has
nodes. Labeling all edges takes bits.

)DVDO r) . E\;QY7 SJ'C’(\‘)(_ ‘l’«eg L\QS " LQJWCS.

. 'l‘\‘\viqu WDC}C\r a'l‘ Lecm)—z Sv LT J

—~ O\,l ol el ieval wodas
___:‘> Q'L W\oyk 20\——1 :D('—\) Vt*bd((l.r

’ Qn_’l YLooLC\f - 'LRC)’\l«vdt Qxac,"(7
2 w2 <l as

E al\ LODSQL (/?a\r o T fo<\}lbd\$ 1%
tpz*) weeds O (L—’J("\)) lo':lj

— 6(‘4'10)@-)) Lo’.b AN

(Ukkonen's algorithm)

An implicit suffix tree is the tree resulting from the compact suffix
tree for by

removing all occurrences 5 from the labels.

removing unlabeled edges (and nodes which are afterwards
no longer reachable from the root) and

removing nodes with only one child (merging the incoming
and the outgoing edge to one edge labeled with the
concatenation of the previous labels).

Process 7 symbol by symbol from left to right (online
algorithm) constructing implicit suffix trees /5., corresponding to
the prefix : consists only of the root. has two nodes

(root and a leaf labeled with 1), connected by an edge labeled
with

Now we construct from , as follows:
for to do begin
// Phase
for ;.= to do begin
Traverse along the path ;

If necessary extend the tree at the
position reached this way by
// Details follow

end;

end /O

If the path labeled ends in a leaf, is appended to
the label of the edge leading to the leaf.

If the path does not end in a leaf and there is no
possibility to continue it with , a new edge to a new leaf is
created and labeled with . The leaf is labeled ;. If ends
amidst an edge, additionally a new internal node has to be created
at the respective position.

If the path can be continued with nothing is done.
¢
Las o
‘Q
ac
/
Nested loops + traversal along running time

cubic in length of text.

1.) If for given ; Rule 3 is applied for the first time:

The path labeled can be continued with , Created
when inserting word

Suffixes of w inserted in an earlier phase guarantee existence of
a continuation of , with

Rule 3 implies termination of the current phase.

