
Fachbereich Informatik
AG Algorithmen und Komplexität

Issue Date: 01.12.2014
Version: 2014-12-01 19:54

5th Exercise Sheet for
Kombinatorische Algorithmen, WS 14/15

Hand In: Until Monday, 08.12.2014, 12:00,
deliver or email to Raphael (reitzig@cs.uni-kl.de).

Problem 7 2 + 2 points

Let G = (V, E) be a simple graph with integral edge capacities1 c : E → N.
Prove or disprove:

a) If all capacities are even numbers, i. e. c(E) ⊆ 2N = {2n | n ∈ N0}, then there is a maximal
(s, t)-flow f∗ with even flow values only, i. e. f∗(E) ⊆ 2N.

b) If all capacities are odd numbers, i. e. c(E) ⊆ 2N + 1 = {2n + 1 | n ∈ N0}, then there is a
maximal (s, t)-flow f∗ with odd flow values only, i. e. f∗(E) ⊆ 2N + 1.

Problem 8 3 points

In applications, we are often not interested in maximal flows but rather if a given network admits
a certain (additional) amount of flow from certain sources to certain sinks. For example, consider
a wastewater system to which we add certain amounts of water (per time) at storm drains and
have to move it to treatment facilities.
Formally, we model this as a decision problem:

Feasible Flow
Input: Simple graph G = (V, E) with capacities c : E → R≥0 and excess b : V → R.
Question: Is there a feasible flow f : E → R with

∀ v ∈ V b(v) +
∑
e∈E

e=(u,v)

f(e) =
∑
e∈E

e=(v,u)

f(e) and (1)

∀ e ∈ E 0 ≤ f(e) ≤ c(e) ? (2)

We call a node v ∈ V with positive excess b(v) > 0 a source and one with negative excess
b(v) < 0 – i. e. a node with demand – a sink.
Show that the Feasible Flow problem reduces to the Max-Flow problem. That is, describe an
algorithm that solves Feasible Flow by calling an algorithm for Max-Flow as subroutine.

1Unless otherwise stated, we use capacity synonymous to upper capacity bound and assume that no lower
capacity bounds are given, i. e. l(e) = 0 for all e ∈ E.



5th Exercise Sheet Kombinatorische Algorithmen

Problem 9 4 points

We consider a certain (class of) scheduling problem(s), i. e. the task of assigning “jobs” to “ma-
chines” on a discrete time scale so that all jobs finish on time, subject to certain constraints.

Multi-Machine Scheduling with Preemption (MMSP)
Input: Number m ∈ N and Tj = (rj , pj , dj) ∈ N3 with dj ≥ rj + pj for j ∈ [1..n].
We call rj the release time, pj the processing time and dj the deadline of job Tj .

Question: Is there a scheduling of jobs T1, . . . , Tn on m identical machines M1, . . . , Mm,
i. e. a mapping S : N× [1..m]→ [0..n], which fulfills the following constraints?

i) No job starts early, i. e.

∀ j ∈ [1..n], k ∈ [1..m]. t < rj =⇒ S(t, k) 6= j .

ii) All jobs finish on time (and are not “overprocessed”), i. e.

∀ j ∈ [1..n].
dj∑

t=rj

m∑
k=1

[S(t, k) = j] = pj .

iii) At any given time, at most one machine can process the same job, i. e.

∀ j ∈ [1..n], t ∈ N.

m∑
k=1

[S(t, k) = j] ≤ 1 .

iv) At any given time, every machine can process only one job, i. e. S is indeed a well-
defined function.

Output: A schedule that is feasible in the above sense, if there are any.
Note that we have implicitly that

• the machines work synchronously in parallel,
• any machine can process any step of any job and
• jobs may be preempted without cost, i. e. processing of any (unfinished) job can be paused

at any time and continued on any other machine;
these two properties in particular distinguish MMSP from other, harder scheduling problems.

a) Reduce MMSP to Max-Flow using (at most) logarithmic space (in addition to input and
output). Less efficient solutions may yield partial credit.
Note: This is possible because Max-Flow is log-space complete in P [1].

b) Use the reduction from a) to develop an algorithm for MMSP. What is the (asymptotic)
runtime of your algorithm?

References

[1] Leslie M. Goldschlager, Ralph A. Shaw, and John Staples. “The maximum flow problem is
log space complete for P.” In: Theoretical Computer Science 21.1 (1982), pp. 105–111. issn:
0304-3975. doi: 10.1016/0304-3975(82)90092-5.

2 / 2

http://dx.doi.org/10.1016/0304-3975(82)90092-5

	Problem 7
	Problem 8
	Problem 9

