

Issue Date: 03.11.2014 Version: 2014-11-03 15:13

1st Exercise Sheet for Kombinatorische Algorithmen, WS 14/15

Hand In: Until Monday, 10.11.2014, 12:00, deliver or email to Raphael (reitzig@cs.uni-kl.de).

Problem 1 3 + 2 points

Let $P \in \Sigma^m$. Prove the following properties of prefix function Π_P .

a)

$$\Pi_P^{\star}(q) = \{k \mid k < q \land P_{0,k} \supset P_{0,q}\}$$
 for all $q \in \{1, 2, \dots, m\}$,

where Π_P^{\star} is the iterated prefix function (cf. Definition 6.5 in [Neb12b]).

b)

$$\Pi_P(q) = \begin{cases} 0 & \text{wenn } E_{q-1} = \emptyset \\ 1 + \max\{k \in E_{q-1}\} & \text{wenn } E_{q-1} \neq \emptyset \end{cases}$$

for all $q \in \{2, 3, \dots, m\}$, where

$$E_q := \{ k \mid k \in \Pi_n^*(q) \land P_{k+1} = P_{q+1} \}$$

for $q \in \{1, 2, \dots, m-1\}$.

Problem 2 4 points

Develop a linear-time algorithm for the following problem:

Input: $A, B \in \Sigma^n$ with $n \in \mathbb{N}$ and some alphabet Σ .

Question: Is there a $k \in \mathbb{N}_0$ so that

$$A_{i+1} = B_{s(i)+1}$$
 with $s(i) := (i+k) \mod n$.

holds for all $i \in [0..n-1]$?

Determine an infinite family of worst-case inputs for your procedure, e.g. by giving a scheme depending on n. How many symbol comparisons does your algorithm need on these inputs?