Department of Computer Science

Exercise Sheet 11 for Algorithm Engineering, SS 14

Hand In: Until Monday, 14.07.2014, 10:00 am, email to wild@cs... or in lecture.

Problem 25

We consider Quicksort where the pivot is taken from a fixed position of the array. Let us denote by B_{N} the expected number of swaps used to sort a random permutation of length N.
a) Argue that any partitioning method requires at least $\frac{1}{6} N-\frac{1}{3}$ swaps in expectation for the first partitioning step, not counting the swap potentially needed to bring the pivot to its final place.
b) Show that the overall expected number of swaps B_{N} is thus at least

$$
B_{N}=\frac{1}{3}(N+1)\left(\mathcal{H}_{N+1}-\frac{5}{2}\right)+\frac{1}{2} .
$$

c) How many swaps does the pseudocode given in lecture do?

Problem 26

Consider Quicksort with the following alternative partitioning method:

```
Quicksort \((A, l, r)\)
    if \(r \geq l\)
        \(p:=A[r] \quad / /\) Choose rightmost element as pivot
        \(i:=l-1\)
        for \(j=l, \ldots, r-1\)
            if \(A[j] \leq p\)
                \(i:=i+1\)
                Swap \(A[i]\) and \(A[j]\)
        end if
    end for
    \(i:=i+1\)
    Swap \(A[i]\) and \(A[r]\)
    \(\operatorname{Quicksort}(A, l, i-1)\)
    \(\operatorname{Quicksort}(A, i+1, r)\)
end if
```

a) Argue why $\operatorname{Quicksort}(A, 1, n)$ correctly sorts an array A of length n.
b) What is the expected number of comparisons and swaps executed by $\operatorname{Quicksort}(A, 1, n)$ on an array A that contains a random permutation of $\{1, \ldots, n\}$?

Which Quicksort variant would you prefer?

