New Knowledge on AVL-Trees

Markus E. Nebel

Johann Wolfgang Goethe - Universitdt
Fachbereich Informatik
D-60054 Frankfurt/Main
Germany

Abstract

In this note we prove the following close relation between AVL- and binary search
trees: Building an AVIL-tree T for n distinct keys implies a sequence of rebalancing
rotations that are applied immediately. If we first construct the binary search tree
for those n keys and then perform a final rebalancing run in which the same sequence
of rotations is executed then the resulting tree is the same as T

Key words: Algorithms, data structures

1 Introduction

It is well known how to construct a binary search tree (BST) from n distinct
keys to handle the data efficiently. Since BST’s tend to be balanced (their
average height is of order 4.31107 logn [Dev86]), operations like the insertion,
deletion or look up of keys can be performed at low-cost [BYG91].

It is possible to improve the behaviour of BST’s by an algorithm due to G.M.
Adel’son-Vel’skii and E. M. Landis, the so called AVL-trees, which generates
binary search trees with a maximal height of 1.4404 log n by means of rotation
operations (see [AdVL62]).

In this note we investigate the relation between the BST’s and the AVL-trees.
We prove that even if AVL-trees perform rebalancing rotations between the
insertion of different keys we will achieve the same tree when all keys are
inserted without rebalancing which is delayed to a final rebalancing run. This
property alone is of interest by itself but it also might have consequences to
applications as we will see in section 4.

Preprint submitted to Elsevier Preprint 29 March 1999

Ty T T3 Ty Ts

Fig. 1. Rotation types in dependence on subtree heights and insertion positions.

2 AVL-Trees

In this section we recall the fundamental definitions of AVL-trees. We preas-
sume the reader to be familiar with the notion of binary search trees and the
corresponding parameters and algorithms. If not, refer to [Knu73] to get the
needed information.

The balance-degree of a node is the difference of the heights of its left and
its right subtree. A BST is called height balanced if its nodes have a balance-
degree of modulus less or equal to 1. The AVL-algorithm forces BST’s to be
height balanced by performing a rebalancing rotation whenever the balance
degree of a node gets out of range due to an insertion or deletion. Note, that
in case of an insertion one rotation suffices to rebalance the tree. Further, it is
known that the probability of a rotation in an insertion step is between 0.37
and 0.73 and also that the fraction of balanced nodes is between 0.56 and 0.78
[BYGZ90].

We need two different kinds of rotations, single and double, each of them ex-
ists for a left and a right subtree out of balance. Because of this symmetry we
will only discuss the single-left rotation (L) and double-left rotation (DL) in
detail. Figure 1 shows all insertion situations, where a left-rotation or double-
left-rotation might be needed. Both will turn the node marked with x of tree
T into the left son of the new root-node. This is the node marked with y
in the case of a left-rotation and the node marked with ; in the case of a
double-left-rotation. We say that the particular rotation is performed around
z. The table of Figure 1 shows the different conditions for the heights of the
subtrees 77 to T together with the corresponding rotation types implied by
an insertion. For instance, line 3 of the table signifies, that a DL must be
performed, if an insertion in subtree 75 or T3 causes its height to grow from
h —1 to h. In all cases the balance of node x gets out of range. Figure 2 shows
the structure of tree T after a single-left (resp. double-left) rotation around

il

Fig. 2. The tree of Figure 1 after a single-left (left tree) and after a double-left
rotation (right tree).

x was performed. Note, that the property of being a search tree is respected
by the rotation operations, i.e. the inorder of the tree is equal to the sorted
sequence of the keys stored.

3 The Results

In this section we give a formal description and a proof of the property of
AVL-trees stated in the introduction. We will consider an arbitrary set of keys
K together with an order (K, <) which is used to compare the keys. We regard
those AVL-trees (BST’s), which are generated by starting with an empty tree
and inserting a permutation of distinct keys of K by the standard AVL- (BST-)
insertion algorithm.

Let T be a BST and k € K. We write k € T if the key k is stored in T'. For
aset T of BST's K(T) :={k € K|(3T € T)(k € T)}. The intersection of two
trees 1} and 715 is denoted by T} NT5. 1t is defined as

: T1 :Q)VTQ :(b\/t(Tl) 7£t(T2)
o(Th) o (TENTL T NTY) : otherwise

T1 ﬂT2 =

Here, () denotes the empty tree, v(T) represents the root of tree T. T' (resp.
T") denotes the left (resp. right) subtree of T and x o (T,T") stands for the
tree with root z, the left subtree 7" and the right subtree 7”. In words, T} N1,
is the substructure that both trees have in common (including node labels),
when the two trees are laid one on top of the other (one root upon the other).
Analogously, we denote by T7\T5 the forest that we get when deleting the
nodes' of 7y that it has in common with 77 N 7,. The notation 7, C T
is used whenever T, is a substructure of T}, i.e. there is a subtree 7] of T}

1 All edges that are incident with at least one of these nodes are deleted as well.

=90 (4,12)

O @ @er
T\T, = ’
(1D (19

Fig. 3. An example for the notation used within the paper.

with 7] NT, = T5. The size of a substructure is the number of its nodes. Let
S :={T,T1,Ty,..., T} be a set of BST’s. Then TUW{T},...,T,,} :={T" €
BSTIT'NT =T ANT\T ={T1,...,T,}}. This is the set of all BST’s that we
can get by attaching the trees T;, 1 <7 < m, to the leaves of tree T

In Figure 3 these notations are shown in an example.

It is well known, that the extended tree for a BST T with n keys has exactly
n + 1 leaves? 1,1y, ...,l,41 each of them could be the location of the next
insertion. Each leaf is associated with an interval that determines the keys
that might be inserted at its position. If the leaf is the right (resp. left) son of
the node storing key z, the interval is |z : m[(resp. Jm : z[) where m denotes
the min{z|z < z Az € K(T)} (resp. max{z|z < z Az € K(T)}); it is oo
(—00), if that minimum (resp. maximum) does not exist. Let Z; denote the
interval associated with the i-th leaf of tree T'. Then (Zy,Zs, ..., Z, 1) is called
characteristic of T. If we insert the keys of permutation p’ (all keys of p’ are
distinct from those that are already in T') into T', the new keys are stored in
place of some of the leaves [; (or as successor to them). Thus we generate a tree
T'" with subtrees T; (possibly empty) that are rooted in the positions of the
leaves [; of T, 1 < i < n+ 1. We call such trees frontier-trees of T with respect
to p'. Note, that T'"\T = {T1,...,T,+1} holds. Further the characteristic of a
tree does only depend on the nodes stored in the tree and not on its structure.
Thus, an AVL-rotation does not change the characteristic of a tree.

The class of AVL-trees is a subclass of the BST’s so every definition that is

2 These leaves represent the NIL-pointers of the nodes. In our figures we picture
them as O.

Fig. 4. The creation of frontier-trees and their location.

made for a binary search tree is also valid for an AVL-tree.

Definition 1 Let b be a BST and x be a node of b. Then, we denote the left
son of x by x.l and the right son of x by x.r. If x is a leaf then both, x.l and
x.r, denote the empty tree. [|

We will identify a node by the key that is stored in it. Since all keys are
distinct, this representation is unique.

Definition 2 Let K be a set of keys, |K| = n, and p be an arbitrary permu-
tation of the elements of K. By b? we denote the BST, which results from the
insertion of the first © < n keys of p into the empty tree. In an analogous way
we define the AVL-tree o . The notation b} ; is used to represent the BST that
results from inserting the keys pii1,...,p; into tree b. [|

If the context is clear, we skip the superscript p. Note that (b})% ; = b% holds.

Definition 3 Let b be a BST and let x be a node of b. By L(b,z) we de-
note the tree which results from a left-rotation around the node x. The trees
R(b,z), DL(b,z) and DR(b,z) denote the corresponding trees for a right-,
a double-left- and a double-right-rotation around the node x, respectively. For
r€{L,R,DL, DR} and key x we denote the rotation r around x by the tuple
(r,z). |

Definition 4 Let b be a BST and let be a node of b. The domain dg(r, x)
of a rotation r around x, r € {L,R, DL, DR}, is the substructure of b of
mazximal size before the rotation which is changed by the rotation. [

Figures 1 and 2 clarify, that dy(L,z) = 2 o (0, z.7), dp(R,x) = x o (x.1,0),
do(DL,x) =x 0 (B, 2.7 o ((x.7).l,0)) and dp(DR,z) = z o (z.l o (0, (x.1).r), D).
If the context is obvious, we will skip the index in the notation. Figure 4 illus-
trates how b} grows to (b}); ; by inserting the keys p;i1,...,p;. The new keys
create new subtrees Ty (the frontier trees) which are rooted at the positions
of the leaves I, 1 <k <7+ 1.

We will now introduce the most important property of BST’s which makes it

r(b? .,
dbp . (7‘, k)

/
N \
Fig. 5. Tree b? . before the application of rotation r around k (left) and afterwards
(right). The domain of r is completely disjoint from the frontier-trees T4, ..., T),.

quite easy to prove the main theorem:.

Lemma 5 Let K be a set of keys, |K| =n, p=p1,p2,...,pn be a permutation
of the elements of K and b be an arbitrary BST (possibly empty) that does not
store any key of K. Let (c,i,7) € Ny such that 0 < ¢ < i < j < n. If (r,k),
k € K, is a rotation such that dy» (r,k) C b7.;, then

Cc1?

(T(bg.ia k))f] = T(bg--jv k).

Proof: We have b2 ; N by ; = b2 ; and b} ;\b? ; = {T1,T>,...,T),} the set of

frontier-trees of b?.; with respect to the insertion of the keys p;1,...,p;. The

assumption dyr (7, k) C b, implies that 7(b7.;, k) N7(bf.;, k) = r(bg.;, k) and

thus 7(b2 ;, k)\r(b}.;, k) = {11, T3, ..., T}, i.e.

e the set of frontier-trees {71, ..., T),}, considered as subtrees of b. ;, remains
unchanged,

e restricted to the tree b2 .

way as it behaves on b% ..

the rotation (r, k) behaves on by ; in the same

We refer to Figure 5 to get a visualization of those facts. Since the character-
istic of any BST is left unchanged by any rotation, we know that r (b, k) has

c19
the same frontier-trees {11, ..., T,,} with respect to the insertion of the keys
Di+1,-- -, pj as by ;. If we now compare (r(b}.;), k)7.; and r(b}.;, k) we find that

the father of T, is the same in both trees and that, if 7, is a left (resp. right)

son of that father in (r(bf.;), k). ;, then it is also a left (resp. right) son of its

father in r(b}.;, k), 1 < v < m. Otherwise the keys stored in T, would not
belong to the interval Z, which is a contradiction. This shows the proposition
of the lemma since (b?_;NbY. ;)W (b7 ;\b. ;) = {b.;} and thus we have argued

that all parts of r(b}._;, k) must coincide with those of (r(b?.;), k);.;. |

Note, that the condition dgr =~ C b.; is always fulfilled if the rotation (r, k) is
induced by the AVL-algorithm.

Now, we are able to prove the following theorem:

Theorem 6 Let K = {ky,....,k,} and let p = pi,ps,...,pn be a permu-
tation of the elements of K. Furthermore, let (r;,k;), 1 < i < m, r; €
{L,R,DL,DR}, k; € K, be the sequence of m € N, m < n, rotations that
occur during the insertion of p into an empty AVL-tree, together with the cor-

responding nodes (keys) around which the particular rotations are performed.
Then

Cl?l = ’I“m(Tm_l(...TQ(’I“l(bg, kl), k2), . km—l)km)

Proof: Let {ji,j2,...,Jm} be the set of indices such that the insertion of p;,
implies the rotation (r;, k;), 1 < i < m. Then we have

ay = (rm (- (r2((ra (05, K))Gior B2) - i)y B))oms (1)

since the right-hand side of (1) is nothing else but a formal description of
the insertion-process for the AVL-tree a?. Now the application of Lemma
5 yields (ri(b%,,k1))%,.5, = (ru(b},, k1)) and thus ro((ri(b%, k1))5 ., ko) =
ro(r1(b%,, k1), k). Applying this identity to (1) yields

ag = (Tm((.. T3((T2(T1(b§2, kl), k2))§2"j3’ kg) .. ');;m—l"]'m)’ km))gmn

Now we may apply Lemma 5 to the BST ry(r(b%,, k1), k2))%,..;, in order to get
ra((r1(6%,, k1))}, .5, k2) and by a second application ry(ry(b%,, k1), k2). Thus
T3((’I“2 (7“1(5?2, kl), kg))§2,,j3, kg) = T3(T2(T1(b§3, kl), kg), kg) holds. Again, this
identity can by applied to equation (1). The iteration of the same arguments
finally proves the theorem. [|

4 Consequences to Applications

Under certain assumptions, the result of section 3 can be used in an applied
way. One example will be presented in the rest of this note.

If, in practice, a large set of data has to be handled efficiently it is a well known
heuristic to proceed in the following way: During an insertion phase the data is
used to build up a BST in the normal way. Afterwards, to improve the quality
of the resulting tree a rebalancing run is performed. This could be implemented
by a postorder-traversal of the tree where nodes are rebalanced whenever
necesarry using AVL-rotations. The resulting tree 7}, is height balanced but
since the order and the type of the rotations performed is not related to
the order and the type used by the AVL-algorithm, to the knowledge of the
author it is not known if 7} is the same tree as if the AVL-algorithm would

have been applied. However, this is an important question since the worst-
case height of a height balanced tree and the average height of an AVL-tree
differ by roughly 40 percent [BYG91]. The reason for that heuristic is the
belief that there is a speed-up of the insertion-phase, because no rotation is
performed, and also that the total number of rotations is reduced because of
automatic rebalancation during the insertion phase, i.e. subtrees out of balance
get rebalanced by subsequent insertions.

Under certain assumptions, it is possible to base the idea of that heuristic on
theoretical knowledge using the result of section 3. To do that we introduce a
queue Q to store tuples (k,r) where k denotes a pointer to the node storing key
k and r represents a rotation type. Since nodes do not change their location in
the memory, those pointers are valid for the lifetime of the tree. The keys are
inserted into the tree using the normal AVL-algorithm with the restriction that
any rotation, that is needed, is not performed explicitly, but is stored in Q.
We assume to know how to decide the rotation-types and -places efficiently
without generating the AVL-tree. After the tree has been built we use the
information stored in Q to generate the AVL-tree according to Theorem 6.
In that way we get exactly the same tree as if we had used the normal AVL-
algorithm. Note that it is not possible to decide the rotation-types and -places
by just using the normal marking of the nodes which keeps track of the nodes
balance-degree and update it as if the rotations have been performed.

We can optimize the rebalancing-run by observing that some combinations
of rotations leave a tree unchanged. For example, consider the application of
a left-rotation around x on a tree T'. If we apply afterwards a right-rotation
around z.r, we get tree T' again. There are other combinations of rotations with
the same property and it is an interesting task to find any characterization
of the set of all such combinations. If we store the information additionally
needed to detect such combinations for adjacent entries stored in Q (in case
of the previous example we would need the knowledge of the right son of z) it
is possible to reduce the number of rotations needed. In a multiprocessor or
distributed environment it is possible to perform this preprocessing in parallel
to the generation of the search tree. It remains an open problem of how many
rotations can be saved that way.

References

[AdVL62] ADEL’SON-VEL'sKIl, G.M., LANDIS, E.M.: An Algorithm for the
Organization of Information. Dokladi Akademia Nauk SSSR, 146 (2), 263-
266, 1962.

[BYG91] BAEZA-YATES, R., GONNET, G.H.: Handbook of Algorithms and Data
Structures. Addison-Wesley, Reading, Mass., 1991.

[BYGZ90] BAEZA-YATES, R., GONNET, G.H., Z1VIANI, N.: Ezpected Behaviour
Analysis of AVL-Trees.
Proceedings Scandinavian Workshop in Algorithmic Theory, SWAT ’90,
LNCS 447, Springer-Verlag, Bergen, Norway, 2:143-159, July 1990.

[Dev86] DEVROYE, L.: A Note on the Height of Binary Search Trees. Journal of
the ACM, Vol. 33, 489-498.

[Knu73] D. E. KNUTH: The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, 1973

