Exercise Sheet 10 for Algorithm Engineering, SS 14

Hand In: Until Monday, 07.07.2014, 10:00 am, email to wild@cs... or in lecture.

Problem 23

Recall the method from class for precisely solving the mergesort recurrence

$$
f_{n}=f_{\lfloor n / 2\rfloor}+f_{\lceil n / 2\rceil}+e_{n}
$$

The main trick consisted in using forward-backward differences $\Delta \nabla f_{n}$ to get rid of the floor and ceiling functions and then consider the Dirichlet generating function of $\Delta \nabla f_{n}$. The subsequent computations involved the Dirichlet generating function of the forwardbackward differences of the toll function

$$
\boxminus(s)=\sum_{k \geq 1} \frac{\Delta \nabla e_{k}}{k^{s}},
$$

which we only computed for the worst-case costs.
Give representation of $\boxminus(s)$ — as simple as possible - for
a) the best case, i. e., for $e_{n}=\left\lfloor\frac{n}{2}\right\rfloor$, and for
b) the average case, i.e., with $e_{n}=n-\frac{\lfloor n / 2\rfloor}{\lceil n / 2\rceil+1}-\frac{\lceil n / 2\rceil}{\lfloor n / 2\rfloor+1}$.

Problem 24

Compute the following integral using the residue theorem

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x
$$

