Exercise Sheet 9 for Algorithm Engineering, SS 14

Hand In: Until Monday, 30.06.2014, 10:00 am, email to wild@cs... or in lecture.

Problem 21

Let $F(z)=\sum_{k>1} d(k) e^{-k z}$, where $d(k)$ is the number of divisors of k. Expand $F(z)$ around $z=0$ up to the term $\mathcal{O}(z)$.

Hint: The zeta function $\zeta(s)$ is the Dirichlet generating function for the series $1,1,1, \ldots$ Recall the convolution formula for two Dirichlet generating functions $A(z)=\sum_{n \geq 1} a_{n} n^{-z}$ and $B(z)=\sum_{n \geq 1} b_{n} n^{-z}$:

$$
A(z) B(z)=\sum_{n \geq 1} h_{n} n^{-z}, \quad \text { with } \quad h_{n}=\sum_{d \mid n} a_{d} b_{n / d}
$$

Problem 22

Let I_{n} be the (random) number of inversions of a permutation of $1, \ldots, n$ drawn uniformly at random from all n ! permutations.
Show that

$$
I_{n} \stackrel{\mathcal{D}}{=} U_{0}+U_{1}+\cdots+U_{n-1}
$$

where $X \stackrel{\mathcal{D}}{=} Y$ means that X and Y have the same distribution and where the U_{i} are all independent and drawn uniformly from $\{0, \ldots, i\}$ for $0 \leq i<n$.
Moreover, derive general formulas in n for
a) the minimal and
b) the maximal value of I_{n}, as well as
c) the expected value $\mathbb{E}\left[I_{n}\right]$
d) and the variance $\mathbb{V}\left[I_{n}\right]$.
e) What does the result tell us about sorting algorithms that only compare neighboring elements?

