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Abstract

A general concept for analysing the average complexity of the membership problem
for any formal language is used in order to examine a generalization of the Dyck
language. Our investigation is motivated by the fact that the Dyck language has a
distinguished behaviour concerning that parameter. Surprisingly, that behaviour is
lost even by small variations without utilising any opposite controls, e.g. adapting
probabilities. This observation supports the significance of the Dyck language in
computer science.

1 Introduction and Fundamental Definitions

In [Kem96] a general concept for calculating the average complexity of the mem-
bership problem for any formal language £ C T has been introduced. In order to
decide whether or not a given word w belongs to £ the following assumptions are
made:

Assume I(w) is the length of input w. Scan w from left to right letter by letter
until a prefix v is read which has no extension rightwards to any word of length
I[(w) belonging to L. If such a v exists we have w ¢ £ and only /(v) < [(w) symbols
were read.

Assume Pén) (v) for (v,n) € T* x IN is a predicate with the value true if there is a
u € T* with vu € L£,, := LNT™ and the value false if such a suffix u does not exist.
Then we obtain the following formal recognition procedure MEMBER:

Input: n € INog, w=a1as --ayn,a; €T, 1 <17 <n; Pén)

Output: we Lorw ¢ L

Method: i := 0; v :=¢; /* £ denotes the emty word with [(¢) =0 */
while (i < n) and (Pén) (v)=true) do begin

1: =1+ 1;
v = va;;
end;

if (I(v) = n) and (Pén) (v)=true) then w € L else w ¢ L;

We assume T’ to be minimal with respect to £, i.e. (VI' C T): (£ € T*). To any
symbol a € T := {a1,as,...} we associate the probability p, with > _,p, = 1.
Further, we let g := (pa,,Pas,---) be the corresponding probability distribution.
For any word v € T* we denote by #,(v) the number of appearances of a in v.
Now, if INIT(L) := {v € T*|(3u € T*) : (vu € £)} and INIT,(L) := INIT(L) N T*
the following theorem can be found in [Kem96]:



Theorem 1 Let Yyt (Ly,) be the random variable describing the length of the short-
est prefix which the procedure MEMBER has to read in order to decide whether or
not an input word w € T™ belongs to the given language L C T*. Then, the s-th
moment about the origin of the random variable Yot (Ly) is:

ElYg (L)l = Y [(k+1° =% > [[p#®.

0<k<n velNIT,(2,) e€T

If all symbols are equally likely we have

E[Yge (Ca)] = Y [(k+1)° = KINITR(L,)] ||
0<k<n

O

Note, that in the original work a more general model was considered in which the
input word w might be in ¥*, ¥ # T. But since the interesting cases' can all be
reduced to the case ¥ = T (by adapting g) we restrict ourselves to the model as
given above.

It was shown that for any £ € T*, ds(£) = limpseo Do per, HaeTpa#“(w) #0
implies the s-th moment to be ©(n?).

One of the applications of the general Theorem which R. Kemp considered was the
semi Dyck language D C {[,]}* for one type of brackets (e.g.[Har78] pp.312). He
was able to show that for (p,q) := (p[,p)) the average length of the shortest prefix
has the asymptotical behaviour

(1-2p)! D op< 3
E[Ypret (D2n)]  ~ Ar—3n3 p= % (1)
2p—1)p~2n : p>4%

It should be mentioned that the language D is the only known context-free lan-
guage having a non-linear and non-constant average behaviour of the membership
problem provided that all words of length 2n are equally likely (second alternative
in (1)). In [Kem97] the minimal prefix length of the following generalization D®
of D was considered. Let 7] and 7] be two disjoint alphabets and $t C T} x T be
a relation. A tuple (z,y) € R identifies zy to be a pair of corresponding brackets.
Since there is no restriction on R one bracket may correspond to several others
contrary to the ordinary Dyck language. The language D® consists of all words
w € (T} UTj)* which are equivalent to the empty word under the congruence §
defined by zy =& mod ¢ for all (z,y) € R, i.e. all words correctly bracketed in the
above sense. If T := T{ UT]) and R, := {z € T{|(3y € Tj)((z,y) € RN)} then for
p:= |R1]|T|~! and g := |R|(|R1||T|)~" the behaviour of (1) was rediscovered for the
special case p+q = 1.

The author of this paper therefore expected to observe interesting effects by con-
sidering the following generalization of the language D.

Definition 1 Let m,n be two natural numbers and let $("™™ be the monoidhomo-
morphism induced by ™™ ([) := [ and "™ (]) :=]". The generalized semi Dyck
language D™ is defined as

D) = {(™) (w)|w € D}.

It is obvious that DY = D holds. Further, we have dz(D(™™) = 0 for any

choice of m and n and any probability distribution p. As we will see |D§Zfr)t) )=

IThere are cases in which it is known a priori that all moments are bounded by a constant.



L(if)_ Thus, we have hm D weDm) p[nfpjrnl - 11m H%(f)pfé(l _p[)mé <

llirgoﬁ(2l€)(m’in)”l(mﬁn)me < hm HLl(Qf)Q 2 = 0 by Stirling’s formula. The

larger we choose m and n the faster that limit converges to zero.

2 The Average Complexity of the Membership Prob-
lem

There is a well known one-to-one correspondence (e.g. [Kem84] p.173) between
Dyck words in D of length 2¢ and the walks from (0,0) to (2¢,0) consisting of steps
/" (representing a [) and \, (representing a ]) only, (see Figure 1). The number of
prefixes v € INIT(D) consisting of i opening and j closing brackets is equal to the
number of different paths from (0,0) to (i + j,i — j) in the corresponding walk. It is
well known (see [CRS71] and [Rio79] p.130) that this number is equal to the ballot
number w; ; defined by the recurrence:

Wi j—1 : 7 :j
Wij = Wi -1+ Wi—1; 1>7 . (2)
]. N Z = 0, j = 0

Explicitly, we have w; ; := (”j ) — (]’ﬂl) = %l(l? ). Counting opening brackets
by x and closing brackets by y and summing over all positions of the walk for Dy,

yields the following generating function:

K
D(,z,y) = ZZwi7ja:iyj. (3)

i=0 j=0

Recall that for (p,q) := (p;, ;) Theorem 1 implies

EYper(D2e)] = > [[ p#" = D(t,p,q) — p'd‘wes.

0<k<2t qeT
vEINITE (Dgy)

Now, examine the language D™ In Figure 2 the diagram for D is drawn.

(2+3)5
To consider the structure of D(™") a 7 (resp. \) may only appear in sequence

Figure 2: In the generalized version the number of Dyck words of length (m + n)¢
corresponds to the number of paths of the given structure from (0,0) to ((m +
n)l, (m —n)f), here (m,n,t) = (2,3,5).

ET ™) denote the number of prefixes of
D(mn) consisting of 7 opening and j closing brackets. It is obvious that wl(:;: ?,)L =

w;,; holds. In Figure 2 the corresponding points are marked by a e; these points
represent a stretched diagram for D1y (generally Dsy) where the coordinates were

transformed with respect to m and n. Those points without a e have exactly one
~(m,n)

with m — 1 (resp. n — 1) other ones. Let w

predecessor from which they inherit the number of related prefixes, i.e. w

im+ta,jn
Eﬂ;?wﬂ = zbl(:nn Jnr)“ 1< a<m,1< B < n,since the number of paths from (0, 0) to

such a point is equal to that one from (0,0) to its predecessor e. This observation
enables us to construct the walks (and thus the generating function) of D("™™ by
multiple overlayed and scaled walks for D. In Figure 3 one can see how this is done

in the case of D£5’ ) (generally DEm ")) ). Points marked by the same symbol (filled

or unfilled) belong to the same (stretched) diagram for D, which is stretched by
setting « to ™ and y to y™ in the generating function. Note, that there are positions
marked by A and m not lying on the dotted structure of the D(2 ?)_walk. However,
in order to generate the right number of different paths we have to consider walks
of size 10 (generally 2¢) for them which include the positions marked by A and m.

Figure 3: How to construct the walk for D(™™) by overlayed walks for D, (m,n) =
(2,3).



These positions have to be considered by an error term. This is not necessary for &
where a walk consisting only of dotted positions is sufficient to obtain the desired
result. In order to place the (stretched) walks (¢, A, O) at the right positions
they have to be moved in the , () direction. This movement corresponds to a
multiplication of the generating function by x* (y') if i is the distance between (0, 0)
and the starting-point of the desired walk. Now let D™ (¢, z, y) be the generating

function counting the elements in INIT(Dg: fﬁl) ,)- By translating our observations
into generating functions we get:
m—1
(mm)(e,2,y) = D(la™y")+ Y 2" Dl —1,2™,y") + (4)
=e ~ =1 S
=0
n—1 l
+ Z y DL, z™,y") — Zwma?]my]"].
k=1 =0
=A,EA, n :Z’, n

Note, that this is a general method for constructing the generating function for a
stretched diagram if that one for the unstretched one is known.

Now, it is not hard to see that D("™™) (¢, p,q) = ]E[Ypref(Dngi) )]+ p" g w§z Z)L
holds. If [2™]f(z) denotes the coefficient of 2™ in the series expansion of f(z) at
z = 0, the number of [INIT;(D Em ) lis given by [zF]D(™™) (¢, 2, z) and we get by

(4) the explicit form
INIT,(D(™7) )| =

(m+n)

4 m—1 -1 n—1 4

E Wi, (k—mi)/n + E E Wi (k—v—mi)/n T E E Wi, (k—v—im)/n
i [k/(mtn)] v=1 i2[(k=v)/(m+n)] V=1 i>L(k=0)/(m+n)]

n|(k—mi) n|(k—v—mi) n|(k—v—mi)

This expression is not quite handy for further calculations (i.e. for inserting it into
the second formula of Theorem 1). So, we return to formula (4). By simple algebraic
manipulations and the application of (3) it can be transformed into:

l £ -1
S S+ (T 1) S e
=0 i=j
l
" (y—l >Zyw Z wi T

7j=0 i=j+1

As stated above this generating function differs from our expected value only by
™y wy for x := p; and y := pj. Subtracting this term and changing the order
of summation yields the following theorem:

Theorem 2 Let § denote Kronecker’s symbol, then

E[Yprer (D) )] = D™ (4,2, y)

(m+n)L )
(z,y):=(p[,p)
where
1 ¢ m—1 7 (1—0e:) n-1
RS S i (D OF IRRTE ) 3] I
j=0 i=j k=0 k=1



In order to get more information about the mean of Y,f we need a closed form
representation of that generating function. A first step is to regard the difference
A (g y) = DM (041, z,y) — DU (4, 2,). We have

D (41, 2,y) =

‘ +1 m—1 (1—0¢41.,:) o1
SRl | ORISR P oV I

Jj=0 =] k=0 k=1

-1 41 m—1 7 (1=%et1,) o1
S OS2 oFl SRR oi) IoF

7j=0 i=j k=0 =1

m—1

n—1
zmt Z ka“ + pm(e+1) Z ysz+1,z]
k=0 k=0

+ynl

(1—6¢,5)

-1 l m—1
— E :yn]§ :wmz E :Cﬂk
j=0 i=j k=0

n—1
+(1=6i5) Y vk | wij
k=1

(-1 m—1 —1 n—1
) . L
+ E ym gme E zhwy ; + E y" 1) E yrwes s
j=0 k=1 j=0 k=0

+yn€

m—1 n—1

™t Z zFwg g 4+ zmEFD Z ykwe+1,e] .
k=0 k=0

Thus, A™) (¢, z, y) turns out to be:

™ -1
r—1

¢ n ‘ -1
¢ j Y' =1 (e j ¢ j
2™y w + - 2Ny ey — 2™y wy.
=0 =0

=0

So, we have two different but similar kinds of sums ciw“ and Y ciwuu
0<i<e 0<i<e
(c constant) which we will examine in detail.

Lemma 1 Let t(,c) ==Y ., we; and s(€,¢) := Y gcicy Cwerr,i. The follow-
ing recurrence relations hold: o

t(0,¢) = 1,

Heo) = t([l—_lc, c) B cérl_wz,g,

s(0,¢) = 1,

st} = S(€1_—1c’ 9 1 i c [clul-l (2;) - cMle’[] '

Proof: It is obvious that ¢(0,¢) = 1 holds. For (¢, ¢) we consider (1 — ¢)t(¢,c) —
t( —1,c). The application of (2) proves 3" clwy; — (wg,i—1 +we—1 ;) to be zero and
the whole expression evaluates to —c‘T!wy ;. The proof for s(¢,c) can be performed
in an analogous way. a

Now, defining T.(z) := Y ;5 t(i,c)z" yields

T,(z) = licz {t(i—l,c)—ci“ ZL(?)]zH

i>1




1 ) c 1 21 .
— i— 1 i i 1
1—02 ti—1,c)z l—c;>1i+1<i>(cz)+
Z oo, c [1—\/1—402_1]+1

2cz

By defining S.(z) := 3,5, s(i,¢)2z" we find after a similar computation the following
lemma. B

Lemma 2

1—+/1—4ecz +1—c/(c—1)
22(c—1)(1—2/1—-¢) 1—2z/(1—2¢)’

1 1—2z711-y/1-4 -1
5.(2) z V 2z

1—z2/(1-¢) | 1-c¢c 2¢z 1-c
0
By Lemma 2 and D™ (z,z,y) := 5 A" (i z,4)2* we have a closed form ex-
i>0
pression:
m_1 !
D) (2,2, y) = z T Tyn(z2™) + Y 1 2™ Syn (22™) — 2™ Syn (22™). (D)
x— y—

Note that the variable z is related to the length £, i.e. [z{]D(™) (2, &, y) = D™ (04
1,z,y) — D™ (£, 2,y) = A (0, 2,y).

In order to get information about the parameter in question, i.e. the average prefix
length necessary for deciding the membership problem, we have to recombine the
generating function for the difference into one for the entire problem. A moment’s
reflection shows that the multiplication of (5) by z/(1 — z) solves this problem since

ZA(m’”)(i,x,y)z =
i>0
(D (1,2, ) = DU (0,2,)] 2+ [DU)(2,2,y) = D™ (1,2,y)] 2 +
[ (mn)(3,2,y) — D™ (2,2 y)] 224
= =D (0, z,y) +D"™M(1,2,9)(1 — z) + D" (2, z,y)2(1 — 2) + ...
=0

1—2 ~ . 11—z . .
— D(m,n) - i_ D(m,n) - i
. > (i,7,9)z . > (i,z,y)z

i>1 i>0

Now, everything is prepared to establish our main theorem.

Theorem 3 The average minimal prefix length IE]| pref(DE:Zfr)L)é)] needed to decide
the membership problem by means of the procedure MEMBER for input words w €

D) of length (m 4+ n)l is equal to the coefficient of z¢ in the expansion of
m

z pm—1 m q"—l_ m m
T Tan (2p )+<q_1 2>p Sqn(2p )}-

l—z | p—

Here, closed-form expressions for T.(z) and S.(z) are stated in Lemma 5.

We conclude this section by determining asymptotics from the coefficients of the
generating function given in Theorem 3. To do this, we have to consider two



Figure 4: The different expansions of our generating function.

Figure 5: Exact [in roman] and asymptotical values [in italics] for ]E[Ypref(DE:ZfBL) Il

q:=1-—p.

different cases. The first case is that of m > 1V n > 1, i.e. any of our gen-

eralizations. We divide our function into part B(z) := = and part A(z) :=
z [p:_—11 Tyn (zp™) + (qq"__—11 - z) P Syn (zpm)]. Obviously, the radius of convergence

p(B) is equal to 1. Since the absolute value of all non-zero singularities of A(z) is
greater than 1 and further A(lim,,— oo (bp—_1/byn)) = A(1) # 0 we meet the conditions
of Theorem 4.8 of [Kem84] or [0d195] which proves that our number in question is
~ A1), £ = oco.

For the case m = n = 1, i.e. the ordinary Dyck language, it is possible to use
Darboux’s Theorem (see [Kem84],[Od195] or [GrKn82] for a more detailed discus-
sion). In Figure 4 the corresponding expansions of our generating function can be
found. The repeated application of that theorem to our expansions and using the
relation I'(s + 1) = 7% (25)14-%s!7 ! satisfied by the complete gamma function (e.g.
[AbSt70]) rediscovers (1). Altogether we have the

Theorem 4 The average minimal prefiz length needed to decide the membership
problem for the language D™™) s asymptotically given by

(1—-2p)t : p<i

() AT~303 + 2073073 — 2 s op=1 3 T
]E[Ypref(D m7 n l)] ~ _ -2 _n)2 _1\-1,,—2 . 1
(mn) 2p—1)p2+(1-p3*2p-1)""p™> : p>3

p::ll Tyn (p™) + (qq":l1 - 1) pPSgn(P™) 1 om>1Vn>1,
for £ — oco.
Here, T.(z) and S.(z) are established in Lemma 5. O

Some exact values of our parameter and their asymptotical equivalents for different
values of p, ¢, m and n are given in Figure 5.

3 Comments on the Result

Our asymptotical result shows that the behaviour of the membership problem for
any of the cases m > 1 or n > 1 is always constant. So, the interesting behaviour
of D was lost. This is an engrossing fact since it also happens for only small
variations, e.g. for m = 1 and n = 2. In those cases the author would have
expected a possibility to get at least a linear or sublinear behaviour by means of the
probabilities p; and p;. The lack of any opposite controls shows how sensitive the
structure of Dyck words reacts concerning our parameter. Empirical studies have
shown that m < 1 or n < 17 leads to an exponentially growing average prefix length
(implied by singularities < 1). This might explain why D still is the only known
context-free languages with a sublinear minimal prefix length. However, our results
support the outstanding significance of the Dyck language in computer science.

Further investigations might regard a generalization in which several values for the
number of consecutive [’s and |’s are allowed. In one way this would be a unary
coding of multiple types of brackets, e.g. one might interpret [[[[ as ( and [[[[[ as

twithout any language-theoretic interpretation.

et



{. However, the unary coding differs from a really extended bracket-alphabet as
considered in [Kem97] since there is an influence on the membership problem by the
different length of the codes whereas every bracket of an extended bracket-alphabet
has the same length, namely 1.

References

[AbSt70] M. Abramowitz and A. Stegun, Handbook of Mathematical Functions,
Dover (1970)

[CRST1] L.Carlitz, D. P. Roselle and R. A. Scoville, Some Remarks on Ballot-
Type Sequences of Positive Integers, J. Comb. Theory (A) 11 (1971)
258-271

[GrKn82] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algo-
rithms, Birkhduser (1982)

[Har78] M. A. Harrison, Introduction to Formal Languages, Addison-Wesley
(1978)

[Kem84] R. Kemp, Fundamentals of the Average Case Analysis of Particular
Algorithms, Wiley-Teubner Series in Computer Science, Wiley (1984)

[Kem96] R. Kemp, On Prefixes of Formal Languages and Their Relation to
the Average-Case Complexity of the Membership Problem, Journal of
Automata, Languages and Combinatorics 1 (4) (1996) 259-303

[Kem97] R. Kemp, On the Average Minimal Prefix-Length of the Generalized
Semi-Dycklanguage, RATRO Theoretical Informatics and Applications,
to appear

[0d195] A. Odlyzko, Asymptotic Enumeration Methods, in: Handbook of Com-
binatorics, Chap. 22, Elsevier (1995)

[Rio79] J. Riordan, Combinatorial Identities, Robert E. Krieger Publishing

Company (1979)



