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Abstract

In this paper we investigate the average Horton-Strahler number of
all possible tree-structures of binary tries. For that purpose we consider
a generalization of extended binary trees where leaves are distinguished
in order to represent the location of keys within a corresponding trie.
Assuming a uniform distribution for those trees we prove that the expected
Horton-Strahler number of a tree with « internal nodes and 3 leaves that
correspond to a key is asymptotically given by

428~ og(a)(28 — 1) (a + 1) (a + 2) (20‘+1)

8v/ma®/? log(2)(8 — 1)B(%)’

provided that o and 8 grow in some fixed proportion p when a — oco.
A similar result is shown for trees with « internal nodes but with an
arbitrary number of keys.

AMS Subject Classification: 05A15, 05C05, 68W40.

1 Introduction

Let T be a binary tree, i.e. a tree where each node has at most two descendants.
Then the Horton-Strahler number of T denoted hs(T') is recursively defined by

0 : T is either a leaf or empty
hs(T):=4 hs(T1)+1 : if hs(T.l) = hs(T.r)
max(hs(T.l),hs(T.r)) : otherwise

Here, Tl (resp. T.r) denotes the left (resp. right) subtree of T. The Horton-
Strahler number was originally introduced to classify river systems (see [Hor45]
and [Str52]) but it has also been adopted in computer science, molecular biology,
medicine and other disciplines. Ershov [Ers58], for example, has shown that the
minimal number of registers needed to evaluate an arithmetic expression £ with
binary operators, which is represented as a binary tree T'(£) (the syntax-tree),
is given by 1 + hs(T'(£)). If all syntax-trees with n internal nodes (n binary
operators) are assumed to be equally likely, then it is known that the average



number of registers that are needed to evaluate an expression optimally is given
by

v+2
21n(2)

for all § > 0, n — oo, where v = 0.577215. .. is Euler’s constant and F is a pe-
riodic, oscillating function of small amplitude (see e.g. [FRV79] and [Kem?79)]).
Syntax-trees corresponding to expressions built with unary and binary opera-
tors were considered in [FIP86]. Furthermore, the minimum stack-size required
for a traversal of a binary tree T is also given by 1+ hs(T") (e.g. see [FRV79] and
[Fra84]). Meir, Moon and Pounder [MMP80] investigated the Horton-Strahler
number of channel networks with a fixed number of inputs. The combinatorics
of the Horton-Strahler analysis has been used in computer graphics for the cre-
ation of faithful synthetic images of trees (see [VEJA89]). The impact of the
Horton-Strahler number on molecular biology comes from theoretical consider-
ations about secondary structures of single-stranded nucleic acids (see [Vie90]
and the references given there).

All those applications and studies have in common that they deal with ordinary
extended binary trees, i.e. trees where each node is either a leaf or has two de-
scendants. All the cited papers which present an average case analysis consider
the uniform model, i.e. they assume that all trees of a given size are equally
likely.

The Horton-Strahler number of tries has been investigated in a recent work by
Devroye and Kruszewski [DeK96]. A trie is a binary tree which is used to store
the set of keys K = {ki1,...,k,} in the following manner: Each key k;, consid-
ered as a string of 0’s and 1’s due to its binary representation, defines a path
in a binary tree T' (0 indicates a left turn, 1 a right turn); the trie defined by
ki,...,ky is the smallest binary tree for which the paths truncated at the leaves
of T are all pairwise different. Thus each leaf of T stores exactly one of the
keys k;, 1 < i < n. Note that 7" does not need to be an extended binary tree.
T might have internal nodes with only one successor. However, the Horton-
Strahler number hs(T) remains unchanged when we turn 7 into an extended
binary tree. Devroye and Kruszewski considered random tries constructed from
n i.i.d. sequences of Bernoulli random variables with parameter p, 0 < p < 1;
they have shown that the Horton-Strahler number H,, of those tries fulfils

H, 1
%
logn  log

% log, (27°n) — + F(n) + O(n71/2+5) (1)

T
min(p,1-p)

in probability as n — co. The presented (Bernoulli-) model of a random trie is
very realsitic. For example, if we choose p being %, this model describes exactly
the behavior of tries built from random integer data assuming all integers to be
equally likely.

In this paper we will adopt a combinatorial point of view by regarding all tree-
structures that might be generated by the trie algorithm. For that purpose we



Figure 1: An example for a set of keys K, the resulting trie and the correspond-
ing C-trie.

Figure 2: Affecting additive parameters by adding a new node in between two
existing ones. All trees shown in the figure have the same Horton-Strahler
number but different path lengths.

will consider a class of generalized extended binary trees the so-called C-tries
(for combinatorial tries) which were introduced in [Neb99]. Let a C-trie be an
extended binary tree where each leaf is either colored black or white; each black
leaf has to be the brother of an internal node. If we now interpret a white leaf
as the location of a key and a black leaf as a NIL-pointer the C-tries resemble
all the tree-structures which the trie algorithm might generate. An example
for that correspondence can be found in Figure 1. It is obvious that all the
correspondences given above between the Horton-Strahler number and the pa-
rameters such as the number of registers needed for a syntax-tree evaluation or
the stack-size for a traversal remain valid even by coloring the leaves. A C-trie
with « internal nodes (with « internal nodes and § white leaves) is defined to
be of size a (of size («,)) and will be called a-trie ((a, 3)-trie). Note that
2 < B < a+1must hold. A C-trie of size (o, + 1) is nothing else but an ordi-
nary extended binary tree. For our investigations we will assume that all C-tries
of size a (resp. («,3)) are equally likely which is a quite different assumption
compared to the before mentioned Bernoulli-model where it is more likely that
a trie is balanced than being of a linear structure. This is why our investigation
is rather of a combinatorial character.

Note that the idea of coloring leaves is not only useful for introducing a com-
binatorial equivalent for the tree-structures of binary tries. By introducing the
number of white leaves as a second parameter we are more flexible to model
natural phenomena. By varying the ratio of @ and 3 we can control the average
shape of the related trees since a large number of black leaves can only exist
if the tree has many linear lists within its inner structure. Thus we hope that
the results presented in the rest of this paper will be of interest with respect
to geology, molecular biology, synthetic images of trees, channel networks, ...
Think for example of a river network modelled by an extended binary tree T
and the task to model different lengths of the rivers. By adding a new node
with a black leaf as one of its successors in between two arbitrary existing nodes
of T (see Figure 2), we do not change the tree’s Horton-Strahler number (as



Figure 3:
All possible decompositions of a C-trie T' with hs(T') = p. The number
below a triangle determines the value of hs of the subtrie represented.

it should be since the length of a river should not affect the classification of a
river network). However, we change length-sensitive parametres like e.g. the
external path length.

Thus, even if all our results are presented using the term C-trie instead of gen-
eralized extended binary tree they should be considered as applicable to many
other areas.

2 The average Horton-Strahler number

The aim of this section is to derive the average Horton-Strahler number for
uniform random C-tries as defined in Section 1, i.e. the average value of the
function hs applied to a set of C-tries of the same size («, 8). We will use gener-
ating functions in order to prove our results. The way these generating functions
are derived is similar to that in [FRV79], the methodology used to determine
asymptotics for the coefficients in question is standard and can be found in
[F1090]. By [z} ---2}*]f(z1,...,zx) we denote the coefficient at " -- - z* in
an expansion of f(z1,...,xg) at (z1,...,2,) = (0,...,0).

We start our investigations by determining the generating function H(z,y)
which counts those C-tries that have a Horton-Strahler number of exactly p.

Lemma 1 Let x mark an internal node and let y mark a white leaf. The gen-
erating function Hy(z,y) of C-tries T with hs(T) = p possesses the following
closed form representation:

_ sin(¢) zy?
Hy(w,y) = sin(2v-1¢) 1 -2z — 2zy’ @)
where ¢ = arccos (1 —dely+1) ;273:?52(2 Fyt y))) . (3)

Proof: In order to derive a representation for the generating function in ques-
tion we have to distinguish the cases shown in Figure 3. For p > 2 these cases
translate into the following recurrence for H,(z,y):

Hy(2,y) = (22 + 2zy) Hy(z,y) + oH,_, (z,y) + 20Hy(v,y) > Hj(x,y). (4)
1<j<p

Here, the boundary condition for p = 1 is still to be determined yet. It is obvious
that a C-trie T with hs(T') = 1 has to have a linear structure, i.e. either the left



or the right subtrie of each internal node has to be a leaf. Thus H;(z,y) must
fulfil Hy (z,y) = zy* + (22 + 2zy)Hy (z,y) and therefore
zy?

H, el
(@,9) = 1—2z—2zy’

In order to solve this recurrence we divide both sides of (4) by zH,(z,y), thus

1 H?
=242y L SLCI > H
T ( 1<j<p

Subtracting this from the analogous identity obtained for p + 1 eliminates the
summation. We find

H(z,y) Hp (z,y)
0=—2"""_ 4+ 2H,(z,y) — —2— ", 5
Hp+l(w7y) p( ) V4 may) ( )

Let Vp(z,y) = Hﬁ;(lim Dividing (5) by Hp(z,y) our recurrence can be ex-

pressed by means of Vj:
Vp+1($,y) = Vp2(x7y) - 27 p Z 27

H, (Ivy)
Ha(z,y)"
using H; (z,y) and the recurrence (4) which yields

with the initial condition Vs(z,y)

We can determine Ha(z,y) by

1—4m(y+1)+2m 2+y@+y)
r2y?

Va(z,y) =

This new recurrence can be solved by a trigonometric change of variables. We
set Va(z,y) = 2cos(¢) and generally V,(z,y) = 2cos(¢,). Since cos®(z) =
(1 + cos(2z)) holds we see that the recurrence translates into

2 cos(Pp+1) = 2c0s(2¢p).

Therefore, for p > 2, ¢pi1 = 2¢, = 2°"'¢ must hold which gives the explicit
form
Vori(@,y) = 2cos(2P7'¢), p>2,

Va(z,y) = 2cos(g) = 1_4:6(‘1’“);22; (2+y@d+y)

We can go back to Hp(z,y) by regarding

_ prl(l',y) HP*2(x7y) Hl(xay) _ Hl(xay)
Vo(z,9)Vpr(z,y) - - Va(z) = Ty By Ty ~ )




By means of the identity sin(2z) = 2sin(z) cos(z) the product on the left-hand
side collapses to sin(2P~!¢) when multiplied by sin(¢). This completes the proof.
O

Next we consider those C-tries that have a Horton-Strahler number of at least
p-

2,2

Lemma 2 Let Sy(z,y) := 3,5, Hj(2,y), £ := m, €:=+1—4k and

. 1—¢
U= C. We have

Vil —u)  u?

U 1— 2!

Sp(z,y) =y

Proof: In order to prove the lemma we use the identity sin(z) = QL (e” — e’”),
i = —1, which we insert in (2). Together with ¢ := e~ and r := 2P~! we find
t" zy?

H,(z,y) = 2isin(¢) 1—#2"1— 22 — 22y’

Now consider those parts of the representation that depend on p. Summing
them up for j > p yields

Z : trt2 :thj*1(1+2k): Z 2" (2k+1)
_ r

i>p i>p m,k>0
I #50 yog2p 1
Since the mapping (m, k) — 2™(2k + 1) is a bijection on N? — N the last sum
equals 1% . Therefore S,(z,y) = 2i sin(gb)%1 7 holds. Returning to
trigonometric functions, i.e. setting t = e~%® = cos(¢) — isin(¢) , gives us

sin(¢) cos(2P2¢) Ty?
sin(2r—2¢) 1—2z—2zy

Sp(z,y) = | —isin(¢) +

For p > 1 it is now possible to express the trigonometric functions by means of
Chebyshev polynomials. For p = 1 we run into trouble since in that case we
would refer to the %—th polynomial which does not exist. Thus, the next step
is to express Sy(z,y) by means of 1¢ instead of ¢. By applying the identity
2 cos(z) sin(z) = sin(2z) we find that

—isin(¢)zy?  cos(3¢)sin(3 ) cos(2P71¢) 221>
1 -2z —2zy sin(2P=11¢) 1—-2z—2zy

Sp(z,y) =

holds. From equation (3) we derive closed form expressions for isin(¢) and
cos(%¢) which we insert into the last representation of S,(z,y). Then, applying
the following identities for the Chebyshev polynomial of the first-kind (T}, (z))



(see e.g. [ADbSt70] 22.3.15) and the second-kind (Uy(z)) (see e.g. [AbSt70]
22.3.16)
Th(cos(¢)) = cos(ng),

_ sin((n + 1)¢)
Un(COS(¢)) - Sln(¢) ’
yield
1-22)(1 -2z -4 Top—1(R
Sp(a:,y) — _\/( l‘)( T .’L‘y) _ YLo 1(51) .
2z UQp—l,l(H)
Here & := cos(3¢) = —1=22=22 holds. Now let T(z,y) be the ordinary gen-

2zy
erating function of all C-tries. In [Neb00] the following representation can be

found:

T(e.y) = 1—29:—\/(1—225)(1—23:—4@)‘

This, together with two further identities for Chebyshev polynomials

To(x) = Up(x) — 2Up_1(x), (see e.g. [AbSt70, 22.5.6]),

Upt1(z) = 22Uy (x) — Up—1(z), (see e.g. [Kem84, (B77)]),

gives us

yUsp—1_5(R)

UQp—l,l(I% ’

for U_1(z) := 0. A closed form representation for U,(z) is given in [Kem84,

(B74)]. By fundamental algebraic manipulations this representation can be
transformed into

Sp(z,y) =T(x,y) —y +

_ x" [(1 — m)”ﬂ _ (1 + m)n-i-l]
Un(w) - QW )

Now, since 1 — &2 = 1 — 4x holds, we get

(1+VT—4r)2 =1 — (1 = /T—4r)> !
(1+vV1—4k)?" = (1—-V1—4dr)>"

We complete the proof by using the substitutions of the lemma and applying
some obvious simplifications. |
Remark: Besides the Horton-Strahler number there is another monotonic
marking of binary trees which is related to the evaluation of arithmetic ex-
pressions and the traversal. This is the so called stack-number of the tree which
was investigated in numerous papers (e.g. [BKR72], [Kem80], [Kem92], [Neb97],
[Neb99] and [Neb00]). It corresponds to the stack-size needed to traverse a tree
in preorder using the traditional algorithm (see e.g. [Knu97, pp. 319ff]) and the
number of cells on a stack needed to evaluate an arithmetic expression by means

Sp(wvy) = T(wvy) —Y- 2y\/E




of a simple traversal algorithm (see [Kem84] for details). For non-colored ex-
tended binary trees we have the following correspondence: The number of trees
with « internal nodes, with a stack-number of at most 2¥ — 1, is equal to the
number of trees with « internal nodes and a Horton-Strahler number of k (see
e.g. [Kem84] Theorem 5.8). If we inspect the generating functions of the pre-
vious lemma and of [Neb99] and [Neb00] we see that such a relation does not
exist for C-tries neither of size a nor of size («, 3).

In order to compute the average Horton-Strahler number we need a represen-
tation of the generating function M(z,y) := 3 -, pHp(z,y). It is not hard to
see that M (z,y) = >_ 5, Sp(z,y) holds. Therefore we have

M(-Tay) = y\/a(,i — U) Z 1 g qu—l
= W 3" (va(n) + D)un. (6)

Here v2(n) denotes the dyadic valuation of n, i.e. the number of positive divisors
of n which are a power of two.

Now, everything is prepared to determine an asymptotic equivalent for the aver-
age Horton-Strahler number. We use the Mellin summation method as described
in [FGD95] to evaluate the sum. For that purpose we set u = exp(—t) and apply
the well-known identity

c+ioco

1
exp(—tj) = 2—7”/ [(s)j %t *ds, i* = —1,

c—1i00

for some c in the fundamental strip of the Mellin transform of exp(—¢j) and for
I'(s) the complete gamma function. This is how it is possible to express the
number-theoretic function vs(n) by means of the Riemann Zeta function ((z)
(see [Apo76] for details). We have (see e.g. [Kem84, p. 155])

D va(n)n T = wa(20)(2n) 7 =Y (27n) T =((2)(2° - 1)
n>1 n>1 izl

and therefore with u = exp(—t)

1 c+ioco
> (va(n) + Du" = 5 C(s)2°T(s)t*(2° — 1) 'ds.
n>1 T Je—ico
Now, according to the Mellin summation formula, we have to sum the residues
of ((5)2°T'(s)t=%(2% — 1)~! left to the fundamental strip, i.e. the residues with
a real part less or equal to one. There are singularities at s = 1 and s =



—n, n € NU {0}, but we only have to consider those which are larger than
—1 since the others will only imply terms that can be neglected. There are
further singularities at s = ﬁ:{g’; =: x, k € Z\{0}, which would imply some
oscillation in the lower order terms. As the known methods for multivariate
asymptotics only allow to determine the leading term, the singularities yj will
only be considered later in the univariate case. The sum of the residues for

s =1and s = 0 is given by

2 2lIn(t) + 2y — 2In(7w) — 31n(2)
Tt 41n(2)

Here, v = 0.5772156649... denotes Eulers’s constant.

In order to approximate the coefficient of M (z,y) at zy® we are interested
in an expansion of our generating function at its dominant singularity. For
that purpose we assume y being a positive constant not equal to 0 in order to
determine the dominant singularity with respect to x, i.e. the value of z which
has the smallest modulus and which is a singular point of M (x,y). Note that
this approach leads to the restriction that our asymptotic will only be valid when
a and B grow simultaneously in a fixed proportion. By definition of M (z,y) and
properties of the Horton-Strahler number we have the following trivial bounds
for [z*|M(x,y):

[2°]T (x,y) <[] M (2,y) <logy(a+1)[z°]T(,y).

Under the assumption that y is a constant and since z = ﬁ is the dominant
singularity of T'(z,y) the O-transfer method introduced in [F1090] leads to

142y (2+4y)°

Tas

[wo‘]T(m, y) ~

Therefore the Cauchy-Hadamard formula tells us that both the minorant and
the majorant of M (z,y) have a radius of convergence of ﬁ and we infer that
571y 15 the radius of convergence of M(z,y) itself. Thus, by the theorem of

Pringsheim, we can conclude that z = ﬁ is a dominant singularity of our
generating function. It resides to prove that it is the only dominant singularity.
For that purpose we consider the representation (6) of M (z,y). Besides the
algebraic singularity at x = ﬁ implied by our substitution, the factor of
the sum is only singular for v = 0 i.e. for x = 0. This is why it does not
extend the set of dominant singularities. The sum )~ <, (v2(n) +1)u™ possesses
the minorant ), ., u™ and the majorant )" -, (n + 1)u™ both with a radius of
convergence equal to 1. Therefore the set of solutions of |u| = 1 might contribute
further dominant singularities. However, |u| = 1 has only one solution with an

appropriate modulus, namely x = ﬁ. Thus we can conclude that there is
only one dominant singularity. Since ¢ = — log (ﬁ) and e becomes 0 at our



dominant singularity we expand — log (%jrf_) about € = 0 to get t ~ 2¢ and

v/ .
thus ¢ ~ 2Y 12902;1 ;fy 2%) We conclude that for an expansion at z = ﬁ, t

complies with 27"23'(3?21"\/1 — (2 4+ 4y). On the assumption that y is constant

and for u = exp(—t), the factor W possesses the expansion yt + O(t?).
So, the most significant term of the expansion of M (z,y) around z = is

_1
X 244y
given by

] 2y(1 + 2y)
ytin(t) mmlog (1—z@2+4y)™"). (7

21n(2) 2log(2

This representation can be used to approximate the coefficients of M (z,y). We
find:

Lemma 3 Let p := § be fivzed. The coefficient of M(z,y) at z®yP is asymptot-
ically given by

200452 1o 4 1
ey

3
T s 2

o — 00.
Proof: We use the following well-known expansions

log((1 — a2 +4)) ) = 1 0 F (’,j) gkl

n>1 k>0

VIi-z@2+4y) =) <%>( 1)%";;(;)2”4’“ b

>0
Ve =3 (2)2
j>0

and extract the coefficient at 2®y” in the resulting expansion of the right-hand
side of (7). We find

Sl G D

n>1

~ J

~~

=:0(a)
By induction on « it is possible to prove the following recursion for o(a):
o(0) = 0,
200 — 3

ola) = o ola—1)+

()7
?F(g —a)l(a+ 1)1'

—:5(a)

10



This recursion can be solved by using ordinary generating functions. For A(z) :=
aso ()2 we get A(z) = zA(z) — 3 [ A(t)dt + 3 -, <(@)z®. Applying the
identity Yasi S(@)z® = 2y/1—2z(z — 1) + 2, which for instance Zeilberger’s
“fast algorithm” (see [Zei91]) finds for you, yields a simple differential equation
for A(z) which possesses the solution A(z) = —/1 — zlog(1 — 2) and thus

o(a) = [T = zlog((1 - 2) 1)

holds. By applying the O-transfer method we find the approximation o(a) ~
_ log(o) ;

Wt which proves the lemma. ‘ . . O
In order to get the average value, the coefficient given in Lemma 3 has to be
divided by the total number of C-tries of size («,5). We can proceed in the
same way as done in the previous proof in order to approximate the coefficient

[z*yP|T (x,y). Thus we factor T'(x,y) into

1—2x 1—2x

— 1—4xy(l —2x) 1
2 L =) ®
which corresponds to an expansion of T'(z,y) around the singularity y = 12=

(assuming now that x is constant). Since the leftmost term of (8) only possesses
coefficients at y° it can be neglected. Furthermore, /1 — 4zy(1 — 2z) ! can be
expanded using the binomial theorem, which yields

(0, 8) = [eyP)y/T = Trg(1 = 20) T = (B) (02} s,

Now, taking the factor —-5=% into account proves that [z2yP|T (z,y) ~ &(a, B)—
1¢(a+ 1, ). Thus we conclude that

o B N2a5+1<2ﬂ—2>< a—1 >
=y @) ~ =551 ) s pan):

Dividing the coefficient given in Lemma 3 by the previous quantity provides the
following theorem:

Theorem 1 On the assumption that all (o, B)-tries are equally likely the av-
erage Horton-Strahler number of a C-trie of size («, 8) is asymptotically given
by

4G log(a) (22 — 1)(a + 1)(a +2) (MH)

a—1
a2
8/mad/? log(2)(2 — 1)@ (1» )

P

)

p::%ﬁxed,a—)oo. a

Remark: The asymptotic given for the number of (a, 3)-tries is equal to the
exact number of C-tries of this size for & > 0. This is due to the fact that we

11



find a factorization of T'(z,y) when expanding it around its dominant singular-
ity. Thus, besides some terms at 3°, no terms were neglected when we have
developed the leading term and have extracted the coefficients.

Looking at a plot of our average Horton-Strahler number of C-tries (see the last
section of this paper) it seems to be hardly dependent on §. This impression is
justified when we use Stirling’s formula to approximate the binomial coefficient
(25 ) within our result. We find that the average Horton-Strahler number of
C-tries is asymptotically given by

o 5ts) e ()

Thus, only for very sparse C-tries, i.e. C-tries with few white leaves only, we
have an influence of 8 on the average Horton-Strahler number. But for every
fixed p and & — 0o also § tends to infinity and thus ﬁ becomes zero. Thus it
becomes possible to express the average Horton-Strahler number of («, §)-tries

on dependence of a only. We conclude this discussion by noting that

lim (a+ 1) (a+2)\/7 <2a+ 1) _1

a—00 4C¥+1a% a—1

2
holds. Thus we have the following corollary

Corollary 1 Under the assumption that the number of internal nodes o and
the number of white leaves B grow in some fixed proportion the average Horton-
Strahler number of (a, B)-tries is asymptotically given by

log(a)
21log(2)"

O

Remark: We can also conclude the result of the previous corollary by using
the multivariate Darboux-method presented in [Drm94] in order to approximate
the coefficient of the leading term in (7) and the number of C-tries of size (a, §).
In that case, because of side-conditions given by the method, p = % has to be
strictly larger that one. However, it is impossible to derive the more accurate
results presented in Lemma 3 and Theorem 1 in that way.

We will now use our generating functions to derive an asymptotic equivalent
for the average Horton-Strahler number for C-tries of size . As methodology is
much more developed for univariate generating functions it is possible to derive
results of higher precision. Note, that in the uniform model it is not possible to
derive a univariate result with respect to the number of white leaves since all
the generating functions would count infinitely many C-tries of any given size 5.

12



This is due to the fact, that the number of white leaves does not limit the num-
ber of internal nodes even if we fix the Horton-Strahler number of the C-tries
considered. Thus, we return to (6) and set y = 1 in all parts of the generating
function. It is obvious that we find the same integral as a representation of
Y n>1(v2(n) + 1)u™ as in the bivariate case since the substitution u = exp(—t)
yields the same result even if we set y to 1. But now it makes sense to consider
terms of lower significance also, because the O-transfer method for univariate
generating functions makes it possible to translate them into the right contri-
butions for the asymptotics in question. Therefore we sum the residues of the
singularities at s € {1, —n,xx}, n € NU{0}, k € Z\{0}, and multiply them by
the expansion of the factor W
2In(t) + 2y — 2In(m) — 31In(2) L) COXK) 1y 2
2+< e >t+1§ OB +0(t%). (9)

Again, we are interested in an expansion at the dominant singularity which is
m ly=1 = %. Thus we have to set ¢ = 2v/6/T — 6z in order to resubstitute
t in (9) which yields the desired expansion:

_V6yT—=6xIn((1 —62)7") N V6y/T = 62(2y — 2In(7) + In(3))

|y=1 which gives us

Tr =

21n(2) 21n(2)
+ 3 T ()1 e (1 - 62) ' + O - 6
k#£0
V61 —6xIn((1—62)"1) 61— 62(2y — 2In(7) + In(3))
= - 2In(2) + 21n(2)

2v/6 . —x
£ 28 S P ur)e SO (1 ) T 4 O(]1 — ).
In(2) s
Now we can apply the transfer formulae according to [F1090]. We have

[2"](1 = 2)% ~ T(—a) +0(n >3
and
[2")(1—2)3 In((1— 2) ") ~ — \/7% G In(n) + 2 2102g(2) -2, O(lnin) )>

which provide the following lemma:
Lemma 4 The coefficient of M (x,1) at x® is asymptotically given by
62+ (In(a) — v + 21n(2) — 2+ 2In(r) — In(3))
4-asy/mIn(2)
2 Xk

V6 —logy(6)mikpar , X 8 Xk 1 -3
+w]§r(><k)qu)e g20)mik G gy /F(7—§)+0(a )-
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O

Finally, this quantity has to be divided by the asymptotic number of a-tries
which is known (see [Neb99)) to be given by 6275 /(2y/7) + O(a%). After
numerous simplifications we find:

Theorem 2 On the assumption that all C-tries of the same size are equally
likely the average Horton-Strahler number of an a-trie is asymptotically given
by

1 4 v+2 a

~log,(=7a) — A (log, (%)) +0(a™

2 Og2(3ﬂ' Oé) 21n(2) + 08> 6 + (Oé )7

Xk = %, a — 0o. The function A(z) is a periodic function of small modulus
(A(z)| < 0.041) and possesses the following representation as a Fourier series:

AGw) = g5 2 (e = DPCw e

k0

O

Remark: Note that this is the same result as for non-colored extended binary
trees given in (1) when setting  to 2. The same effect with a different constant
can be observed for the average stack-number. In that case we have to set «
to %a in order to get the same leading term as for non-colored trees. The fact,
that there are different constants for different parameters, supports a conjecture
stated in [Neb99] which says that it seems to be impossible to conclude the
behavior of C-tries with respect to ”traversal-parameters” from the well know
results for ordinary extended binary trees (e.g. by a simple rearrangement
together with an appropriate weighting of the trees). The bound |A(z)| < 0.041

can be found by means of numerical studies.

3 Visualization and conclusions

Figure 4: The average stack-number Figure 5: The ratio of the average
(upper graph) and Horton-Strahler Horton-Strahler number and the av-
number (lower graph) on depend- erage stack-number.

ence of the number of internal nodes

a.

In this section we will provide some plots of the results presented in [Neb99],
in [Neb00] and in this paper. This is how we are going to compare the average
stack-size with the average Horton-Strahler number which are related in the
following way: If we think of applications of the Horton-Strahler number such

14



as a tree traversal or the evaluation of an arithmetic expression, the stack-
size of the corresponding tree describes the amount of space needed when we
apply a usual preorder traversal or a simple traversal strategy for evaluation.
Those methods can be optimized with respect to the amount of space needed
by easing the restriction that subtrees must be visited in a fixed order. The
space requirement of the resulting strategy is described by the Horton-Strahler
number. Therefore, we will speak of an economy of space when comparing both
parameters.

The first plot is presented in Figure 4. It shows the absolute values of the

Figure 6: A plot of the average Figure 7: The difference of the av-
Horton-Strahler number on depen- erage stack-number and the average
dence of p and g. Horton-Strahler number on depen-

dence of p and .

average stack-number and the average Horton-Strahler number. As we can see
the order of growth of both graphs is quite different. Even if the total stack-
number for C-tries of size « is small, the relative economy of space implied
by the application of the optimized algorithms related to the Horton-Strahler
number is remarkable (as we can see in Figure 5). In the bivariate setting a
similar behavior can be found. If we take a look at Figure 6 we see that the
average Horton-Strahler number for C-tries of size («, ) grows slowly and is of
small value even for sparse C-tries, i.e. for C-tries with a large internal structure
but only a few white leaves. As we would have expected from the univariate
case, Figure 7 shows that the economy of space grows the larger the (a, §)-tries
become. We can also observe that the advantage of the optimized algorithms
gets larger with p growing and not only the relative but also the total economy of
space get large when the C-tries become sparse. For example on the assumption
of p = 8 the total economy of space is about 60 for («, 3)-tries with only 20
white leaves.

Acknowledgements: The author would like to thank the anonymous referees
for their comments and criticism which helped to improve the quality of the
paper. I am also indebted to one of the referees for suggesting the notions
a-trie and (q, 3)-trie respectively.
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