On the Power of Subroutines for Finite State

Machines

Markus E. Nebel
Johann Wolfgang Goethe-Universitat, Frankfurt

Fachbereich Informatik

D-60054 Frankfurt am Main
Germany

Abstract

In this paper we extend the finite state machines by a subroutine concept. Two
implementations are considered. The first implementation yields a new class of
languages which is a subclass of the context-free languages. The second one leads
to an alternative automata-model for the context-free languages. Besides the gen-
erative capacity other properties like determinism, reversal languages, etc. are also
studied. We prove that determinism for the second implementation is equivalent
to the notion of LL(1)-languages. The motivation for those observations comes
from a description language for plot data called DPF which is used in practice
and which possesses simple non-regular constructions only.

Keywords: automata-theory, deterministic parsing, formal languages.

1 Introduction

The generative capacity of finite state machines or alternatively regular
expressions, i.e. right-linear grammars, suffices only for a few examples
of the application of formal languages. We often need the possibility to
express couplings between different parts of a word, e.g. in programming
languages where the start of a loop has to be terminated somewhere later
in the program. One possibility to obtain such a coupling is to think
of a finite state machine with a subroutine concept. In this paper two
models are considered on how to extend a normal finite state machine by
a subroutine concept.

e The weak model: Here, the finite state machine is extended by a
stack on which return-addresses (i.e. states) may be stored. There
is no real call command for the subroutine-call. After pushing the
return address one has to use a normal transition to give the control
to the subroutine (see section 3).

e The strong model: Here, the weak model is extended by a real call
command (see section 4).

In both concepts a final state may by interpreted as a signal to return, i.e.
to continue the computation with the state on top of the stack.
Immediately the question arises: What generative capacity do both models
imply? In the following sections we will answer this question.

2 Basic Definitions

In this section we give a brief presentation of some basic concepts regard-
ing formal grammars and automata. For details, the reader is referred to
[3] and [5]. A context-free grammar (CFG) is a four-tuple G = (I, T, P, S)
where I and T are finite disjoint sets of nonterminals and terminals, re-
spectively; S € I is the aziom and P is a finite subset of I x (I UT)*,
the set of productions. For (A,v) € P we write A — 7. For f being the
name of A — v we write f : A = . Arule A — B, A, B € I is called
unit production. The length of a word w is denoted by |w|, the number of
symbols a in w is represented by |w|,. The word of length 0 (the empty
word) is denoted by e. If w can be factorized into wjwows, then wy (resp.
wo; wg) is called a prefiz (resp. infiz; suffix) of w; a prefix wy (resp. infix
wo; suffix wg) is proper if wows # € (resp. wy # € and w3 # €; wiwy # €).
For any set A and a natural number k£ we use A, as an abbreviation for
AU {e}, by ASF we denote A*\A*AFFL. A° denotes the set {¢}. For
A € A we use ASF as an abbreviation for {A}<F. A context-free grammar
G = (I,T,P,S) is called right-linear (resp. left-linear) if P C I x T*I,
(resp. P C I x I.T*) holds. G is called e-free if either P C I x (IUT)" or
if there is exactly one production S — ¢ with the right-hand side € and S
does not appear on the right-hand side of any production in P. The rela-
tion =C (IUT)* x (IUT)* is defined as follows. For any o, 8 € (IUT)*,
a = fif and only if a = a1Aas, 6 = ayyas and A — v € P. If
a1 € T* we write g B. In the usual way we denote the transitive and
the reflexive-transitive closure of = by =71 and =*, respectively; the

same can be done for 2%, We write a =+ B (x Ly B) if there is a
sequence o, o1, ..., o of k4 1 strings such that o = g, ;1 = o
(i1 Lm, a;) for 1 <1i <k and oy = . This sequence of strings is called
a derivation of length k of B from a. A string z € (I UT)* is said to be
a sentential form if S =* z. The set L(G) = {x € T* | § =" z} is
said to be the language generated by G; the set of all languages that can
be generated by a context-free grammar is denoted by CFL. Two gram-
mars are called equivalent if they generate the same language. A formal
language L is called e-free if ¢ ¢ L. The transpose-operator .” is defined by
(za)7 := a(z7) for x € T* and a € T. For any language £ we use L7 as an
abbreviation for {w” | w € L}. A set M of languages is said to be closed
under the transpose operation if and only if £ € M implies £7 € M. A

CFQ@ is called reduced if and only if P =) or S =—=* a1 Aas and A —=* «
for all A € TUT and some «aj,a0 € (IUT)*, a € T*. Tt is called LL(k)
[1] for some fixed integer k, if whenever there are two leftmost derivations

Im * ! Im_* Im_* ! Im *
S = wAa = wfa = wz and § = wAx = wya = wy such

that FIRST,(z) = FIRST(y) it follows that S = «. Here, FIRST(v) :=
(zeT | (022 zyAlz|=k)V (022 zA|z| <k)} forany v € (TUT)*.

A finite automaton is a five-tuple A = (Z, %, 0, 29, F') where
1. Z is a finite set of states;
2. X is a finite set of input-symbols;
3. 0 C(Z x X.) x Z, is the state transition relation;
4. 2y € Z is the initial state;
5. F C Z is the set of final states.

Note, that § can be a partial relation so that the finite automaton is in-
completely specified. As usual, a finite automaton is called deterministic if
|0(z,a)] <1 for all (z,a) € Z X X, and if §(z,e) # 0 implies that for all
a € ¥ we have §(z,a) =), z € Z. For the sake of convenience, the natural
extension ¢ of § to a relation from Z x £* to Z is also denoted by d. The
language recognized by A is defined by L(A) = {w € ¥* | 6(z0, w) N F # 0}.
A triple (z,a,2") is called a-transition if 2’ € 6(z,a) holds.

We will now give the definitions for the weak model of a finite automaton
with a subroutine concept.

3 The Weak Model

This section introduces the weak model of a finite automaton with sub-
routines. We will consider both, the notion of grammars and the notion of
automata.

Definition 1 A finite state machine of degree k is a five-tuple
A= (Z,T,6 2, F) with

e 7 is a finite set of states;
e T is the input alphabet;
¢ VC(ZXT,) x(Zx][0:k—1]);
® 2y € Z is the initial state and
o F C Z is the set of all final states.
The set of all finite state machines A of degree k is denoted by FSM (k).

Note, that A € FSM (1) is nothing else but a finite automaton as defined
in Section 2. Before we comment on this definition in detail we introduce
a formal description of the computation performed by an automaton in

FSM(k).

Definition 2 Let A = (Z,T,6, 2, F) be in FSM (k). A triple (z,w,s) €
Z x T* x Z* is called configuration. The triple (z9,w,e) is called start-
configuration with input w. A triple (z,¢,¢) is called end-configuration if
zeF.

The first component of a configuration is the actual state. The second
component contains the input which has not been read yet and the third
component represents a stack of states (with the top of the stack to the
right).

Definition 3 Let A = (Z,T,6,z20,F) be in FSM(k). A move of A is
represented by the relation =C (ZxT*x Z*)? with (z,av,s) F (2',v,5"), a €
T. if and only if

((z,a),(Z',7)) €0 and s' = s(2')’

or
a=c¢,5=52 and z € F.

A move with respect to the first alternative is called a-transition, a move
corresponding to the second one will be called pop-operation.

Thus an automaton in FSM (k) is an ordinary finite state machine with
a stack on which states can be stored. For every transition it is possible
to store the state just reached at most & — 1 times on this stack. If a
final state is reached the computation can be continued with the state
on top of the stack. We say that state 2’ can be reached from state z if
(z,a,B) F* (2, , B') for some «,c, 3,

Now we are able to define the set of words accepted by an automaton in
FSM(k).

Definition 4 Let A = (Z,T,0,29,F) be in FSM(k). The set L(A) :=
{w e T* | (20,w,€) F* (z,e,6) Nz € F'} is called the language accepted by
A.

Compared with the ordinary finite state machine the notion of determinism
is more complicated in our case. We have a nondeterministic alternative if
state z is on the stack, all states that were pushed after z and that are still
on the stack are final states, an a-transition (or an e-transition) for z exists
and we reach a final state 2’ for which an a-transition is defined. Then there
are two possibilities for reading a (or we do not know if we should take the
e-transition) since the automaton can use a chain of returns in order to go
to state z. Together with the ordinary conditions for being deterministic
we get:

Definition 5 Let A be in FSM(k). A is said to be deterministic if the
following conditions hold:

o (V(g,a) € Z xT¢) : (((q,a),(¢',3)) € 0 A((q,a),(¢",5)) €0~ ¢ =
q"Ni=j);

Figure 1: An automaton in F'SM(2) which accepts a simple programming lan-
guage.

e ((¢,2),(¢',i)) €d~ (=F(a,q",j) ET X Zx[0:k—1]):
(((g,a),(d", 7)) € 6);

o YweT* a,beT., 2,2 € Z, 5,8 €Z* : ((20,w,e) F* (¢, e,8'28) ~
2 EFNsgF*Vi(Z,a)=0Viz,b)=0V(a#bNaF#eAb#e)).

Here §(z,a), a € T:, is used to denote all possible a-transitions for state z.

Note, that the third condition of this definition is decidable. Let us have a
look at an example. The automaton A = (Z,T, 4, 29, F') with Z = {1, 2, 3},
T = {begin, loop, end}, zp = 1, F = {3} and 6 = {((1, begin), (2,0)),
((2,100p), (2,1)), ((2,end),(3,0))} is in FSM(2). The automaton A is
deterministic, a graphical representation can be found in Figure 1. The
language accepted by A is the set of all programs which have a body (begin
end) and arbitrary many (possibly involved) loop-statements which have
a loop-token at their beginning and which are also terminated by end.
For w = begin loop loop end end end as input, A’s computation starts
with the configuration (1, w,e). We only have one begin-transition. Thus

(1, begin loop loop end end end, ¢) - (2,loop loop end end end,¢).

The remaining input begins with two loop-symbols which have to be
processed by the transition ((2,loop), (2,1)). We get

(2,10op loop end end end, ¢) F? (2,end end end, 2 - 2).

To process the following end we use the transition ((2,end),(3,0)) to
switch to state 3. Since state 3 has no outgoing transition, the only possi-
bility to continue the computation is to use the state on top of the stack in
order to return to state 2 (which is possible, because state 3 is an accept-
ing state). In this way we get (2,end end end,2 -2) -2 (2,end end,?2).
The same has to be done for the next input symbol: (2,end end,2) -2
(2,end,e). Again, there is no alternative. Since we only have one end-
transition, the automaton has to proceed the move (2,end,¢) - (3,¢,¢)
and the input is accepted.

Note, that a further transition, e.g. ((2, while), (2,1)) accompanied by the
corresponding change of the alphabet T', might be used in order to enlarge
the set of supported control-statements.

Definition 6 Let G = (I,T,P,S) be a context-free grammar. G is said
to be k-right-linear (or alternatively a right-linear grammar of degree k) if
P CIXT"Jper A=k The set of all k-right-linear grammars is denoted
by RLIN (k).

The motivation for this definition is the following relation between right-
linear grammars and finite automata: Both have the same generative ca-
pacity and we know how to translate a right-linear grammar into an equiv-
alent finite automaton, i.e. into an automaton that accepts the language
generated by the grammar. A production A — vB within the grammar is
translated into a transition' from state A to state B by reading v. With
respect to the notion of subroutines the duplication of the nonterminal
on the right-hand side of a right-linear production rule corresponds to the
storage of the actual state for a later return (assuming a call to be imple-
mented as a normal transition from the state just reached to the target of
the jump).

The definition of the class of k-left-linear grammars LLIN (k) is straight-
forward.

By RREG (k) we denote the set of all languages that can be generated by
a grammar out of RLIN (k) (analogously LREG(k) for LLIN (k)). Re-
call that RLIN(1) resembles the right-linear grammars as introduced in
Section 2. Thus RREG(1) is equal to the set of all regular languages
REG. Since REG is closed under the transpose operation we also have
RREG(1) = LREG(1). We define REG(k) := RREG(k) U LREG(k)
which is closed under the transpose operator by definition.

3.1 Fundamental Results

In this section the class F.'SM (k) is investigated in detail. We will consider
the generative capacity as well as other properties like the closure under
the transpose operation.

Theorem 1 RLIN(k) = LLIN(k)”, RLIN (k)7 = LLIN(k), k € N.

Proof: The proof is a trivial consequence of the application of the usual
method for reversing the language generated by a grammar. With this
method, simply the right-hand side of any production rule is transposed.
Thus, in our case, a grammar in RLIN (k) becomes a grammar in LLIN (k)
and vice versa.

Theorem 2 For every grammar G = (I, T, P,S) in RLIN(k) there is an
automaton A in FSM (k) with L(G) = L(A) and vice versa.

Proof: "m:” We assume P to fulfil P C I x T, Upe, B=F which is no
restriction as we will see. Consider the rule C — ajap---anB7, a; € T,
1 <4< m,j5 <k We just have to replace this rule by the set of rules
C = a1Hy, Hy, = a;41Hip1, 1 <i<m—2,and H,_; — apBJ. There,
the H;, 1 <1i < m—1, are new nonterminals. In order to prove the theorem
define A = (Z,T, 0,2y, F) as follows:

INote, that if v consists of more than one nonterminal then the production has to be trans-
lated into a chain of transitions.

Z :=1U{z},
e z5:= 5,
F:={z}U{z€Z|z—¢eecP},

§:={((z,a),(2,9) | z = az'T' € Pya € T., 7t #£ e} U
{((#,a), (#¢,0)) | 2z > a€ P,a€T}.

k
It suffices to prove that, if S = ag 7 o = wy, w e T* ~ € I* is
a leftmost derivation in G, then for A the relation (zo,w,e) F* (z,¢,7),
2vyT =+, holds. We prove this by induction on k.

0
k = 0: We have S 22 S and (z0,,€) FV (20,¢,¢).
k
k~k+1: ConsiderS:aol% akl%akJrl:w'y,wET*,'yEI*. By
k

hypothesis there are w’ € T* and 7 € I'* such that ay 7 o = w'y" and
(z0,w',€) F* (2,¢,7) with 27 = o'. But since w = w'a for a € T. also
(z0,w,€) F* (2,a,7%) holds. We have to distinguish between two cases.

1. case: qi LN a1 corresponds to the application of an e-production.
In that case a; = wzy holds and by construction z is a final state. But
then (z,¢,7) F (2,¢,7) with ¥ = 72 by popping. Now 277 = +' implies
24T =~ as desired.

2. case: a; Am a1 corresponds to the application of production f : z —
az', az' # . If i > 0 we have a transition ((z,a), (2,i — 1)) for A and thus
(z,a,%) F (%,¢,72"!) while the application of f implies o1 = w'az'y7 .
If i = 0 then we have the transition ((z, a), (ze,0)) for z, € F' which implies
(Z’ a,’?) - (Zea €, ’7) - (Zta €, f?) with Y= f?zt'

In both cases we have the correspondence of sentential form and configu-
ration as claimed.

"\ Define G = (I, T, P, S) as follows:
o« [:=7,
o §:= 2,
e P:={B—aC’|((B,a),(C,j—1)) €5}U{B —¢|B€F}.

An analogous induction yields the theorem.
Figure 2 shows an example of a grammar with its corresponding au-
tomaton.

Figure 2: Example of a grammar and its corresponding automaton.

Remark 1 Note, that the automaton is not constrained to return to the
state on top of its stack if a final state is reached. It also has the pos-
sibility to leave a final state by means of a usual transition (if specified)

without popping a state from the stack. In order to obtain the above cor-
respondence between grammars and automata it is not possible to use a
more restrictive automata-model in which the control must return to the
state on top of the stack every time the automaton reaches a final state.
To simulate that restrictive model by a grammar, we would have to re-
strict the application of some productions in dependence on the number
of nonterminals in the actual sentential form as follows: If the stack is not
empty, i.e. we have more than one nonterminal in the sentential form, then
only the e-production which simulates the return may be applied. If the
stack is empty all productions with the corresponding nonterminal on the
left-hand side may be applied.

Before we prove a pumping-lemma, we introduce a normal form which
sometimes makes it easier to show our statements.

Lemma 1 (normal form) Let G = (I,T,P,S) € RLIN (k). Then there
is an equivalent grammar G' = (I',T', P',S") € RLIN (k) with P' C I' x
UBEI’ ng Ul x T*Ig

Proof: The only production rules in P that do not fit into this normal
form are those in P := I x Tt\J per B. If f: A — vBJ € Pis in

2<i<k
P we introduce a new nonterminal H and split f into two productions

fi:A— vH and fy : H— B7 which obviously simulate f. In this way all
productions in P that do belong to P can be eliminated.

Lemma 2 For every right-linear grammar of degree k there is an equiva-
lent grammar in RLIN (k) which is e-free and does not contain any unit
production.

Proof: The well-known construction [1, Algorithm 2.10] which generates
an e-free production system for context-free grammars can be applied.
Since this construction only erases nonterminals on the right-hand side of
the production rules, it cannot happen that the number of nonterminals
becomes larger than k£ or that we get different nonterminals on the right-
hand side of any rule. Thus, the restrictions for RLIN (k) remain fulfilled.
Afterwards, it is possible to erase unit-productions by applying [1, Algo-
rithm 2.11]. Since this algorithm only changes the left-hand sides of the
productions the grammar remains e-free and the restrictions for RLIN (k)
remain fulfilled.

No e-rules and no unit productions are generated if we apply our con-
struction for the normal form of Lemma 1. Thus we can always assume a
grammar in RREG (k) to be e-free, to be in normal form and to have no
unit productions.

Lemma 3 For every A € FSM(k), A= (Z,%,0,20,F), there is a m € N
with

(Yw € L(A), |w| > m) : ((z0,w,€) F* (z,u,8) FT (2,v,s5'), s € Z*),

8

Figure 3: Maximal path without backward transitions.

i.e. we have a cycle with either constant or growing stacksize and the con-
tents of the stack which is present at the beginning of the cycle is not
affected while processing the cycle.

Proof: We assume that every state of A can be reached from state zg since
otherwise it could be deleted without changing the language accepted by
A. Now, consider the longest path P in the transition graph of A from
zp to any other state such that P has no loops. Let zp,21,...,2041 be
the sequence of states on P and let ((z;,a;), (zi+1,pi)), 0 < i < £, be the
transitions represented by the edges on that path. Our goal is to find the
longest possible computation which uses transitions of P only. Thus we
assume that zp;1 is the only accepting state of P since every computation
that uses state z;, j < £+ 1, in order to return to the state z; on top
of the stack could be lengthened by using the transitions which connect
zj and zg4; on P first and then returning to z, by means of z,;. If we
assume that p; = 0, 0 < i < £, then (2o, agar---ap,€) F¢ (2p41,6,€) is
the longest possible computation if we only use the states and transitions
of P. We can process a longer input-string by assuming that some of
the p;’s are > 0. Further it is obvious that the larger a p; becomes, the
longer the possible computation gets. The same observation holds for the
number of p;’s that are greater than 0. Thus a path P that maximizes
the length of a possible computation looks like the one shown in Figure
3. Note, that it makes no sense to assume p, > 0 since this would imply
(2e41,0,52)11) FPL (ze41,v, 5) i.e. py times a return from state z,; to state
zpy1 without processing any symbol. In the case of Figure 3, for suitable

choices of w, wy and wy, (2o, w,) FH! (zppy, wy, 28 t2E 7L kL) 2061

(2, wo, 28712571 zéf__ll) F3 (241, wo, 221257 --zéf__fzf_l) Fooo b (2041, €).
If we count the number of symbols a;, 0 < ¢ < ¢, that could be read during
this computation?, this number follows the well-known Horner scheme in
the variable k. Thus the maximal length of a word that could be processed
by a computation using transitions of P only is given by Y gc;cp k' =
klktll_l =: m. Since P is maximal with respect to its length, any word that
is longer than m can only be accepted if there is a transition ((za, ¢), (23, p))
with a > £. Tt is not hard to see that such a transition always implies a

cycle with the required properties.

Remark 2

e [f we consider grammars, Lemma 3 says that we cannot derive a word
w of arbitrary length without the repetition of at least one nonterminal
in the sentential forms for the production of w.

2This number is equal to the number of moves applied within the corresponding computation
that do not represent a return to a state on top of the stack.

Figure 4: Derivation Tree T'.

+1

e By I’Hopital’s rule limy_, kk_l L — ¢+ 1 which equals the case of the
usual finite state machine.

We now give a pumping-lemma, for the languages of RREG (k).

Theorem 3 (Pumping-Lemma) Let L € RREG(k). A constant m €
N ezists such that for any z € L with |z| > m and with at least m posi-
tions of z marked, there is a decomposition z = uwvwzy with the following
properties:

a) at least one position of w is marked,
b) either both uw and v or both x and y have marked positions,
¢) vwz has at most m positions marked,
d FNel: kAT, jeNy,i+j+1=1) with
—ifl=1thenz =¢ and (Vp € Ny) : (2/ = wwPwy € L).
—if I > 1 then v,z can be factorized into v = vpV1Vy - - V;Ve,
Vhve € T*, v, € TT, 1 < v < 4, and ¥ = Tz 122 - T;Te,
Ty, e € T*, 1, € TT, 1 < pu <3, such that
(Vp € Ny) : (¢ = upy € L for an infirp € v, where ¥, =
UbCflxe, 0<n<p, v={w} and

Cp = U0§a<nv66amb U{vi,ve,...,0;,21,22,...,2;5}.

Proof: We may assume that L is generated by a grammar in RREG(k),
which is e-free. Further, since every grammar in RREG (k) is context-free,
Ogden’s Lemma (see [1]) implies the existence of a constant m € N with:

i) For any z € L with |z| > m and with at least m positions of z marked
there is a factorization z = uvwzy with the properties a), b) and c)
of our theorem; and

ii) a nonterminal A exists such that § =1 vdy —T wAlAzy =7
.o =T yvlwz'y for all integers 4 including 0.

Thus, we only have to prove statement d). The proof of Ogden’s Lemma is
based on the construction of a path in the derivation tree T" of a sufficiently
large word z as shown in Figure 4. By constructing the path in dependence
on the marked positions one can prove the statements above. Let P denote
the set of all productions applied within uAy =" uvAzy and let IP; denote
the subset of IP which consists of all productions with ¢ nonterminals on the
right-hand side. Since we consider a grammar in RREG(k), all productions
in P must be out of I x T* Jge; BS* and there is a maximum [€ [1 : k]
for which P; = (), 4 > [holds. We isolate one production in P, say

10

f : C — o'B', as shown in Figure 4. One of the B’s, say the (i 4 1)-
th, must be used to derive the second appearance of A. Thus, we have
B =1 v,Azy. The first up to the i-th B are together responsible for
the derivation of the rest of v, i.e. v1vo - --v;. Thus v has a decomposition
v = vpU1V1 - - - ViV, and since G is assumed to be e-free none of the v, is
empty, 1 <v <i. Therest of z, i.e. 122 - - x;, is derived from the (i 4 2)-
th B and all those to the right of it. Thus, * = zyz122--- zjT., Where
1 4+ 7 + 1 must be equal to the number of B’s in the right-hand side of
production f. Again, the fact that G is e-free guarantees the existence
of all the z,. Note, that if [= 1 also z;, = z, = € since we assume [to
be maximal and thus, it is not possible to generate z; and z.. If we set
[:= 1+ j+ 1, these derivations imply the following set of equations (see
[5] for details)

A=uB'z, +w, B=vAzy+vi +vo+...+vi+x1+30+... +aj. (1)

If we now solve the set of equations (1) we obtain the statement of the
lemma.

Remark 3

e In the case k = 1 our pumping-lemma leads to the well-known pumping-
lemma for reqular languages since | must be 1 and therefore only the
first case of statement d) applies.

e For k > 1 we have a refinement of the context-free pumping-lemma
where we can conclude that z' = u(vpvy - - - vive)Tw(zpzy - - - TjT)Y
is in the language for any q € Ny. But this is only one possibility
for 2" = upy in statement d) of our pumping-lemma. Thus, we have
to expect that a grammar in RLIN (k) cannot generate certain de-
pendences within a language that can be generated by a context-free
grammar. Therefore, we have to presume that RLIN (k) is a proper
subset of CFL.

The last general result is an interchange lemma which, as the pumping-
lemma, can be used to prove that certain languages do not belong to
RREG(k).

Lemma 4 (Interchange Lemma) Let L be a language in RREG (k).
Either L € REG or there is a w € L which can be factorized into w =
TYyiy2-Yn, ¢ € T, y; € TT, 1 < j < n, 2 < n <k, such that
TYi Yio = Yin» 4 €{1,2,...,n}, 1 <j <mn,isin L, too.

Proof: We can assume that L is generated by a grammar G € RLIN (k)
which is e-free, does not have unit productions and is in normal form. If
L ¢ REG then there is at least one word w € L which needs the application
of at least one production of the form A — B", 2 < n < k. Let f be the
first of these in a derivation of w, i.e. S =* A =/ zB"™ where within

11

S =* £ A only right-linear production rules are applied and thus =z € T*.
Now each of the B’s has to generate at least one terminal symbol (G is

+
assumed to be e-free), ie. B LN vi, yi € T, 1 < i < n, and thus

Im * im T+)
S = zB" = zy1y>---y, = w. Further, each of the B’s might be
used to derive any of the y;, 1 <14 < n, which proves the lemma.

Corollary 1 Let T be an alphabet, L CT* and$ ¢ T. L-{$} € RREG(k),
k> 1, if and only if L € REG.

Proof: ”~:”Assume L ¢ REG which obviously implies L - {$} ¢ REG.
By the interchange lemma we can conclude that there is a w € L-{$} which
can be factorized into w = zy1ys - - - yn, n > 2, such that any permutation
of the y;’s yields a word in L-{$} again. But then, e.g. © = zy,y1y2 - - - Yn—1
is a word in L-{$} which is a contradiction since it is impossible that sym-
bol § is in any other position than the last one.

"I L € REG we know that there is a left-linear grammar G =
(I,T,P,S) € LLIN(1) with £(G) = L. We can construct a left-linear
G’ for L$ by introducing a new axiom S’ together with the production
S’ — S$. Thus, L - {$} € REG = RREG(1).

3.2 Results on the Hierarchy
First, we show that REG C REG(k), k > 2, by giving an example.
Theorem 4 REG C REG(k) for all k > 2.

Proof: Consider the language L := {w € {a,b}" | |w|s = |w|p — 1 A
|v|q > |v|p for all proper prefixes v of w}. L is generated by the grammar
S — aSS, S — b which is RLIN (k) for all £ > 2. It is obvious how to
apply the pumping-lemma for regular languages to prove that this language
is not regular, e.g. by considering the word a™o"*! € L.

Theorem 5 RREG (k) # RREG(K)T for every k > 2.

Proof: Let T be an alphabet, $ ¢ T, and let L C T* be a non-regular
language in RREG(k), k > 2. Obviously, L € RREG (k) implies {$} - L €
RREG (k). Now assume that RREG (k) = RREG(k)7. Then L7 - {$} €
RREG (k) and by Corollary 1 we have L7 € REG which is in contradiction
to our assumptions.

Remark 4 One example for a language that fits the assumptions of the
previous proof is generated by the set of productions {S — $4, A —
aA¥, A — b}. Even if this language is very similar to the language £ gen-
erated by P = {S — aSS, S — b}, the transposition of L is in RREG(2).
It is generated by P = {S — bA, A - bB, A — ¢, B — aA, B — bBB}.

A slight modification of the grammar used in the proof of Theorem 4 shows
that REG(2) contains some well-known context-free languages.

12

Theorem 6 The grammar G = ({S, X},{(,)}, {5 = (X, X = (XX, X —
)S, S — €},S) is in RLIN(2) and generates the semi Dyck-language with
one type of brackets. O

This result shows that the possibility to store the actual state for a later
return is very powerful. But it is not sufficient to get the whole set of
context-free languages as we will learn by the following theorem.

Theorem 7 The context-free language L = {a"b™ | n € N} is not in
RREG(k) for all k.

Proof: This proof is an example for the usage of the above pumping-
lemma. For a given constant m we choose the word z = a™b™
L and we assume all positions to be marked. The pumping-lemma tells us
that for any factorization of z = uvwzy according to the items a) to c),
also 2/ = uwy € L; hence vz = a%b?, ¢ > 1, must hold because any other
choice for vz would force an odd reduction of the number of a’s and the
number of b’s.
1. case: [=1,ie. v =uvyv,, T = €.
For | = 1 we may choose any p € v'w, i > 0. = = ¢ implies v = a?b?,
¢ > 1, from which w € b™ follows since we can choose p = a?b?w. We now
come to a contradiction by choosing 2’ = uvvwy.
2.case: [>2,ie.2>00rj5>0.
We set p = 2 and choose p = vy (vevwzxy)'z, Which is a valid choice since
vy (vevwzay)'ze € vy(veti1my) e C VyChe = U, holds. From vz = a®b¥,
@ > 1, we conclude that v must start with at least one ¢ and that z must
end with at least one b. We get a contradiction because our pumping-
lemma tells us that upy € L but z (in the first occurrence of vwz) is
followed by v (in second occurrence of vwz) and thus at least one b is
followed by at least one a.

We now consider the question of how the value of k affects the genera-
tive capacity of RLIN (k).

which is in

Theorem 8 If the language L is in RREG(k) then L is in RREG(I) with
[:=max{j | j is a prime factor of i, 1 =1,2,...,k}.

Proof: The fact L € RREG(k) implies the existence of a grammar G
which generates L and all productions are of the form A — wB<F w €
T*, A, B € I. Consider a production f : A — wBJ and let j have the prime
decomposition j = []<;<, p;*, where p; is a prime number and a; > 0,
1 < i < r. Without loss of generality let p, be the largest of all factors.
We are now able to simulate A — wB’ by using the following productions:

p1 p1 P1 P2
A — le,l’ X171 — X1,2’ Ceey X17a1_1 — Xl,a1’ Xl,a1 — X2’1, X271 —
D2 P2 p3
X2,27 s 7X2,a271 - X2,a27X2,a2 — X3,17 s 7Xr,ar71 - X’II‘),ZT7 Xr,ar -

B. The X;;,1 < j < a1 <14 < r, are new nonterminals. By this
construction the largest factor p, determines the degree of the production
system which is needed to simulate f. But p, cannot be larger than the

13

Figure 5: Two different parts of the derivation tree 7.

maximal prime factor of all the numbers 1,2,...,k, which completes the
proof.

This theorem implies that if we have any hierarchy in k for RREG (k)
then it is a hierarchy with respect to the prime numbers.

Lemma 5 Let L C (T* U {$})"T*, n € N, be a language in RREG (k)
for some k > 1. Then Pf(L) := {u € T* | u$v € L for some v} € REG.

Proof: Let us assume that £(G) = L for G = (I,T,P,S) € RREG(k)
and Pf(L) ¢ REG. Let us further assume that for all u € Pf(L) there
is no production f : A — yB* € P, i > 2, such that the second B
on the right-hand side of f or any B to the right of it derive a part of
u within a derivation tree 7 for a corresponding u$v € L(G). The last
assumption implies that it is possible to construct a right-linear grammar
that generates Pf(L) out of G in the following way: For each A — yB' € P
we take the production A — yB® with A = 1 if there is a u € Pf(L) and

Im,

*)
a derivation of u$v € L from S such that S =% zAa 2% ryB'a =

zywB o l%* u$v for zyw a prefix of u or w = wiSwsy, wy # €, and
zywy a prefix of u; we choose A = 0 otherwise. Obviously, the resulting
grammar is in RREG(1) and if we change in a second step each production
A — a$p into A — « the result is a right-linear grammar for Pf(L) which
is in contradiction to the assumption that Pf(L) ¢ REG.

Thus we can conclude that for at least one v € Pf(L) there is a production
f: A — yB® with ¢ > 2 and the first two B’s of B’ both derive a part of
u in a derivation tree 7 for a corresponding u$v € L with respect to G.
Now let g be the production of 7 which generates the leftmost symbol $.
We have to distinguish between three cases:

1. case: Within 7 the production g is a successor of production f (this
case corresponds to the situation in the left derivation tree shown in Figure
5). Then g must be the successor of the second B of the right-hand side
of f or any B right to it as otherwise only one of the B’s would contribute
to u. But then we could substitute the derivation tree rooted at B that
generates $ by that one which derives a part of u. In that way we would
get a word in L with a different number of $’s in contradiction to our
assumption.

2. case: Within 7 the production f is a successor of production g (this
case corresponds to the right derivation tree shown in Figure 5). But as
each successor of g can only be responsible for symbols right to $, this is
impossible.

3. case: Both, f and g, have a common predecessor. In that case this
predecessor must have at least two identical nonterminals on its right-hand

14

side, one of which generates f while the other one produces g. By replacing
the related subtrees of 7 one by the other we could generate a word with
a different number of $’s again.

Theorem 9 Let Pr(i) denote the i-th prime number and for an alphabet
T U{$} let L CT*. Then for all i > 1

($L)Fr0+) ¢ RREG(Pr(i)) ++ L € REG.

Proof: " \:” Obviously for L € REG we have $L € REG and since every
finite power of a regular language is regular itself we have ($L)F70+1) ¢
REG C RREG(Pr(1)) for arbitrary ¢ > 1.

"M:” To prove this implication assume the existence of a grammar G =
(I,T,P,S) € RLIN(Pr(i)) that generates ($L)"70+1) for I, ¢ REG. We
may assume that G has no unit productions and is e-free. We further
assume without loss of generality that no production of G possesses more
than one § on its right-hand side. Now assume that PN ({S} x (IUT)*) =
{S = 8oyDJ' | 1 <1 < n}, ie. all productions for the axiom generate the
first $. Note, that all the j;’s have to be greater than 0 since every word in
L(G) possesses more than one $ for every possible i. As we can replace all
the derivation trees rooted at D; one by the other, all possible derivation
trees rooted at D; must produce the same fixed, nonzero number of §’s.
Otherwise we could change the number of $’s generated and thus produce
a word not in ($L)F7(+1). Thus, for any value of j;, the language L(D;)
generated by the grammar (I,T, P, D;) fulfils the restrictions of Lemma 5
which implies Pf(L(D;)) € REG. But now, as L = U <;<,{oq}-Pf(L(Dy)),
we conclude that L € REG contrary to our assumptions. Thus we know
that there must be a production for S with only nonterminals on its right-
hand side i.e. S — DJ € P, for at least one j € [2 : Pr(i)] holds. Again,
all the D’s must produce the same fixed, nonzero number of $’s. But as
we have to produce Pr(i + 1) $’s and none of the integers in [2 : Pr(i)] is
a divisor of Pr(i + 1) this is impossible.

Corollary 2 Let Pr(i) denote the i-th prime number. Then we have the
following hierarchy:

RREG(Pr(i)) C RREG(Pr(i + 1)), i > 1.

Proof: This is a trivial consequence of Theorem 9 since L € REG ~»
($L)Pr+D) ¢ RREG(Pr(i)). But for any G = (I, T, P,S) € RLIN (Pr(i+
1)) the grammar (I U {Sy,S:},T,P U {S; — SE™0+D g, 5 $51,8))
generates ($L(G))P7(+1) | Since we have nonregular languages in RREG(2)
(and thus in any RREG(Pr(i + 1)), i > 1), e.g. the semi-Dyck-language
with one type of brackets, this implies a proper inclusion.

15

3.3 Recognizing Languages in RREG(k)

Recognizing a language in RREG (k) is simple if it is accepted by a deter-
ministic #'SM(k), because such an automaton can be directly translated
into a corresponding algorithm within an arbitrary programming language.
But there is no deterministic automaton for every language in RREG (k)
which will be shown in the next theorem. In such cases the recognition
process is more complicated and needs further investigations.

Theorem 10 For every k, k > 2, there are languages in RREG(k) that
cannot be accepted by a deterministic automaton in FSM (k') for arbitrary
K.

Proof: We will construct a language L € RREG(k), k > 2, such that the
assumption that L can be accepted by a deterministic automaton leads to
a contradiction. For this purpose we use the language used in the proof
of Theorem 4 which we denote by Li. Lo is defined as {w € {a,b}" |
2w|, = |wlp — 2 A 2|v]g > |v|p for all prefixes v of w}. This language is
generated by the grammar S — aS5S5, S — bb. Renaming the axioms of
both grammars, say S; and S, and constructing a new set of productions
P=PUPU {S — 51,858 — SQ} shows that L := L U Ly is RLIN(Q).
Thus, L € RLIN(k), k > 2. Now we assume L to be deterministic, i.e.
we have a deterministic automaton A = (Z, {a, b}, d, 20, F) in FSM(K'), k'
arbitrary, which accepts L. Since abb € L; there must be a z,, € F with
(20,abb,€) T (2m,€,€). The same must hold for aabbb, aaabbbb and so on.
But since the set F' is finite there must exist two words w = a’b**! and
w' = o/, i # j, which are accepted by the same state, say zf. Now,
regard the computation for the input a’b**'6*! which is in Lo. Since our
automaton is assumed to be deterministic we have (zg,a’d" o' 1, ¢) =T
(27,071 e) and since the input is in Ly we must have (zp, 0! e)
(#},¢,€), 2y € F. Thus, we have (20, VT g) BT (27,07 e) BT
(z}, e,€). This implies a contradiction because the input a/#+16+1 is not
inL1UL2 fOI"L#]

The last theorem implies that there is no algorithm to make a nondeter-
ministic finite state machine of degree k deterministic. As our contradic-
tion follows independently of k the proof also shows that it is not possible
to make a nondeterministic finite state machine deterministic even if the
degree of the automaton is increased.

4 The Strong Model

We now consider the case that the call of some state is not implemented
as a normal transition. We assume that it is implemented by changing the
actual state of the automaton after pushing it onto the stack by means of a
modified finite control. Using the same concepts as before and allowing the
actual state to be pushed at most k times leads to the following definition:

16

Definition 7 An extended finite state machine of degree k is a five-tuple
A= (Z,T,6 2, F) with

e 7 is a finite set of states,

e T is the input alphabet,

e 0 C(ZXT) x(ZxZ:x[0:k]),
e 2y € Z is the initial state,

e ' C 7 is the set of final states.

For z € Z and a € T we define 6(z,a) := 0N ({z} x{a}) x(Zx Z:x[0: k]).
The set of all extended finite state machines of degree k is denoted by
ExFSM(k).

Note, that ((z,a), (21, 22,7)) € d corresponds to the case that we can read
symbol a in order to go from z to z3; z5 is pushed j times for a later return,
then the subroutine z; is called.

Definition 8 Let A = (Z,T,0,20,F) € ExFSM (k). A triple (z,w,s) €
Z x T* x Z* is called configuration. The triple (z9,w,e) is called start-
configuration with input w. A triple (z,¢,¢) is called end-configuration if
z € F holds.

Definition 9 Let A = (Z,T,0,2y,F) € ExFSM(k). A move of A is rep-
resented by the relation F5C (Z x T* x Z*)? with (z1,wy, s1) Fs (22, w3, 52)
if and only if

e ((21,a),(22,2,5)) €6, a-wy =wy and s1 - 2l = 59,
or

® W =wy, S1 =82-20 and z1 € F.

A move with respect to the first alternative is called a-transition, ¢ move
corresponding to the second one will be called pop-operation. If the context
is obvious, the index of - is omitted. The language L(A) accepted by A is
defined as L(A) :={w € T* | (20, w,€) F* (z,€,€) with z € F}.

Definition 10 Let A = (Z,T,0,2,F) € ExFSM(k). A is called deter-
ministic if the following conditions hold:

(D1) (V(g,a) € Z x T¢) : (((g,0), (a1, 42, %)) € 6 A ((g,a),(q1,45,7)) € 0~
G =q0Ne=gNi=j);

(D2) ((Qa 6)1(Q17Q2ai)) €0~
(=3a, ¢, 45, 7) € T x Z* x [0: k]) : (g, @), (41, db, 7)) € 9);

(D3) Vw eT* a,beT., 2,2 € Z, 5,8 € Z*) : ((20,w,) F* (7, ¢e,5'28) ~
2 EFNVsZF*ViZ,a)=0Viz,b)=0V(a#bANa#ecAb#e)).

17

Note, that (D3) is decidable.

Let us have a look at an example. The automaton presented in Figure 6
is in ExFSM(1). For z; being the initial state it accepts the language
{e, bb}. If x = y holds, then the automaton is not deterministic because of
a violation of condition (D1); if we have y = & then condition (D2) is not
fulfilled. A contradiction to condition (D3) would result from y = ¢, too.

Figure 6: Example of an automaton in ExF'SM(1). A square is used to represent
a final state; a label z, z at an edge denotes an x-transition that pushes z.

Definition 11 Let G = (I,T,P,S) be a grammar. G is said to be ex-
tended k-right-linear if P C I X T*I'{J ey ASk . The set of all extended
k-right-linear grammars is denoted by ExRLIN (k).

It is obvious, that every grammar in Ex RLIN (k) is context-free. Further-
more, for K = 1, ExRLIN (k) contains the set of all context-free grammars
being in 2-standard form. This implies that ExRLIN (1) generates all
context-free languages and thus ExRREG (k) = CFL for all k > 0; here,
ExRREG (k) denotes the set of all languages that can be generated by a
grammar in ExRLIN (k).

Theorem 11 For every grammar G = (I, T, P,S) in ExRLIN(k), k > 0,
there is an automaton A = (Z,T, 6, zy, F') in ExFSM (k) with L(A) = L(Q)
and vice versa.

Proof: ”~:” As in the proof of Theorem 2 we can assume the productions
of G = (I, T,P,S) to have at most one terminal-symbol on their right-
hand sides. Then, an equivalent automaton A = (Z, T, 6, zy, F') is defined
as follows:

o 7 :=TU{z},

® 2= Sa
F:={z}U{z€Z|z—¢eecP},
§:={((z,a),(2,2,i)) | z = azZ € P,a € Ty, 25" # e} U
{((z,a),(ze,6,0)) | z—a € P,a€ T}.
Now, an induction similar to the one presented in Theorem 2 shows that

A accepts the language generated by G.
"\ Define G = (I,T, P, S) as follows:

o [:=17,

o §:= 2,

e P:={B—aCD’ | ((B,a),(C,D,5)) €5} U{B —¢| B€ F}.

18

It is easy to prove the equivalence of G to A by induction.

Thus, we have a new automata-model for the context-free languages.
It differs formally from the classical pushdown automata by the fact that
states instead of symbols of a freely choosen alphabet are pushed onto a
stack. A major difference between both is the determinism. The language
L = {a"b} | i € {1,2}} is a deterministic language in the classical context,
it cannot be accepted by a deterministic automaton of the new model.
Before we can investigate the determinism in detail we need to introduce
the notion of a reduced deterministic automaton.

Definition 12 Let A = (Z,T,0,20,F) € ExFSM (k). A state z € F is
called nullable if there exists ((z,¢€), (21, 22,7)) € 0 such that (z1,¢,23) H*
(2f,e,€) with zy € F. We say that A is nonnullable if A has no nullable
state. For a €T and z € Z we define

A*(a):={z€ Z | (2,6,¢) F* (Z,e,a) N(Z,a) # 0}

and
A% = U A%(a).
a€T

Note, that it is decidable whether or not a state is nullable.

Lemma 6 Let A = (Z,T,0,20,F) € ExFSM(k). Then there exists an
A = (Z,T,¢, 2,F) € ExFSM(k) with L(A) = L(A") such that for all
((z,a), (21, 22,7)) € &', j > 1, holds: Uper, 0'(22,b) # 0. If A is determin-
istic then A’ is deterministic, too.

Proof: Assume that there is a transition ¢ = ((z,a), (21, 22,7)) € § such
that Upeq. 0(22,b) = 0. We have to distinguish between two cases:

1. case: 29 € F. In this case we construct ¢’ from § by deleting ¢ while
adding the new transition ((z,a), (21,¢€,0)). It is obvious that this modifi-
cation does not change the language accepted by the automaton. It is also
obvious that it does not introduce new nondeterminism.

2. case: zp € Z\F. Since there is no move starting from (z2,v,7),
v € T*, v € Z*, the input is rejected by A, whenever zo is reached
or pushed (as each state on the stack must eventually become the ac-
tual state if the automaton should accept the input). Thus we set §' :=
N{(Z X T.) x (Z x {z2} x[1 : k) U(Z x T:) x ({22} x Z- x [0 : k])}
without changing the accepted language. It is obvious that this construc-
tion does not introduce nondeterminism since & C § and therefore each
nondeterministic choice for A’ would exist for A also.

Lemma 7 Let A= (Z,T,6,2,F) € ExFSM(k) be deterministic and let
z € Z be a nullable state. Then

Va €T): (|A%*(a)] <1)
and for z € A® holds
(23636) i (2,6,&) A (2,6,6) a (2,6,,3) o= /3

19

Proof: Assume the existence of @ € T and 21,7y € Z with 0(z;,a) # 0,
(z,e,e) F* (Zi,e,0q4), 0 € {1,2}, (21 # 22V Z1 = Zo Ay #). Then there
exists a maximal v € Ny with

. F' (21,6,
(z,6,¢) FY (2,€,7) { i ((;2: 5’, a;))
1. case: + = j = 0. Here z; = Z» and a1 = ao, this is in contradiction to
our assumption.
2. case: i = 0,7 > 1 (¢ > 1,5 = 0 analogously). Regard (z1,¢,a1) FT
(Z2,€,9). As there is no input-symbol to be read, the whole computation
+* must consist of e-transitions and pop-operations only. But assume that
there is a first e-transition within ~*. Then we have a contradiction to
(D3) since §(z1,a) # 0. Thus T must entirely consist of pop-operations
which again implies a contradiction to (D3) as d(z1,a) # 0 A 6(Z2,a) # 0.
Thus (z1,¢,a1) T (22,€, a2) is impossible.
3. case: 7 > 1,57 > 1: This case corresponds to the situation that
(2,e,7) F (21,e,m) F* (21,6,00) and (Z,e,7) F (Z2,¢,72) F* (22,¢,2)
with (21,e,71) # (22,€,72) by the maximal choice of v. The different suc-
cessors of (2, e,7) cannot result from two different pop-operations (as there
is a unique right-most symbol of) and they cannot result from two dif-
ferent e-transitions as A is deterministic. But the case of one e-transition
together with a pop-operation implies a contradiction to (D3) since the
pop-operation (or any pop-operation that is performed afterwards) must
eventually reach a state (at least z;, ¢ € {1, 2}) with a transition.

Lemma 8 Let A = (Z,T,4,29,F) € ExFSM(k) be deterministic. Then
there is a deterministic, nonnullable automaton A" = (Z',T,d', 2y, F) €

EzFSM (k) with L(A) = L(A).

Proof: Let N denote the set of all nullable states of A. By Lemma 6
we can assume that A pushes no state without a transition. Thus, since
N C F, we can conclude that (29, w,e) H* (z,&,a), for 2 € N, impliesa = ¢
as any state on the top of the stack would contradict the determinism of
A with respect to (D3). Therefore it suffices to prove that we can make
z nonnullable without changing the set L(z) := {w € T* | (z,w,e) F*
(2f,e,€) N zp € F}. We do this by deleting the e-transition starting at z
while introducing the following new transitions and states: For all a € T
and all states z € A%(a) we determine the corresponding tuples (z1,) €
7Z x Z* such that (z,e,¢) 1 (2,¢,8) A ((2,a), (21,22,i)) € 6 AB = B'2b.
We define m(f3) to be the smallest integer such that there are z; € Z and
ki € N, 1 <i<m(f), with 8 = 2. 2""®@ If m(8) = 0 it suffices

“Em(B)
to add the transition ((z,a), (z1,¢,0)). If m(8) = 1 we add the transition
((z,a), (21,21, k1)) and we are done. In all other cases we introduce the
new states Z;, 1 < i < m(f), and the transitions ((2;_1,¢), (2},2;, k),

1 < j < m(B). We further add the transitions ((z,a), (21,2;,k1)) and

20

((Zm()-1,€)s (215 2Zm(8), km()))- Note, that if k; is larger than k, 1 <4 <
m(B), then the corresponding transition must be split into an equivalent
chain of transitions by introducing additional new states. Since none of
the new states is accepting, none of them can be nullable. By Lemma 7
we know that for each a € T there is at most one state z € A%(a) and
if z exists, it uniquely determines the corresponding tuple (z1,3). Thus
our construction does not introduce nondeterminism with respect to (D1)
or (D2). New nondeterminism with respect to (D3) cannot be introduced
as none of the new states is pushed or is accepting. Thus it remains to
prove that L(z) is left unchanged. By definition, z € N is accepting and
thus ¢ € L(z). But the set of accepting states is not changed by our
construction and thus ¢ is accepted by z for A’ as well. Now consider any
word w € L(z) NT™". By Lemma, 7, starting at (z,w,), the first symbol a
of w determines uniquely the configuration that A possesses directly after
reading a. Let this configuration be (21, w’,). But then, by construction,
there is a chain of moves for A’ such that (z,w, ¢) l—(}t (z1,w', B). Therefore
A’ will accept w as well.

Let us return to the examplary automaton of Figure 6. We assume
that £ = a and y = ¢ such that the automaton is deterministic. We
regard all final states in order to determine the set of nullable states.
State z; is nullable because of the transition ((z1,¢), (22, 24,1)) and the
moves (22,¢,24) b (23,6,24) F (24,€,€) with 24 accepting. States z3 and
zg are not nullable since they do not possess an e-transition. State zj
is not nullable because its e-transition pushes state zg9 but zg cannot ac-
cept the empty word. To apply the construction of the previous proof
in order to make z; nonnullable we need to determine the sets A*!(x),
z € {a,b,c}. We find A% (a) = {26}, A" (b) = {29} and A*'(c) = {z}.
The related tuples (z,3) are given by (z7,23), (210,29) and (zs,23), re-
spectively. Thus, m(8) = 1 in all three cases; the first and the last case
have k; = 3, the second case has k; = 1. If we now apply the con-

Figure 7: A nonnullable automaton equivalent to the one shown in Figure 6.

struction given in the previous proof we find the automaton presented in
Figure 7. Note, that the resulting automaton is not in ExzFSM (1) be-
cause (for the symbols a and ¢) k; = 3 holds. Therefore we have to split
the transition ((z1,a), (27, 29,3)) into the equivalent chain of transitions
((z1,a), (zn1, 29, 1)), ((zn1,€), (2n2, 29, 1)), ((2n2,€), (27, 29, 1)) by introduc-
ing the additional new states z,; and z,5. The transition ((z1, ¢), (zs, 29, 3))
must be treated in the same way.

Now, we are prepared to prove the following theorem which gives a detailed
characterization of the different notions of determinism.

21

Theorem 12 The set of languages accepted by a deterministic automaton
A € ExFSM(k), k > 1, is equal to those languages that can be generated
by a context-free grammar G which is LL(1).

Proof: "n:” Without loss of generality we assume that A = (Z,T, 4, zp, F)
is nonnullable. Now regard the grammar G = (I,T,P,S) constructed
from A as presented in the proof of Theorem 11 and assume that G is
not LL(1). Then there exist two derivations d; and dy with dy = S 2;
wBa 2% wha %* wx and do = S 2; wBa 2% wya %* wy with
FIRST;(z) = FIRSTy(y) but 8 # v, i.e. there are two different productions
fi: B — pand f; : B —~. We have to distinguish between the following
cases:

1. case: Both, § and v, start with a terminal symbol. This has to be the
same symbol a for both since FIRST;(xz) = FIRST;(y). Now, by construc-
tion, f; and fo result from two different a-transitions starting at the same
state B which contradicts the determinism of A with respect to (D1).

2. case: At most one of the right-hand sides of f; and fo starts with a
terminal symbol, none of the right-hand sides is €. By construction, f; and
f2 result from two different transitions for the same state B but since at
least one of them must be an e-transition this contradicts the determinism
of A with respect to (D1) or (D2).

3. case: At least one of the right-hand sides of f; and fy is e. With-
out loss of generality we assume f; : B — ¢ and since 8 # -« either
v € TYZ* or v € Z* must hold. v € T+Z* implies FIRST;(y) # {e}
and therefore FIRSTy(z) # {e} also. v € Z* implies the existence of a
transition ((B,¢), (C, D?)) € § with CD7 = ~ and as A is nonnullable we
know that ¢ ¢ W 1= {w € T* | (C,w,D?) F* (zp,e,e) A zy € F). But
since wyx l%* wy € T* we know that W # () and we conclude that
FIRST:(y) # {e} in this case as well. Thus for any choice of there must
exist an X € I and ay,a9 € I* with @ = a3 Xas such that X does not
produce ¢ within the derivation d;. We choose || minimal which implies
that Y — ¢ € P for all Y in ;. But then for the corresponding compu-
tation of A we have the actual state B which is accepting and all states
that are above X on the stack are accepting, too. This fact implies a con-
tradiction to (D3) because fo implies that 6(B,a) # () and §(X,b) # 0 for
a=eVb=¢eVa=>basFIRST (z) = FIRST(y).

A Let G = (I, T,P,S) be LL(1). We use the construction given in
proof [4, Theorem 3] which generates a LL(1) grammar G' = (I, T, P;,S})
with £(G") = L(G)\{e}, where G’ satisfies the properties:

e Forall f: A— a € P; holds: either « = ¢ or a = X/, =X =—=* ¢;

o [=TU{A| A€ INA =7 ¢ with respect to P}, (A - a € P) =
(A= a€e P ANa#e);

e S =S ifed L(G) otherwise S; = S.

22

Therefore, L(G1) = L(G) for Gy := ([1,T, P, S) and we claim that G
is LL(1), too. To prove this claim assume the contrary and ask for two
leftmost derivations starting at S that contradict the LL(1) property for
G1 but that do not exist when starting at S;. Now, as S — ¢ is the only
production that might exist for S but not for Sy, (S =1 a)A-(S; =T «)
is only possible if S — ¢ is the first production applied. But then, in order
to contradict the LL(1) property, there must exist a production S — «,

Im * o)
a#e, a= ¢, but for P; this is impossible.
For &€ := {f : A — ¢ | f € P} we apply the construction given in
proof [4, Theorem 4] to the grammar (I;,T,P;\E,S). The result is a
grammar (I,T, P2, S) such that Gy := ([1,T,P, U¢&,S) is LL(1) and
L(G2) = L(G) holds. Additionally each production f: A — « of P» fulfils
« € TI;. Tt is possible that P, possesses productions f : A — aBC/a
that do not fulfil the restrictions of a grammar in RLIN (k) for arbitrary
k. For all such f we factorize Clo into A1As--- Ay, Aj € 11,1 < i <m,
and introduce the new nonterminal H;, 1 < 4 < m, together with the
rules H; — AiHi+la 1<i<m-1, Hyp1 = An_14,. Finally, we
replace f by A — aBH; such that A =™ aBC’a. It is obvious that the
resulting grammar generates the same language and remains LL(1). Only
for technical reasons we introduce the new nonterminal X, together with
the production X, — ¢ and transform each terminal rule A = a, a € T,
into A — aX,. Let the resulting grammar be named G3 = (I3, T, P5, S)
and consider the automaton A which is constructed from G35 as given in
the proof of Theorem 11. Let us assume that A is not deterministic.
A contradiction to (D1) implies the existence of two productions f; : A —
ac and fo : A — af, a € T., a # 3, and as we can assume (without
loss of generality) that A has no useless state; this contradicts the LL(1)
property of G5 for ¢ € T. Now, since P, has Greibach normal form, ¢ = ¢
is only possible if A is one of the new nonterminals H; introduced while
constructing G'3. But then a = 8 because there is only one production for
every H;.
A contradiction to (D2) would imply the existence of a production A — «
with @ € I together with a second production g for the nonterminal A.
Again, because of the Greibach normal form of P, A — « is only possible
if A is one of the new nonterminals H; introduced while constructing Gs.
But since there is only one production for every H;, the existence of g is
impossible.
A violation of (D3) could only occur if there exist w € T*, a,b € T. and
A€ I3, A— ¢ € P;, such that S 2; wAa with @ = ajBag, C — ¢ € P3
for all C' in oy, together with two productions f; : A = af3, fo: B — by in
P fulfilling B € I7, y € I and (a =bVa=¢eVb=¢). The cases a = ¢
and b = ¢ are impossible because they would imply either A = H; but
H; — e & P, or B= H; but Hj is never pushed; here H; and H; are new
states introduced while constructing G5 from G2. The case a = b implies

23

the following derivations for G'3:

I Im* I Im, *
== wayBay == wBas = whyos == wby' = wy

l
S = wAa Im i
L wafa = wazr' = wz

with FIRST;(z) = FIRSTy(y) but aBa # a3 Bas which is impossible as G5
is LL(1).

Note, that the assumption for A being nonnullable is essential. A nul-
lable automaton would imply productions like A — aB, B — ¢, B —
C, C — ¢ where we have two different B-productions with identical FIRST;-
sets.

Corollary 3 The set of languages that can be accepted by a deterministic
automaton in ExFSM(1) is equal to those languages that can be generated
by a context-free grammar which is LL(1).

Proof: It is sufficient to prove that every deterministic automaton out of
the class ExF'SM (k) can be transformed into an equivalent deterministic
automaton in FzFSM(1). This can be done in the following way. Assume
that ((z,a),(z1,22,)) is a transition with 5 > 1. Then we delete this
transition and introduce the new states z(i), 1 < i < j, together with the
new transitions ((z,a), (2(1), 22, 1)), ((2(7),€), (z(i4+1),29,1)), 1 <71 < j—1
and ((z(j —1),¢€), (21, 22,1)). Obviously, the behavior of the automaton is
left unchanged. As none of the new states is accepting or pushed by any
transition, and each new state has exactly one outgoing transition the
automaton stays deterministic.

5 Conclusion

Within this paper we have considered the generative capacity of subrou-
tines introduced for finite state machines. Two possibilities of implement-
ing the procedure-call have been regarded. First, a call was implemented as
a normal transition. This led to a new class of languages called RREG (k)
which includes some context-free languages like the Dyck-language with
one type of brackets, but is a proper subset of the set CF L. However, it
seems to be possible to generalize this result; there is a conjecture that
each bounded language in RREG (k) is regular (for a definition of bounded
see [2]). An automata-model corresponding to RREG(k) was introduced
and fundamental results like a pumping-lemma were presented. Second,
we considered a call to be implemented as a jump which made a finite state
machine as powerful as a pushdown automaton. As a consequence an al-
ternative automata-model for the class CFL was found. One interesting
detail of this new automaton is the determinism. We have proved that the
set of languages which can be accepted deterministically is the same as the
set of languages which can be generated by a LL(1) grammar. It is well
known that the set of languages which can be accepted by a deterministic

24

pushdown automaton is equal to those for which we have a grammar that is
LR(1). The class of languages that are LL(1) is a proper subclass of those
that are LR(1). Thus the new automata-model in its deterministic varia-
tion is less powerful than the classical deterministic pushdown automata.
From a practical point of view, the new automata-model is well motivated.
For example, there is a language called DPF (Disc Plot Format) which
is used by the company Barco Graphics in Gent, Belgium, to represent
graphical information. Most parts of that language are generated by right-
linear rules only. Thus a syntax-check might be implemented as a finite
state machine or its programming-language equivalent. However, one rule
within the production system of the DPF is not right-linear. This rule is
of the pattern A — a(S) (A4, S nonterminals). As shown in this paper a
simple extension of the finite automaton by a stack on which states might
be stored suffices to get an equivalent automaton. This becomes inter-
esting when thinking of the reusability of software. If the syntax of any
language is changed such that a formerly regular language becomes non-
regular, a program (the finite automaton) needs not to be rewritten from
scratch as most of its parts can be kept the way they are. This was the
starting point of the present paper where the idea of finite state machines
with subroutines came up.

Acknowlegements: I would like to thank Uwe Trier who brought the
DPF to my attention and thus gave me the motivation for this work. I also
wish to thank an anonymous referee whose comments helped to improve
the quality of this paper.

References

[1] ALFRED V: AHO AND JEFFREY D. ULLMAN, The Theory of Parsing,
Translation and Compiling, Volume I: Parsing, Prentice-Hall Series in
Automatic Computation, 1972

[2] S. GINSBURG, The Mathematical Theory of Context-Free Languages
McGraw-Hill, 1966

[3] MICHAEL A. HARRISON Introduction to Formal Language Theory,
Addison-Wesley Publishing Company, 1978

[4] D. J. ROSENKRANTZ AND R. E. STEARNS, Properties of deterministic
top-down grammars, Information and Control 17, 226-256, 1970

[5] A. SALOMAA AND M. SOITTOLA, Automata-Theoretic Aspects of For-
mal Power Series, Springer, 1978

25

