Exercise Sheet 5 for Algorithm Engineering, SS 14

Hand In: Until Monday, 26.05.2014, 10:00 am, email to wild@cs... or in lecture.

Problem 10

A binary tree is called Δ-height-balanced, $\Delta \in \mathbb{N}$, if for each of its nodes the difference of the heights of its subtrees is at most Δ. (1-height-balanced trees are known as AVLtrees.)

Show: The maximum height $h_{\text {max }}$ of a Δ-height-balanced tree with n nodes satisfies:

$$
h_{\max } \sim C_{\Delta} \operatorname{ld}(n), \quad n \rightarrow \infty
$$

where C_{Δ} is a constant depending on Δ.
Hint: One way to start is to determine the generating function for the sequence of worstcase tree heights and a sufficiently small interval containing its dominant singularity.

Problem 11

In this exercise, we prove the famous binomial theorem. Recall the definition of binomial coefficients for $r \in \mathbb{C}$ and $k \in \mathbb{Z}:^{1}$

$$
\binom{r}{k}:= \begin{cases}\frac{r^{\underline{k}}}{k!}, & \text { for } k \geq 0 \tag{1}\\ 0, & \text { otherwise }\end{cases}
$$

By $r^{\underline{k}}$, we denote the falling factorial " r to the k falling", which is recursively defined by $r^{\underline{0}}=1$ and $r \underline{k+1}=r \cdot(r-1)^{\underline{k}}$ for $k \in \mathbb{N}$.

[^0]a) Let $z \in \mathbb{C}$ and assume that at least on of the following two conditions holds:
(i) $|z|<1$ or
(ii) $r \in \mathbb{N}$.

Show that then

$$
(1+z)^{r}=\sum_{k}\binom{r}{k} z^{k}
$$

Hint: Consider the Taylor series expansion of $f(z):=(1+z)^{r}$ around $z=0$.
You may use $\binom{r}{n} \in \mathcal{O}\left(n^{-r-1}\right)$ as $n \rightarrow \infty$ for constant $r \in \mathbb{C}$ without proof.
b) Assume now that $x, y \in \mathbb{C}$ and at least one of the following conditions holds:
(i) $y \neq 0$ and $|x / y|<1$ or
(ii) $r \in \mathbb{N}$.

Show that then

$$
(x+y)^{r}=\sum_{k}\binom{r}{k} x^{k} y^{r-k}
$$

Hint: Use a).

Problem 12

In this exercise, we see by example how we can compute coefficients of "simple" algebraic functions precisely and how to obtain concise asymptotics for them. Generalizing this approach leads to a proof of Darboux's theorem.
a) Let the generating function $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be given by

$$
\begin{equation*}
C(z):=\frac{1-\sqrt{1-4 z}}{2 z}=\frac{1}{2 z}-(1-4 z)^{1 / 2} \cdot \frac{1}{2 z} \tag{2}
\end{equation*}
$$

Show that then holds

$$
c_{n}=-\frac{1}{2} \cdot 4^{n+1}\binom{n-\frac{1}{2}}{n+1}=\frac{1}{n+1}\binom{2 n}{n}
$$

(You are expected to prove both equalities, but partial credit is given to solutions deriving only the first one.)
Hint: Use the binomial theorem.
Hint: There are numerous identities for manipulating binomials, some of which might come in handy here (see, e. g., the TCS cheat sheet).
b) Show that for $n \in \mathbb{N}$ and $c \in \mathbb{C}$ with $-r \notin \mathbb{N}$ holds

$$
\binom{n+c}{n} \sim \frac{n^{c}}{\Gamma(c+1)}, \quad(n \rightarrow \infty)
$$

Partial credit is given to solutions for $c \in \mathbb{Z}$ only.
c) Prove the asymptotic

$$
\left[z^{n}\right]\left(1-\frac{z}{\rho}\right)^{-\omega} \sim \frac{1}{\Gamma(\omega)} \cdot n^{\omega-1} \rho^{-n}
$$

for $\rho>0$ and $-\omega \notin \mathbb{N}$.

[^0]: ${ }^{1}$ There is an even more general definition relying on the Gamma function to generalize the notion of factorials to arbitrary complex k. For the binomial theorem, however, nonintegral k do not occur and it is more convenient to stick to the given elementary definition.

